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Here the jet mass is also the mass of the hadronic final state, and the situation which dominates the 
2 2phenomenology has m We have collinear modes for the jet, and ultrasoft modes with p ∼X ∼ QΛQCD. us 

2Λ2 which are the constituents of the B meson for this inclusive decay. Often the region where mX « Q2 
QCD 

is known at the endpoint region since E ∼ mB /2 − ΛQCD and hence is close to the physical endpoint 
2E = mB /2. (The case mX ∼ Q2 is then known as the local OPE region where the traditional HQET 

operator product expansion analysis suffices.) The picture of the modes for this case are shown in Fig. 3, 
and indeed yield an example of an SCETI theory with only one collinear mode. 

3 Ingredients for SCET 

Our objective in this section is to expand QCD and formulate collinear and ultrasoft degrees of freedom. In 
doing so, we will derive power counting expressions for operators and see what form the quark Lagrangian 
takes in a SCET theory. 

3.1 Collinear Spinors 

We begin our exploration by considering the decomposition in the collinear limit of Dirac spinors u(p) for 
particles and v(p) for antiparticles. We will derive the collinear spinors by considering the expansion in 
momentum components, but then will convert this result into a decomposition into two types of terms 
rather than an infinite expansion. 

0 1 2 − 0 3 1,2 + 3For a collinear momentum pµ = (p , p , p , p3) we have p = p + p » p » p = p0 − p so⊥ 

pσ · pp 
0 = σ3 + . . . , (3.1) 
p

where the terms in the + . . . are smaller. Keeping only the leading term gives us the spinors      
0)1/2 −(2p U p U 

u(p) = √  σ·p =⇒ un = (3.2)
2 0 U 2 σ3U p     

0)1/2  σ·p −(2p 0 V p σ3V 
v(p) = √ p =⇒ vn =

2 V 2 V
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1 0
where here U and V are each either or . From this analysis we see that in the collinear limit

0 1
both quark and antiquarks remain as

(
rele

)
van

(
t degrees

)
of freedom (and indeed, there is no suppression

for pair creation from splitting). We also see that both spin components remain in each of the spinors.
Recalling our default definitions of nµ and n̄µ, we can calculate their contractions with the gamma matrix,

1 σ3
1 σ3

n/ = γ0 − γ3 =

(
σ3
−
−1

)
, n/̄ = γ0 + γ3 =

(
−σ3 −1

)
. (3.3)
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Multiplying the first matrix by un or vn from (3.2) gives the following relations 

/ = 0 , nvn = 0 . (3.4)nun /

These can be recognized as the leading term in the equations of motion / pv(p) = 0 when expandedpu(p) = /
in the collinear limit. We can also define projection operators 

and then we have the relations 

n/n̄/ n/n̄/
Pnun = un = un, Pnvn = vn = vn. (3.6)

4 4 
The bottom line of this expansion is that when a hard interaction produces a collinear fermion or an
tifermion it will be the components obeying the spin relations in Eqs. (3.4) and (3.6) that appear at 
leading order. 

For later purposes it will be useful to decompose the QCD Dirac field ψ into a field ξn that obeys these 
spin relations. From {γµ, γν } = 2gµν we note that 

n/n/̄ n̄/n/
+ = J, (3.7)

4 4 
which allows us to write ψ in terms of two fields, 

ˆψ = Pnψ + Pn̄ψ = ξn + ϕn̄ (3.8) 

where we defined 

n/n̄/ n/̄n/
ξ̂n = Pnψ = ψ , ϕn̄ = Pn̄ψ = ψ. (3.9)

4 4 
These fields satisfy the desired spin relations 

/ Pnξn = ξn , nϕn̄ Pn̄ϕn̄ = ϕn̄ .nξn = 0 , /̄ = 0 , (3.10) 

ˆThe label n on ξn reminds us that it obeys these relations and that we will eventually be expanding about 
the n-collinear direction. Note that here we denote the collinear field components with a hat, as in ξ̂n(x), 
since there are still further manipulations that are required before we arrive at our final SCET collinear 
field ξn(x). Nevertheless both ξ̂n and ξn satisfy these spinor relations. 

