Effective Field Theory (8.851) Spring 2013 Homework 2

Do problems 1 and 2. Problem 3 is optional and will not be graded, but is recommended for those people who have not previously seen an $\overline{\text{MS}}$ calculation with matching through thresholds.

Problem 1) Mixing and 4-quark operators

- a) Compute the divergent part of the one-loop graphs that renormalize the operators for $b \to c\bar{u}d$ and derive the matrix Z_{ij} discussed in class.
- b) Verify that in the case $\mu \to e \nu_{\mu} \bar{\nu}_e$ the four fermion operator is not renormalized at order e^2 . Explain why.

Problem 2) Chiral Perturbation Theory and Decay Constants in SU(3)

Feel free to use a computer algebra package like Mathematica for parts of this problem.

- a) Work out the tree level Feynman rules for the four meson interactions with SU(3) chiral perturbation theory and the leading order Lagrangian. (You may use either the octet basis $M = \pi^a \lambda^a / \sqrt{2}$, or the charged particle basis.) You may start with the expression given in Lecture for the four boson interaction Lagrangian.
- b) Work out the tree level Feynman rules in chiral perturbation theory for the lefthanded SU(3) octet current $J^a_{L\mu} = (-if^2/4) \text{tr}[\lambda^a \Sigma \partial_\mu \Sigma^\dagger]$ (which was $\bar{\psi} \gamma^\mu P_L \lambda^a \psi$ in QCD) with one and three external mesons.
- c) Write down the loop diagrams and terms in the chiral Lagrangian that are needed to give the decays constants at order p^4 (where $p \sim m_{\pi} \sim m_K$ so this also means order $m_{\pi}^4 \sim m_a^2$ etc.).
- d) Determine the explicit contribution of the order p^4 Lagrangian terms to f_{π} and f_K taking $m_u = m_d = \hat{m}$, but $\hat{m} \neq m_s$.
- e) Calculate the loops in part c) using dimensional regularization. Combine your result with d) to derive the full expression for f_{π} and f_K/f_{π} at this order (still taking the isospin limit $m_u = m_d$).
- f) Extract a value for the relevant low energy contants, L_i , using the data $f_K/f_{\pi} = 1.23 \pm .02$, and discuss whether your result agrees with naive dimensional analysis.

Problem 3) Running Quark Masses (Optional Problem)

Consider QCD with n_f flavors.

- a) Compute the quark mass anomalous dimension at one-loop in $\overline{\text{MS}}$. Solve to get the running $\overline{\text{MS}}$ mass $\overline{m}(\mu)$. (If you want to remind yourself how different schemes are related, you should also compute the relation between the pole mass and $\overline{\text{MS}}$ mass at one-loop.)
- b) The Higgs decay rate for $H \to c\bar{c}$ is proportional to m_c^2 , making it quite sensitive to the charm mass. Suppose we know the $\overline{\text{MS}}$ mass $\bar{m}_c(\mu = \bar{m}_c) = 1.4 \text{ GeV}$, and want to know what value to use for the Higgs decay at $\mu = m_H = 500 \text{ GeV}$. By matching and running in effective theories at LL order determine $\bar{m}_c(m_H)$. Why is this choice, $\mu \simeq m_H$, appropriate?

8.851 Effective Field Theory Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.