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3.3: HOLOGRAPHIC ENTANGLEMENT ENTROPY 

3.3.1: ENTANGLEMENT ENTROPY 

Consider a quantum system that is divided into A and B two parts such that the full Hilbert space can be represented 
as the tensor product of the Hilbert spaces of A and B: 

H = HA ⊗HB (1)  
A typical wave function of this system is Ψ = ψn(A) ⊗ χn(B), in which A and B in the state |Ψ) are entangled n 
since |Ψ) cannot be written as a simple product of those of A and B. Entanglement entropy (EE) is a measure to 
quantify how much A and B are entangled. Define the reduced density matrix of A by tracing over all B state in 
|Ψ): 

ρA = T rB |Ψ)(Ψ| (2) 

Then EE is defined as 
SA = −T rρA log ρA (3) 

From the definition, an obvious corollary is 

SA = 0 ⇐⇒ ρA denotes a pure state ⇐⇒ |Ψ) can be written as a simple product (4) 

Indeed, for any pure state |Ψ), we can always write it as  
|Ψ) =

i 

λi|iA)|iB ) λi ≥ 0 (5) 

by Schmidt decomposition of |Ψ) into some complete set of A and B. It follows that 

SA = SB (6) 

For AB composite system in a mixed state, in general, we have SA  SB . In such a case, EE typically contains = 
classical statistical correlation of the mixed state in addition to quantum correlations. 

Here are some examples. A two spin system, we can have a state 

1 |Ψ) = (| ↑↓) + | ↓↑) + | ↑↑) + | ↓↓))
2
1 1 

= √ (| ↑) + | ↓)) ⊗ √ (| ↑) + | ↓)) (7) 
2 2 

that is not entangled. However the state 

|Ψ) = cos θ| ↓↑) + sin θ| ↑↓) (8) 

is entangled. For this state, the reduced density matrix for A is 

ρA = TrB cos 
2 θ| ↓↑)(↓↑ | + sin2 θ| ↑↓)(↑↓ | + sin θ cos θ(| ↓↑)(↑↓ | + | ↑↓)(↓↑ |) 

= cos 2 θ| ↓)(↓ | + sin2 θ| ↑)(↑ | (9) 

thus EE is 
SA = − cos 2 θ log cos2 θ − sin2 θ log sin2 θ (10) 

We see SA has period of π/2 w.r.t. θ and the minima are SA = 0 when θ = nπ/2 and maxima are SA = log 2 when 
1θ = nπ/2 + π/4, where n ∈ Z. At maxima, the state |Ψ) = √ (| ↓↑) + | ↑↓)) is most entangled. 
2 

We list some important properties of EE as follows. Suppose A, B, C are three parts of the system without any 
intersection between any two of them. We have 
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1.	 Subadditivity: 
|S(A) − S(B)| ≤ S(AB) ≤ S(A) + S(B) (11) 

2.	 Strong subadditivity (hard to prove): 

S(AC) + S(BC) ≥ S(ABC) + S(C) (12) 

S(AC) + S(BC) ≥ S(A) + S(B) (13) 

EE plays an important role in quantum information and quantum computation as it provides quantitative measure 
of quantum correlations that are not present classically. 

3.3.2: ENTANGLEMENT ENTROPY IN MANY-BODY SYSTEMS 

Consider a system AB. If Hamiltonian is H = HA + HB , then the ground state is unentangled. Moreover, starting 
with a general unentangled state |Ψ(t = 0)), the system will remain unentangled. If we add coupling between A 
and B, H = HA + HB + HAB , then the ground state is generally entangled. Certainly, starting with an initial 
unentangled state, entanglement will be generated during time evolution. In all realistic condensed matter (CM) 
systems and quantum field theories, HAB is local, e.g. Heisenberg model, 

H = JijS i · S j	 (14) 
nearest neighbors 

and φ4 QFT, 
1 1 λ L = − (∂φ)2 − m 2φ2 − φ4	 (15) 
2 2 4 

Locality implies (as shown in the picture below) that the interaction only happens near the interface of A and B, 
so HAB only involves degrees of freedom near ∂A and ∂B. This has important implications. 

