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8.851 Homeworks 8 & 9 

Iain Stewart, May 6, 2006 

This will be the last problem set. It includes more problems than usual 
and will count as two problem sets. 

Problem 1) Non-Relativistic QCD at the ILC 

¯ ¯Consider e+e− tt near the threshold for tt production (
√
s ∼ 2mt→ ∼

350 GeV) at the International Linear Collider. In this region the top quarks 
are non-relativistic with small residual energy, with 2E = 

√
s −2m ∼ mv ∼

5 GeV, and non-relativistic momenta ~ 30 GeV. The top quarks have a p ∼
width for t bW that is numerically similar to mv2, so we will include their →
total width as part of our LO potential Lagrangian: 
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Lp = ψ† i∂0 p
+ 
iΓ

+ . . . ψp + (ψ χ) + . . . (1) 
p 

−
2m 2 

→
p 

where the . . . indicate higher order relativistic corrections as well as the 
potential interactions. The Coulomb interaction is relevant so we will include 
it too. The cross section can be obtained from the imaginary part of a Green’s 
function computed from this action, and in the MS scheme is 

2 � � � � � � � � −i v 1 i a 
G0(a, v) = 

m
i v − a ln + ln 2 + γE + ψ 1− . 

4π ν 
−

2 2 v 
(2) 

Here a = CF αs(mν), v
2 ≡ (

√
s − 2m + iΓ)/m, m = mtop. The polylog func­

tion ψ(x) = d/dx ln[Γ(x)]. I have written the renormalization scale µ = mν 
in terms of a velocity renormalization parameter ν. 

a) Lets see which diagrams generate G0(a, v). Consider the forward scat­
tering diagrams from the time-ordered product of a production and anni­
hilation current, T J i 

†(0)Jj(x). For e+e− tt̄ through a virtual photon we →
have Ji 

† = ψ† σi(iσ2)χ
∗ , but feel free to ignore the spin for your calculation. 

p −p

Compute the one-loop diagram and show that it reproduces the iv term in 
Eq. (2). Of all the diagrams that generate G0(a, v) which have UV diver­
gences? Which diagram gives the term with a logarithm? 

b) Using mathematica plot the normalized cross section R = 8πImG0/m2 

as a function of 
√
s. Taking αs(mZ) = 0.118, m = 175 GeV, renormalization 

velocity ν = 0.15, and using one-loop running for αs(mν): 
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i) Plot R for the values Γ = 2 GeV, Γ = 0.7 GeV, Γ = 0.1 GeV, Γ = 
0.05 GeV. Describe the physics behind what you observe for 

√
s > 2m and √

s < 2m. 

ii) Take Γ = 0.05 GeV. Analyically determine the location in 
√
s where 

you expect the first and second peaks (without using Eq. (2)) and see if it 
agrees with your plot of R for this Γ. (Hint: Remember that we’re doing 
QCD with a Coulomb interaction. In QCD the coefficient of the Coulomb 
potential in the color singlet channel is Vc = −4παs(mν)CF with CF = 4/3.) 

iii) Taking the realistic value Γ = 1.5 GeV explain how this cross section 
could be used to measure the top mass m. 

Problem 2) SCET Operators with Collinear Quarks 

a) Start with the QCD Lagrangian for a massive quark and decompose D/ 
n, and ⊥ components. As in lecture, write ψ = ξn + ξ¯ and in terms of n, ¯ n 

determine which terms are non-zero. Keeping all the terms integrate out the 
field ξn̄ to generate an effective action for ξn. 

[With power counting m ∼ p⊥ ∼ Qλ this is the starting point to derive the 
action for a massive collinear quark, ie. prior to decomposing the gluon field 
into collinear and usoft pieces and prior to distinguishing between large and 
small momenta. The steps here are similar to those outlined in lecture except 
that you are keeping the mass.] 

b) Consider the current for a b u transition. In QCD J = uΓb. For SCET ¯→
we did a matching calculation to find the leading order current 

J (0) = ξ̄nW Γhv , (3) 

where W included terms involving the order λ0 collinear gluon field n̄ An. In · 
lecture we explicitly computed the term in W with one n̄ An field and wrote · 
down the result for any number of n̄ An fields. Do the matching computation ·
for two n̄ An fields (by expanding QCD diagrams with offshell propagators). · 
Bonus: Verify that the result for one and two n̄ An fields agree with the · 
momentum space Feynman rules for the position space Wilson line 
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n An(s¯W (y +) = P exp ig ds ¯ n + y) , 
−∞ 

·

where P is path-ordering. 



