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PROBLEM SET 6 

Due: Thursday, April 13 in class 

Reading: Finish reading the rest of Chapter 2 (§2.7–2.15) on stellar evolution in Hansen, Kawaler, & 

Trimble. You can also read more about white dwarf properties, cooling, and crystallization physics in 

Chapter 10 of HK&T, as well as in Chapters 3–4 of Black Holes, White Dwarfs, and Neutron Stars by 

Shapiro & Teukolsky. 

1. Properties of a white dwarf. (Carroll & Ostlie, Problem 15.1). The most easily observed white 

dwarf in the sky is in the 40 Eri triple star system: 40 Eri A is a 4th-magnitude star similar to the 

Sun, 40 Eri B is a 10th-magnitude white dwarf, and 40 Eri C is an 11th-magnitude red M5 star. This 

problem deals only with the latter two stars, which are widely separated from 40 Eri A by 400 AU. 

(a) The period of the 40 Eri B+C “binary” is 247.9 yr. The system’s measured trigonometric parallax 

is 0.201 arcsec and the true angular extent of the semimajor axis of the reduced mass is 6.89 arcsec. 

The ratio of the distances of B and C from the center of mass is aB/ac = 0.37. Find the mass of 

40 Eri B and 40 Eri C in solar units. 

(b) The absolute bolometric magnitude of 40 Eri B is 9.6. Determine it luminosity in solar units. 

(c) The effective temperature of 40 Eri B is 16900 K. Calculate its radius and its average density. 

(d) Compare the radius and mean density of 40 Eri B with those of the first known white dwarf, 

Sirius B (R = 0.008 R�, ρ = 3.0 × 106 g cm−3 . Which is denser, and why? 

2. White dwarf cooling. (Carroll & Ostlie, Problem 15.8). Crystallization will occur in a cooling white 

dwarf when the electrostatic potential betweeen neighboring ions dominates their thermal energy. Their 

ratio is 
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where r is the typical distance between neighboring nuclei, taken as the radius of the sphere whose 

volume is equal to the mean volume per nucleus, so that 
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where A is the atomic weight of the nuclei.


(a) Calculate r for a 0.6 M� pure carbon white dwarf with radius 0.012 R�. 

(b) Much effort has been spent on precise numerical calculations of Γ to obtain realistic white dwarf 

cooling curves. The results indicate that Γ ≈ 160 for the onset of crystallization. Estimate the 

interior temperature Tc where this occurs. 

(c) Estimate the luminosity of a pure carbon white dwarf with this interior temperature. For the 

nondegenerate envelope, assume that hydrogen mass fraction X = 0, helium fraction Y = 0.9, 

and metal fraction Z = 0.1. 

(d) For roughly how many years could the white dwarf sustain this luminosity using just the latent 

heat of crystallization of kT per nucleus released upon crystallization? 



� 

3. Cosmochronology with white dwarfs. (Adapted from Hansen, Kawaler, & Trimble, Problem 2.9). 

In lecture, we discussed how the luminosity function (number per cubic parsec as a function of lumi­

nosity) of local white dwarfs can be used to estimate the age of the Galaxy. If low-mass stars had 

been forming forever into the past, then the luminosity function would rise indefinitely for fainter lu-

minosities. However, for a finite history of star formation, the luminosity function should cut off below 

some luminosity. From the plot I handed out in lecture (or see Figure 15.10 in Carroll & Ostlie or 

Figure 2.16 in Hansen, Kawaler, & Trimble), we see that the observed luminosity function for local 

white dwarfs cuts off for luminosities below ≈ 10−4.4L�. 

From stellar evolution modeling, the time is takes for a star of mass M to go from birth on the zero-age 

main sequence to the end of the planetary nebula phase (when a hot white dwarf is revealed) is 

log τpn(yr) = 9.921 − 3.6648 log(M/M�) + 1.9697 log 2(M/M�) − 0.9369 log 3(M/M�), 

for ZAMS masses 0.6 < (M/M�) < 10. Note that M in this equation is the original ZAMS mass (i.e., 

before any mass loss). You should assume that the sample is large enough that the WDs at dropoff 

started out at the maximum mass for stars ending up as WDs. (Why make this assumption?) 

Once the star has reached the end of the planetary nebula phase, it will has the mass it will retain 

for its white dwarf lifetime. The time in years for a white dwarf of mass Mwd to cool to some given 

luminosity L is 
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τwd = 8.8 × 106 yr,
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where A is the nuclear mass number and µ is the mean molecular weight. Assume pure carbon white 

dwarfs (A = µ = 12) and a “standard” white dwarf mass. Use the observed cut-off luminosity and 

the above expressions for τpn and τwd to estimate the age of the Galactic disk (based on our local 

neighborhood). 

Having done this part of the problem, also estimate the age of the Galactic halo, assuming that the 

observed cutoff there corresponds to Teff = 4000 K and assuming a standard mass and radius for the 

white dwarfs. 

4. Mass loss from winds in hot luminous stars. (Adapted from Hansen, Kawaler, & Trimble, 

Problem 2.13). 

The mass loss rate Ṁ in a stellar wind from a hot, massive star of mass M , radius R, and luminosity 

L obeys the semi-empirical relation 

log( Ṁ v∞ R
1/2) = −1.37 + 2.07 log(L/106), 

˙where M , R, and L are measured in solar units, M is measured in M� yr−1, and v∞ is the terminal 

velocity of the wind (far from the star) in km s−1 . This terminal velocity is found to be roughly 

proportional to the escape velocity vesc at the stellar surface, 

vesc = 2(1 − Γe)GM/R, 

with all quantities measured in physical (e.g., cgs) units. The factor of (1−Γe) arises from the levitating 

effect of radiation pressure at the photosphere, which effectively lowers the escape velocity. For stars 

with T ∼> 2.1 × 104 K, it turns out that v∞ ≈ vesc/2.6. 



(a) Neglecting radiation pressure (i.e., setting Γe = 0), make a plot of log Ṁ (in units of M� yr−1) 

versus M (in solar masses) for luminosities of 105L�, 3 × 105L�, 106L�, and 2 × 106L�. 

(b) Now consider the effects of radiation pressure, by using 

κL 
Γe = ,

4πcGM 

with all quantities in cgs units, and using the electron scattering opacity for the winds of hot stars 

with κ = 0.3 cm2 g−1 . Remake your plot of log Ṁ versus M , including this radiation pressure. 

What is the effect on the mass loss rates? 

5. Mass loss from winds in cool luminous stars. (Adapted from Carroll & Ostlie, Problems 13.4– 

13.5).


The mass loss rate in a wind from a cool, luminous star with luminosity L, radius R, and surface


gravity g can be parametrized by the Reimers wind law,


L˙ M� yr−1M = 4 × 10−13 η ,
gR 

where L, R, and g are in solar units (g� = 2.74× 104 cm s−2), and η is a dimensionless free parameter 

of order unity. 

(a) Estimate the mass loss rate of a 1 M� AGB star with a luminosity of 7000L� and a temperature 

of 3000 K. 

(b) Assuming (incorrectly) that L, R, and η do not change with time, derive an expression for the 

stellar mass as a function of time. Let the initial mass be M0 at t = 0. 

(c) Using L = 7000L�, R = 310R�, M0 = 1M�, and η = 1, plot the stellar mass as a function of 

time in units of 105 yr. 

(d) How long does it take the star in the previous part to be reduced to the mass of a 0.6M� degenerate 

C-O core? 


