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MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

Department of Physics 

Physics 8.901: Astrophysics I Spring Term 2006 

PROBLEM SET 2 

Due: Thursday, March 2 in class 

Reading: Chapter 3 in Hansen, Kawaler, & Trimble, especially §3.4. You may also find it useful to read 

Chapter 8 in Carroll & Ostlie, Introduction to Modern Astrophysics. If you are interested in additional 

reading about the Saha equation, you may also consult Chapter 14 of Stellar Structure and Evolution by 

R. Kippenhahn and A. Weigert (1990, Springer). 

1. Blackbody radiation. The Planck radiation spectrum is given by 

2hν3 1 
Bν = (erg cm−2 s−1 Hz−1 steradian−1), 

c2 exp(hν/kT )− 1 

per unit frequency. 

(a) Wavelength spectrum. Show by explicit calculation that the equivalent Planck radiation spec­

trum per unit wavelength is given by 

2hc2 1 
Bλ = (erg cm−2 s−1 cm−1 steradian−1),

λ5 exp(hc/λkT )− 1 

starting from the expression for Bν . 

(b) Stefan-Boltzmann law. Derive the Stefan-Boltzmann law (F = σT 4) by integrating the Planck 

blackbody spectrum over all wavelengths or frequencies. (Note that there is an extra factor of π to 

convert from brightness per unit solid angle to total brightness, so that F = π Bνdν = π Bλdλ.) 

You may use the fact that 
∞ 3 π4u

du = . 
eu − 1 15 0 

Give an expression for the Stefan-Boltzmann constant σ in terms of fundamental physical con-
−2 s−1 K−4 .stants, and check its numerical value and units, σ = 5.67 × 10−5 erg cm

(c) Wavelength of radiation peak. Derive the Wien displacement law, which relates the wave­

length of the radiation at the peak of the Planck function Bλ to the temperature: Tλmax = 

0.29 cm K. [When you differentiate to find the maximum of Bλ, you will obtain a nonlinear 

equation of the form 5(1 − e−y) − y = 0 which you can solve numerically.] 

(d) Frequency of radiation peak. Repeat the previous part, but this time find the relation between 

the frequency at the peak of the Planck function Bν and the temperature: νmax/T = 5.9 × 

1010 Hz K−1 . For a given temperature T , does the photon energy corresponding to νmax agree 

with that for λmax in the previous part? Should they agree? Explain. 

2. Saha equation and pure hydrogen. Consider a gas of pure hydrogen at fixed density and tem­

perature. The ionization energy of hydrogen is χ0 = 13.6 eV. You may assume that all the hydrogen 

atoms (whether neutral or ionized) are in their ground energy state. 



(a) Write down the Saha equation relating the number densities of neutral and ionized hydrogen (n0 

and n1, respectively). Make reasonable approximations to use numerical values for the partition 

functions. 

(b) To find the individual densities, further constraints are required. Reasonable constraints are 

charge neutrality (ne = n1) and conservation of nucleon number (n1 + n0 = n), where the total 

hydrogen number density n is a constant if the density ρ is fixed. Rewrite the Saha equation 

in terms of the hydrogen ionization fraction x = n1/n, eliminating n1, n0, and ne. Does this 

equation have the expected limiting behavior for T → 0 and T → ∞? 

(c) Use the relation n = ρNA (where NA = 6.023 × 1023 is Avogadro’s number) to replace n with 

ρ. Find an expression for the half-ionized (x = 0.5) path in the ρ-T plane. Plot this path on a 
−3log-log plot for densities in the interesting range from 10−10–10−2 g cm

3. Saha equation and pure helium. (Based on HK&T, Problem 3.1.) Consider a gas of pure helium at 

fixed density and temperature. The ionization energies for helium are χ0 = 24.6 eV and χ1 = 54.4 eV. 

As above, you may assume that all the helium atoms (whether neutral, singly ionized, or doubly ionized) 

are in their ground energy state. Let ne, n0, n1, and n2 be the number densities of, respectively, free 

electrons, neutral atoms, singly-ionized atoms, and doubly-ionized atoms. The total number density of 

neutral atoms and ions is denoted by n. Furthermore, define xe as the ratio ne/n and, likewise, let xi 

be ni/n where i = 0, 1, 2. You should assume that the gas is electrically neutral. You should look up 

the degeneracy factors you need for the atoms and ions; for example, see pp. 33–36 of Astrophysical 

Quantities by C. W. Allen (3rd edition, 1973, Athlone) or pp. 31–35 of Allen’s Astrophysical Quantities 

edited by Arthur Cox (4th edition, 2000, Springer). 

(a) As in the hydrogenic case, construct the ratios n1/n0 and n2/n1 using the Saha equation. In 

doing so, take care in establishing the zero points of energy for the various constituents. 

(b) Apply charge neutrality and nucleon number conservation (n = n0 +n1 +n2) and recast the above 

Saha equations so that only x1 and x2 appear as unknowns. The resulting two equations have T 

and n (or, equivalently, ρ = 4n/NA) as parameters. 

(c) Simultaneously solve the two Saha equations for x1 and x2 for temperatures in the range 4×104 ≤ 
−3T ≤ 2×105 K with a fixed value of density from among the choices ρ = 10−4, 10−6, or 10−8 g cm . 

You may find it more convenient to use the logarithm of your equations. Choose a dense grid in 

temperature because you will soon plot the results. Once you have found x1 and x2, also find xe 

and x0 for the same range of temperature. Note that this is a numerical exercise and you should 

use a computer. 

(d) Plot all your x’s as a function of temperature for your chosen value of ρ. (Plot x0, x1, and x2 

on the same graph.) Identify the transition temperatures (half-ionization) for the two ionization 

stages. 

4. Stellar opacity. 

(a) HK&T, Problem 3.2. 

(b) (Carroll & Ostlie, Problem 9.7) Calculate how far you could see through the Earth’s atmosphere 

if it had the opacity of the solar photosphere (κ� = 0.264 cm2 g−1 for a wavelength of 5000 Å and 

a density of 2.5× 107 g cm−3). Use 1.2× 10−3 g cm−3 for the density of the Earth’s atmosphere. 