Having defined ξ̂n = Pnψ, the corresponding result for the spinors is un = Pnu(p) and vn = Pnv(p), 
which do not precisely reproduce the lowest order expanded results in Eq. (3.2). Instead we find 

Pn =
/n/̄n

4
=

1

2

(
1 σ3

σ3
1

)
, Pn̄ =

/̄n/n

4
=

1

2

(
1 −σ3

−σ3
1

)
, (3.5)

un =
1

2

(
1 σ3

σ3 1

)√
p0

(
U

~σ·~p
p0
U

)
=

√
p0

2

 (
1 + p3

p0
− (i~σ×~p⊥)3

p0

)
U

σ3

(
1 + p3

p0
− (i~σ×~p⊥)3

p0

)
U


=

√
p− Ũ
2

(
˜σ3 U

)
(3.11)

where the two component spinor is

Ũ =

√
p0

2p−

(
1 +

p3

p0
− (i~σ × ~p⊥)3

p0

)
U . (3.12)
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The same derivation gives  

where Ṽ is defined in terms of V by a formula analogous to Eq. (3.12). Since the spin relations in Eqs. (3.4) 
and (3.6) do not depend on the form of the two component spinors ( Ũ versus U etc), they remain true. We 
will see later that the results for the un and vn spinors involving Ũ and Ṽ rather than U and V are required 
to avoid breaking a reparameterization symmetry in SCET. The extra terms appearing in the definition of 
Ũ ensure the proper structure under reparameterizations of the lightcone basis. Finally we note that 

Thus if we take the product of un spinors 

and sum over spins, we have 

For later convenience we write down a set of projection operator identities easily derived from n2 = 0, 
n̄ · n = 2, and/or hermitian conjugation γµ† = γ0γµγ0: 

PnP¯ = 0 , Pn = Pn , Pnn̄ = Pn̄/ Pn / n , n /̄ n , / P † = γ0P¯γ0 .n Pn / n = 0 , n = / P¯n = ¯ n (3.17)n 

None of these results depends on making the canonical back-to-back choice for n̄. The last result is useful 
for the computation of ξ̂n from ξ̂n = Pnψ, i.e. 

ξ̂ = ξ̂† γ0 = ψ†P †γ0 = ψ Pn̄ . (3.18)n n n

¯
Thus just like the relations for ξ̂n or ξn we have the following relations for ξ̂n or ξ̄n: 

n/̄n/¯ ¯ ¯ ¯ ¯ξnn/ = 0 , ξnPn = 0 , ξnPn̄ = ξn = ξn . (3.19)
4 

In addition to our collinear decomposition of the Dirac spinors and field, we will also need spinors and 
quark fields for the ultrasoft degrees of freedom. However, since all ultrasoft momenta are homogeneous of 
order λ2 and the scaling of momenta does not affect the corresponding components of the ultrasoft spinors, 
which are the same as those in QCD. 

3.2 Collinear Fermion Propagator and ξn Power Counting 

Having considered the decomposition of spinors in the collinear limit, we now turn to the fermion propagator 
2 2in the collinear limit. Here p + i0 = n̄ · p n · p + p , and since both of these terms are ∼ λ2 there is no ⊥
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vn =

√
p−

(3.13)
2

(
˜σ3

˜
V
V

)

∑
ŨsŨ† s = 12 2 (3.14)×

s

Thus if we take the product of un spinors

p−
unūn = ,Ũ2

(
Ũ Ũ† −ŨŨ†σ3 (3.15)˜σ3 U† − ˜σ3UŨ†σ3

)
and sum over spins, we have ∑

us
n

ūs
/

n n =
s

2
n̄ · p . (3.16)
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expansion of the denominator of the propagator. We can however expand the numerator by keeping only 
the large n̄ · p momentum, as 

ip/ in/ n̄ · p in/ 1 
= + . . . = 2 + . . . (3.20) 

p2 + i0 2 p2 + i0 2 p⊥n · p + + i0 sign(n̄ · p)n̄·p 

The fermion-gluon coupling will be proportional to /̄n/2 and hence will form a projector Pn when combined 
with the /n/2 from the propagator. Therefore the displayed term in the propagator has overlap with our 
spinors un and vn, just giving Pnun = un etc. The fact that both +i0 and −i0 occur in the expanded 
propagator is a reflection of the fact that the lowest order SCET Lagrangian will contains both propagating 
particles (n̄ · p > 0) and propagating antiparticles (n̄ · p < 0). 