Figure 1: Locality of interaction 

One finds, in general, in the ground state for a local Hamiltonian, EE is given by
 

Area(∂A)

SA = # + · · ·	 (16) 

Ed−2 

where E is the lattice spacing for CM system or short-distance cutoff for QFTs, which characterizes the geometric 
width of interface. This formula shows that EE between A and B is dominated by short-range entanglement near 
∂A, where HAB is supported. While (16) appears to be universal, # is not, depending on short-distance physics of 
specific systems. For the subleading order terms, the excitement of last decade on EE shows that they come from 
large-range entanglement and can provide important characterization of a system: 

1.	 Characterize topological order (2 + 1 dimension). In typical gapped systems, ground state contains only 
short-range correlations. In topological ordered systems, ground state contains long-range correlations 
not accessible via standard observables such as correlation functions of local operators etc. The EE for 
such a system is 

L(∂A)
SA = # − γ	 (17) 

E 
where γ = 0 is topological order, a constant independent of shape and size of A. 
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2.	 Characterize the number of degree of freedom of a QFT. For a (1 + 1)−dimensional CFT, there is no 
leading contribution (area of ∂A is zero), and one finds 

c l 
SA = log	 (18) 

3 E 

where c is central charge and l is the length of A. We know c contains the information of number of 
degree of freedom of a 2d CFT, i.e. via Cardy formula. For (2 + 1)−dimensional CFT, one finds 

L(∂A)
SA = # − γ	 (19) 

E 

where γ depending on the shape of A can be used to characterize the number of degree of freedom. 
Similar results can be found in other dimensions. 

3.3.3: HOLOGRAPHIC ENTANGLEMENT ENTROPY 

Suppose we have a CFT with a gravity dual, how can we calculate EE on gravity side? As shown in the picture 
below, we propose to find the minimal area surface γA which extends into the bulk with ∂A as boundary and EE 
is given by 

Area(γA)
SA =	 (20) 

4GN 

This formula was first guessed by S. Ryu and T. Takayanagi (R-T) who were motivated by black hole entropy. 

Figure 2: Minimal area 

There are some supports for this formula: (1) satisfy the strong subadditivity conditions; (2) reproduce known 
results about EE; (3) give many new results that are all sensible. While easy to define, EE is very complicated to 
compute for a general many-body system. Even for a free QFT, the computation is highly non-trivial, and often 
numerical calculation are needed. R-T provides a very simple way to compute EE in a class of strongly interacting 
QFTs. 

Here are proofs of strong subadditivity. 

Figure 3: Proof of strong subadditivity 

In Figure 3(a), we can easily find 
γAC + γBC = γ1 + γ2	 (21) 
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and by definition of minimal surface 
γ1 ≥ γC γ2 ≥ γABC (22) 

which implies 
S(AC) + S(BC) ≥ S(ABC) + S(C) (23) 

In Figure 3(b), we also have 
γAC + γBC = γ1 + γ2 (24) 

and by definition of minimal surface 
γ1 ≥ γA γ2 ≥ γB (25) 

which implies 
S(AC) + S(BC) ≥ S(A) + S(C) (26) 

Now we can apply this formula to (1 + 1)−dimensional CFT, whose dual is AdS3 where the metric is 

R2 

ds2 = 
z2 

(−dt2 + dx2 + dz2) (27) 

We know each CFT is characterized by a central charge c, e.g. density of state:     
cnL cnR

D(E) = exp 2π + 2π E ∝ nL + nR (28) 
6 6

and the trace anomaly gives 
c (T µ) = − R (29) µ 12 

where R is Ricci scalar. For holographic CFT, the central charge is given by 

3R 
c = (30) 

2GN 

On the gravity side, like Wilson loop, we consider constant time slice where the metric is 

ds2 = 
R

z2

2 

(dx2 + dz2) (31) 

Assume the minimal surface is a function of x(z). The differential length of the surface is 

dl2 = 
R

z2

2 

(1 + x !2)dz2 (32) 

Consider right half, x(0) = L ,2 ˆ z0  1 R !2SA = × 2 dz 1 + x (33) 
4GN 0 z 

Extreming it leads to the well known answer, x = L2/4 − z2, the half circle with z0 = L/2. 

Figure 4: Minimal surface in bulk 

Finally, we get EE 

ˆ L/21 L dz 1
SA = × 2R ×  

4GN 2 z L2/4 − z20 
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ˆ L/2RL dz 1 c 
4GN z L2/4 − z2l 

2R L 
= log

4GN E 
c L 

= log (34) 
3 E 

where E is the cutoff to regularize the divergence. Clearly this result agrees with the calculation from CFT. 
In finite temperature, we may discuss the connection to black hole entropy. Consider the CFT on a circle (Figure 

5), we should recover black hole entropy if we take A to be the whole boundary space because by definition 

S = −T rρ log ρ (35) 

is the thermal entropy and in this case the reduced density matrix is the same as the real density matrix of A. 
Indeed, graphically the minimal surface is just black hole horizon and black hole entropy is recovered. Generally, if 
the minimal surface is always perpendicular to boundary, area law can be proved in AdS in arbitrary dimensions. 

Figure 5: Entanglement entropy and black hole entropy 

R-T formula not only provides a simple way to calculate EE, but more importantly, it implies some connection 
between spacetime and geometrization of quantum entanglement, geometry and quantum information. In the end, 
we may expect a unified paradigm: 
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