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Physics 8.901: Astrophysics I Spring Term 2006

PROBLEM SET 1

Due: Thursday, February 16 in class

Reading: Hansen, Kawaler, & Trimble, Chapter 1. (Note: This refers to the 2nd edition of 2004, not the

1st edition of 1994.) You may also find Carroll & Ostlie, Chapter 7 useful for useful background on stellar

binaries.

1. HK&T, Problem 1.1

2. HK&T, Problem 1.2

3. HK&T, Problem 1.3

4. HK&T, Problem 1.6

5. Historical astronomy: Fundamental length scales. Accurately determining distances and sizes in

astrophysics remains a fundamental and challenging problem to this day. However, a number of surpris-

ingly accurate measurements can be made simply with the naked eye. The ancient Greek philosopher

Aristotle (c.384–322 B.C.) was able to deduce that the Earth was spherical from observations like the

shape of the Earth’s shadow during lunar eclipses and the changing view of stars in the sky during

travel from north to south. A number of fundamental length scales in our solar system were also

correctly deduced by the ancient Greeks.

(a) Size of the Earth. Eratosthenes (c.276–196 B.C.) deduced the size of the spherical Earth using

the following facts: (1) On a particular summer day each year, the Sun penetrated to the bottom

of a very deep well (and thus was directly overhead – this point is called the zenith) in the town

of Syene (now Aswan); (2) On the same day in Alexandria, the Sun at mid-day was 7◦ south of

the zenith; (3) Alexandria was north of Syene by a distance of just under 5000 stadia, where 1

stadium is about 160 meters. Eratosthenes assumed that the Sun is sufficiently distant that its

rays can be treated as parallel. Use these facts to reproduce Eratosthenes’s inference of the radius

of the Earth. (You may use the value of π.) Compare this to the modern value of 6378 km.

(b) Size and distance of the Moon. Aristarchus (c.310–233 B.C.) calculated these using informa-

tion from a lunar eclipse. Use Timothy Ferris’s composite photograph of a lunar eclipse (on the

web at http://web.mit.edu/8.901/images/moon.png) to make a similar calculation. The dia-

gram below indicates the relevant geometry. You should make use of small angle approximations

where appropriate.
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i. Assume that only the darkest part of the Earth’s shadow (the umbra) corresponds to total

eclipse. Estimate the diameter of the circle roughly corresponding to the umbral shadow on

the composite image, and also the diameter of one of the lunar images. Note that the center

of the shadow does not lie on the line connecting the path of Moon’s center — why not?

ii. Compute the radius of the Moon compared to that of the Earth. Be sure to account for the

proper geometry of the umbral shadow at the distance of the Moon; for this purpose, you may

take the angular diameter of both the Sun and the Moon to be 0.5◦. Estimate the uncertainty

in your answer, given the uncertainty in your estimate of the diameter of the umbral shadow.

Compare to the modern value of 6378/1738=3.67.

iii. Taking the angular diameter of the Moon to be 0.5◦, calculate the Earth-Moon distance D

in terms of the Earth’s radius.

(c) Distance to the Sun. Aristarchus also estimated this. In the diagram below, the Moon at Q

is at first quarter, so that the angle EQS is 90◦. (Note that EQ is not perpendicular to ES.)

The interval from new Moon (at position N) to first quarter (at Q) is 35 min shorter than that

from first quarter to full Moon (at F ). Given that the lunar synodic period (the interval between

two identical lunar phases) is 29.53 d, estimate the Earth-Sun distance (ES) in terms of the

Earth-Moon distance.
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6. The Kepler problem: hyperbolic motion. In class, we derived the Kepler equation for elliptical

motion, ωt = ψ− e sinψ, which relates the eccentric anomaly ψ to the time t since pericenter passage,

the eccentricity e ≤ 1, and the orbital angular frequency ω. For hyperbolic motion, the analog of the

eccentric anomaly is the angle ψ′, defined such that the trajectory can be written as r = a(e coshψ′−1),

where e > 1 and a(e − 1) is the distance of closest approach to the focus (the pericenter distance).

Find an analog to the Kepler equation for hyperbolic motion, which specifies the time t since closest

approach as a function of ψ′.



7. Tidal evolution of the Earth-Moon system. In this problem, you will compute the evolution of

the Earth-Moon system by considering the tidal coupling between the Moon’s orbit and the Earth’s

rotation. Angular momentum may be exchanged between these two components but must be conserved

overall. Energy may be lost from the system via the heat generated by tidal friction. You should neglect

any effects due to the rotation of the Moon.

(a) Write down expressions for the total energy E and total angular momentum J of the Earth-

Moon system. Some useful symbols will be the Earth’s angular rotation frequency ω; the Moon’s

(Keplerian) orbital frequency Ω; the masses of the Earth and Moon, Me and Mm; the Earth’s

moment of inertia I; and the mean separation of the Earth and Moon, a.

(b) Use the equation for J to eliminate ω from the energy equation.

(c) Show that the energy equation can be cast into the dimensionless form

ε = −1

s
+ α(j − s1/2)2,

where ε is the total energy in units of (Gmemm/2a0), j is the total angular momentum in units

of (µa2
0Ω0), s = a/a0 is the dimensionless separation, µ is the reduced mass, and the subscript

“0” refers to values at the present epoch in history.