The leading collinear propagator displayed in Eq. (3.20) should be obtained from a time-ordered product 
¯̂

of the effective theory field, (0|T ξ̂n(x)ξn(0)|0). At this point we can already identify the λ power counting 
for the field ξ̂n by noting that if its propagator has the form in Eq. (3.20) then its action must be of the 
form   

L(0) d4 x L(0) d4 ¯̂ n/̄   
ˆ ∼ λ2a−2 = = x ξn in · ∂ + . . . ξn . (3.21)n n '-n" '-n" 2 ' -n " '-n" 

O(λ−4) O(λa) O(λ2) O(λa) 

1Here we used the fact that d4x = (dx+)(dx−)(d2x⊥) ∼ (λ0)(λ−2)(λ−1)2 ∼ λ−4 where the scaling for the 2 
+ − − + ⊥coordinates xµ follows from those for the collinear momenta by writing x · pc = x p + x p + 2x⊥ · pc c c 

and demanding that the terms in this sum are all O(1). In (3.21) we assigned ξ̂n ∼ λa with the goal of 
determining the value of a. To do this we take the standard approach of assigning a power counting to the 

(0)
leading order kinetic term in the action so that Ln ∼ λ0, which gives 

ξ̂n ∼ ξn ∼ λ . (3.22) 

Even though we have not fully considered all the issues needed to define the SCET collinear field ξn, the 
further manipulations we will make in section 4 below will not effect its power counting, so we have also 
recorded here the fact that the SCET field ξn ∼ λ. Note that this scaling dimension does not agree with 
the collinear quark fields mass dimension since [ξ̂n] = [ξn] = 3/2. This is simply a reflection of the fact 
that the SCET power counting for operators is not a power counting in mass dimensions. The observant 
reader will notice that the λ scaling of the collinear field is the same as its twist, and indeed the SCET 
power counting reduces to a (dynamic) twist expansion when the latter exists. 

3.3 Power Counting for Collinear Gluons and Ultrasoft Fields 

Similar to our procedure for the collinear fermion field, we can analyze the collinear gluon field Aµ
n in our n

collinear basis to determine the λ scaling of its components. This information is necessary to formulate the 
importance of operators in SCET. We begin by writing the full theory covariant gauge gluon propagator, 
but we label the fields as Aµ

n(x) to denote the fact that we will be considering a n-collinear momenta:

where τ is our covariant gauge fixing parameter. From our standard power counting result from the light-
cone coordinate section, we know that k2 = k+k− + k2 = Q2λ2 . So the 1/k4 on the RHS matches up with ⊥ 
the scaling of the collinear integration measure 

d4 x ∼ λ−4 ∼ 
1 

(3.24)
(k2)2 
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∫
d4x eik·x 〈0|TAµn(x)Aν

i
n(0) |0〉 = −

k2

(
gµν − τ k

µkν

k2

)
= − i

k4

(
k2gµν − τ kµkν

)
, (3.23)
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Thus the quantity in the final parentheses in (3.23) must be the same order as the product of Aµ
n(x)Aν (0)n

fields. If both of the µν indices are ⊥ then both of the terms in these parantheses are ∼ λ2, so therefore 
we must have Aµ ∼ λ. If one index is + and the other − then again both terms are the same size and n⊥ 
we find A+A− ∼ λ2 . To break the degeneracy we take both indices to be +, then g++ = 0, (n · k)2 ∼ λ4 ,n n 
so A+ ∼ λ2 and A− ∼ λ0 . Other combinations also lead to this result, namely that the components of then n 
collinear gluon field scales in the same way as the components of the collinear momentum 

Aµ ∼ kµ ∼ (λ2 , 1, λ). (3.25)n 

This result is not so surprising considering that if we are going to formulate a collinear covariant derivative 
Dµ = ∂µ + igAµ with collinear momenta ∂µ and gauge fields, then for each component both terms must 
have the same λ scaling. Indeed imposing this property of the covariant derivative is another way to derive 
Eq. (3.25). 