Problem 3) Decoupling of Ultrasoft gluons in SCETI 

Consider a Wilson line built from usoft gluons 

�
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Yn(x) = P exp ig ds n Aus(sn
µ + xµ) . (4) 

−∞ 
·

† 
n Yn = 1 and has the equation of motion n Dus Yn = 0. Start ·It satisfies Y


with the leading order Lagrangian, L(0) for a collinear quark in SCETI. This 
action gives eikonal couplings to ultrasoft gluons. Make the field redefinitions 

ξ(0) A(0) and An = Yn
† 
n to obtain a Lagrangian L(0)(ξ(0) , A(0) 

n n ξn = Yn Y ). Show n n 

explicitly that this new Lagrangian has no coupling to n Aus gluons. ·

Problem 4) Decoupling of Soft and Collinear Gluons in SCETII 

Consider an operator with one collinear quark and one soft quark in SCETII. 
This case differs from SCETI in that soft gluons knock collinear quarks off-
shell and collinear gluons knock soft quarks offshell. To be definite lets make 
the soft quark a heavy quark from HQET, hv, and the energetic quark a 
massless collinear quark, ξn. The SCET operator will be 

¯(ξnWn̄)Γ(S† 
n hv) (5) 

where W is the Wilson line we saw in problem 2b, and Sn is an exact analog 
of Eq. (4) but with As gluons rather than usoft gluons. To find Eq. (5) re­
quires tree level matching (to determine the direction and gluon components 
appearing in the Wilson lines), and gauge invariance (to ensure that loops 
do not spoil the structure so obtained). The first non-trivial term in per­
turbation theory have one soft and one collinear gluon. By computing the 
graphs in Figure 1 expanded to LO, verify that the three-gluon interactions 
are responsible for putting the gluons in the right order in Eq. (5). 
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Figure 1: QCD graphs with collinear, qc, and soft, qs, momenta. 



Problem 5) Pion Light-Cone Distribution Function 

Factorization of degrees of freedom allows us to describe processes in terms 
of simpler (universal) objects. One such object is the pion light-cone distri­
bution function. In QCD we can define 
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¯〈πa(p) ψ(y)γµγ5 Y (y, x)ψ(x) 0〉 = −ifπδ
ab pµ dz e i[zp·y+(1−z)p·x] φπ(z)| √

2 
|

0 

+ . . . , (6) 

Here fπ ≃ 131 MeV and the field ψ denotes the isospin doublet (u, d). Con­
sider the path from yµ to xµ to be light-like, (y − x)2 = 0, with yµ = y¯
x

nµ, 
µ = xn̄µ. Y (y, x) is a Wilson line along this path. For the leading order 

collinear operator in SCET 

〈πa ¯ τ b 

¯ nn,p|ξn,p1
W /̄γ5 δ(ω−P+)W †ξn,p2

0〉√
2 

|
� 1 

¯ n ] φπ(z) , (7) = −ifπ n·p δab dz δ[ω−(2z−1)¯ ·p
0 

¯where P+ = ¯† + P̄. Eq. (7) can be obtained from Eq. (6) by projecting P
onto the LO term with collinear quarks and taking a Fourier transform with 
x = −y. 

a) Using the power counting for the collinear fields in λ = ΛQCD/Q, together 
with mass dimensions, count the powers of ΛQCD and Q on the LHS and 
RHS of Eq. (7) and verify that φπ(z) is O(λ0) and is dimensionless. 

b) Under charge conjugation, C−1ξn,p(x)C = [ξ̄n,−p(x)C]T where C is the −

π

usual charge conjugation matrix. For a π0 state use charge conjugation to­
gether with Eq. (7) to prove that φπ0 (z) = φπ0 (1 − z). Physically what does 
this mean? What do you have to assume to prove that this is true for the 

+ and π−? 

c) Bonus: Carry out the steps to go from Eq. (6) to Eq. (7) ignoring the 
ellipses. 