(d) Find numerical values for α and j. Look up the masses of the Earth and Moon, and take the

Earth’s moment of inertia to be (2/5)MeR
2
e and a0 = 3.84 × 105 km.

(e) Graph the dimensionless energy equation to find the two values of s for which ε is an extremum.

(f) Find the same two values of s quantitatively by differentiating the energy equation and solving the

resulting nonlinear equation numerically by the Newton-Raphson method or some other scheme.

Show that ω = Ω at these orbital separations. Find the corresponding orbital period of the Moon

and rotation period of the Earth.

(g) Find the difference in energy ∆E between the current epoch and the time in the future when the

Earth’s rotation and the Moon’s orbit will be synchronous.

(h) Estimate the rate of energy dissipation due to tidal friction by assuming that, twice per day, the

top 1-m layer of the oceans is lifted by 1-m and then lowered. Further assume that a few percent

of this mechanical energy is dissipated as heat.

(i) From the energy dissipation rate and total energy ∆E that must be lost in order for the Earth

to come into rotational equilibrium with the Moon’s orbit, estimate the time (from the current

epoch) when this equilibrium configuration will be reached.

8. Eclipsing binaries. Assume that two stars are in circular orbits about a mutual center of mass and

are separated by a distance a. Assume also that the binary inclination angle is i (defined as the angle

between the line-of-sight and the orbital angular momentum vector, with 0◦ ≤ i ≤ 90◦) and that the

two stellar radii are R1 and R2. Find an expression for the smallest inclination angle that will just

barely produce an eclipse.

9. Ensemble of binaries. The table below (from a paper by Hinkle et al. 2003) contains the measured

orbital parameters (binary period Porb and radial velocity semi-amplitude K1) for a group of “single-

line” spectroscopic binaries (for which the Doppler radial velocity curve for M1 is measured, but M2

is not directly observed). You may assume that all the orbits are circular.



Porb K1

Star (days) (km s−1)

EG And 482.6 7.3

Z And 759.0 6.7

T CrB 227.6 23.9

BF Cyg 757.2 6.7

V1329 Cyg 956.5 7.8

CI Cyg 853.8 6.7

AG Dra 548.7 5.9

V443 Her 599.4 2.5

BX Mon 1259 4.6

RS Oph 455.7 16.7

V2116 Oph 1042 16.0

AG Peg 818.2 5.4

AX Per 682.1 7.8

FG Ser 633.5 6.9

V343 Ser 450.5 2.7

(a) Recall from class the definition of the binary mass function,

f1 ≡ (M2 sin i)3

(M1 +M2)2
=

4π2(a1 sin i)3

GP 2

orb

.

Derive an expression for the mass function in terms of the observables Porb and K1. What is the

physical significance or interpretation of the mass function?

(b) The systems in the table are a group of symbiotic binaries, which consist of a red giant star with

a hot, degenerate white dwarf companion. The radial velocity measurements are for the red giant

component. Typical component masses are M1 = 1.5M� for the red giant and M2 = 0.56M� for

the white dwarf.

A random ensemble of binaries (i.e., one whose orbital angular momentum vectors are isotropically

distributed in direction) has a uniform (flat) probability distribution in cos i. Using the measured

distribution of mass functions for the systems in the table, determine if these systems are consistent

with being a randomly chosen ensemble of symbiotic binaries with typical component masses.

To do this, first plot the cumulative distribution function (CDF) for the set of f1 measurements.

[Recall that for an ensemble of measurements {xi}, the function CDF(xi) is equal to the fraction

of ensemble values for which x < xi. The CDF thus increases monotonically between zero and

unity.] For comparison, also plot the expected CDF of mass functions for a randomly oriented

ensemble of binaries with M1 = 1.5M� and M2 = 0.56M�. What can you say about whether the

collection of binaries in the table is “typical” of symbiotic binaries in terms of masses? If there

are any individual systems that seem to stand out as different, identify them and indicate what

you can deduce about them is you assume only that M1 = 1.5M� is correct.

10. Magnitudes (optical intensity). Because photon counting detectors are governed by Poisson statis-

tics, when we expect to observe N photons from an astrophysical source in a given time interval, the

actual number detected will fluctuate by an amount ±
√
N .



(a) How many photons need to be collected if the apparent magnitude of a star has to be measured to

an accuracy of ±0.02? How long an exposure would be required with a 1-m (diameter) telescope

to measure the B magnitude of an mB = 20 star to this accuracy? You may assume that the

telescope+detector combination have 100% detection efficiency. You may also neglect the noise

background from the sky.

(b) Now consider an attempt to measure the magnitude of a fainter star (mB = 24) with the same

accuracy. Assume that the sky background light has brightness 22.5 mag arcsec−2 in B, and that

atmospheric effects cause the starlight to be spread over a circle with 1 arcsec diameter. How

many photons are required to achieve this measurement? How long would this take with a 1-m

telescope? What about with a 4-m telescope? Note that MIT is a consortium partner for the two

6.5-m Magellan telescopes in Chile..