The same logic can be used to derive the power counting for ultrasoft quark and gluon fields. Since 
the momentum kµ ∼ (λ2, λ2, λ2) the measure on ultrasoft fields scales as d4x ∼ λ−8 . Also the result isus 
now uniform for the components of Aµ Once again we find that the gluon field scales like its momentum.us. 

¯ ∼ λ2For the ultrasoft quark we have the Lagrangian L = i / with iDµ = i∂µ + gAµ . Thereforeψus Dusψus us us 

hus husFor a heavy quark field that is ultrasoft the Lagrangian is LHQET iv · Dus which is again linear in 

ψ̄usψus ∼ λ6 . All together we have 

Aµ ∼ (λ2, λ2, λ2) ,us ψus ∼ λ3 . (3.26) 

¯= v v 
the derivative, so hus ∼ λ3 as well.v 

For completeness we also remark that the power counting for momenta determines the power counting 
for states. For one-particle states of collinear particles (with a standard relativistic normalization): 

(p ' |p) = 2p 0δ3(pp − pp ' ) = p −δ(p − − p '−)δ2(pp ⊥ − pp ' ) ∼ λ−2 (3.27) 

Thus the single particle collinear state has |p) ∼ λ−1 for both quarks and gluons. Given the scaling of 
the collinear quark and gluon fields, this implies power counting results for the polarization objects. The 
collinear spinors un ∼ ξn|p) ∼ λ0 which is consistent with our earlier Eq. (3.11). For the physical ⊥ 
components of polarization vectors for collinear gluons we also find Eµ ∼ λ0 .⊥ 

Of particular importance in the result in Eq.(3.25) is the fact that n̄ · An = A− ∼ λ0, indicating thatn 
there is no λ supression to adding A− fields in SCET operators. To understand the relevance of this resultn 
we consider in the next section an example of matching for an external current from QCD onto SCET. 

3.4 Collinear Wilson Line, a first look 

To see what impact there is to having a set of gauge fields n̄ · An ∼ λ0 lets consider as an example the 
process b → ueν, where the b quark is heavy and decays to an energetic collinear u quark. This process 
has the advantage of only invoving a single collinear direction. This decay has the following weak current 
with QCD fields 

JQCD = u Γb (3.28) 

where Γ = γµ(1 − γ5). Without gluons we can match this QCD current onto a leading order current in 
SCET by considering the heavy b field to be the HQET field hv and the lighter u field by the SCET field 
ξn. This is shown in Fig. 4 part (a), where we use a dashed line for collinear quarks. The resulting SCET 
operator is 

ξ Γhv. (3.29)n
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q
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qm
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q1 q1
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a)

b)

c)

+ perms

Figure 4: Tree level graphs for matching the heavy-to-light current. 

Next we consider the case where an extra A− gluon is attached to the heavy quark. This process is n 
shown in Fig.4 part (b) and leads to an offshell propagator, shown by the pink line, that must be integrated 
out when constructing the EFT. The full theory amplitude for this process is (replacing external spinors 
and polarization vectors by SCET fields): 

In the first equality we have used the fact that the incoming b quark carries momentum mbv
µ, that 

2k = mbv + q so that k2 − m = 2mbv · q + q2, and that b 

µ µn n̄
Aµ + Aµ 
n = n̄ · An + n · An ⊥ (3.31)

2 ' -n " 2 ' -n " '-n" 
O(λ0) O(λ2) O(λ) 

where we can keep only the ∼ λ0 term. In the second equality in Eq. (3.30) we have expanded the numerator 
and denominator of the propagator in λ and kept only the lowest order terms. Since mbv · n n̄ · q ∼ Q2λ0 

we see that the propagator is offshell by an amount of ∼ Q2, and hence is a hard propagator that we must 
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Aµ An
i(k/ +mb)

ξnΓ
n

igTAγ
k2 − µhv =

m2
b

−g
( µ

n̄
2
·AAn

) [mb(1 + v/) + /q]
ξnΓ TAγ

2mbv ·
µhv

q + q2

= −gn̄ ·AAn ξnΓ

[
mb(1 + /v) + /n

2 n̄ · q n/
+ . . .

mbv · n n̄ · q

]
TA hv

2

= −gn̄ ·AAn ξnΓ

[ /n
2 (1− /v) + v · n

+ . . .
v · n n̄ · q

]
TAhv

= ξn

(−g n̄ ·An
Γ

n̄ · q

)
hv (3.30)
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2integrate out when constructing the corresponding SCET operator. In the third equality we use n/ = 0 
and pushed the n/ through to the left. Noting that (1 − v/)hv = 0, the fourth equality gives the final leading 
order result from this calculation. Thus we we see that in SCET integrating out offshell hard propagators 
that are induced by n̄ · An gluons leads to an operator for the leading order current with one collinear 
gluon coming out of the vertex, pictured on the RHS of Fig. 4 part (b). 

Inspecting the final result in Eq. (3.30) we see that, in addition to being a great simplification of the 
original QCD amplitude for this gluon attachments, it is indeed of the same order in λ as the result in 
Eq. (3.29). Indeed it straightforward to prove that the same (−gn̄ · An/n̄ · q) result will be obtained if 
we replace the heavy quark by a particle that is not n-collinear, such as a collinear quark in a different 

' ' ' direction n where n ·n » λ2 . The sum of collinear momenta in the n and n directions will also be offshell, 
for example when we add two back-to-back collinear momenta (pn + pn̄)2 ∼ λ0 . In all these situations we 
find operators with additional n̄ · An ∼ λ0 fields. 

In summary, the off-shell quark has been integrated out and its effects have been parameterized by an 
effective operator. This was necessary because the virtual quark resulting from the interaction of a heavy 

' quark or a n collinear particle with a n-collinear gluon yields an off-shell momentum. 
This result can be contrasted with what happens if we attach a single n̄ · An collinear gluon field to the 

light collinear u quark, as shown below: 

q

k

q

k

Calling the final u quarks momentum p we have kµ = pµ − qµ. However here since both p and q are 
n-collinear the propagator momentum kµ also has n-collinear scaling. In particular k2 ∼ λ2 and is not 
offshell, it instead represents a propagating mode within the effective theory. Thus this interaction is 
reproduced in SCET by a collinear propagator followed by a leading order Feynman rule that couples the 
n̄ · An field to the collinear quark. Thus this diagram corresponds to a time ordered product of the leading 

(0)
order SCET current J (0) with the leading order Lagrangian Ln . If we attach more collinear gluons to the 
light u quark, the same remains true. We never get an offshell propagator that we have to integrate out 
when we have an interaction between n-collinear particles. Indeed we will also find that the components 
n · An and A⊥ couple at leading order in T-products like the one shown above, so there is nothing special n 
about the n̄ · An components for these diagrams. 

Lets now consider the situation of multiple gluon emission from the heavy quark. In this case we again 
have offshell propagators, which are represented by the pink line in Fig. 4 part (c). By inspection, it is 
clear that the generalization from one gluon emission to k gluon emissions with momenta q1, . . . , qk and pkpropagators with momenta q1, q1 + q2, . . . , i=1 qi yields 

Here the sum of permutations (perms) of the {q1, . . . , qk} momenta accounts for the fact that we must 
consider diagrams with crossed gluon lines on the LHS of Fig. 4 part (c). We also include the factor of k! 
as a symmetry factor to account for the fact that all k gluon fields are localized and identical and may be 
contracted with any external gluon state. Finally, by summing over the number of possible gluon emissions, 
we can write the complete tree level matching of the QCD current to the SCET current, 

JSCET = ξnWnΓ hv , (3.33) 
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ξ̄n
∑
perm

(−g)k

k!

(
n̄ ·Aq1 · · · n̄ ·Aqk

[n̄ · q1][n̄ · (q1 + q2)] · · · [n̄ ·
∑k

i=1 qi]

)
Γhv (3.32)
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