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Chapter 1


Galaxies: dynamics, potential theory, and 
equilibria 

1.1 Dynamics of scattering 

A natural way to begin is to ask the seemingly naive question “what is a galaxy?” The straightforward 
answer is that a galaxy is a system of stars and gas, like the Milky Way (the word galaxy comes 
from the Greek for “milk”). Prior to the last century, the Milky Way was not just the only known 
galaxy, but was thought to constitute the entire Universe. In 1926, Edwin Hubble showed that 
the Andromeda nebula was actually a separate galaxy, spanning 3o in the sky, another blow to our 
anthropocentric view of the Universe (if one was needed). The Earth is not the center of the Solar 
System, the Solar System is not the center of the Milky Way, and the Milky Way is just one of 
billions (and billions) of galaxies in the Universe. 

Just as stars are held up by internal gas pressure, galaxies also have internal energy that prevents 
gravitational collapse, held in equilibrium by the virial theorem (e.g. Hansen and Kawaler 2004), 

2T + U = 0, (1.1) 

where T is the internal kinetic energy of the particles (stars) and U is the negative gravitational 
potential energy. Like any self-gravitating system, the potential energy, up to constants of order 
unity, is given by 

GM 2 

, (1.2)U � − 
R 

where M and R are the mass and characteristic size of the system and G is Newton’s gravitational 
constant1 . The kinetic energy is given by 

1 
T = M v 2 , (1.3)

2 

1Although G is known to relatively poor accuracy in cgs units, in combination with the solar mass GM� is known 
quite well. We can specify G in solar mass units: G = 4.30091851 × 10−3M −1(km/s)2pc. This is very useful given 
astronomers’ habit of quoting masses in terms of M� and distances in terms of parsecs. 
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Figure 1.1: A star of mass µ travelling with velocity v passes a second star, with mass m at a distance 
of closest approach (impact parameter) b. 

where v2 is the average squared velocity for a particle in the system. The gravitational potential is 
then of order 

Λ � 
GM 
R 

� v 2 . (1.4) 

For a typical galaxy we have: 

radius R � 10kpc 

density δ � 0.1M∞/pc3 and, 

Nstars � 1011 . 

The “thermal” velocity for individual stars within the galaxy is then v � 210 km/s. 

Unlike the interiors of stars, where the mean free path (mfp) of particles is much shorter than 
the size of the star (mfp � 1µm � R), the mean free path of a star within a galaxy is much larger 
than the size of the galaxy, suggesting that the average star cannot be expected to scatter off another 
star during an orbit or even during its lifetime. How do we quantify scattering interactions? For a 
star with mass µ moving along a trajectory x = vt with impact parameter b (the distance of closest 
approach if there were no deflection; see Fig. 1.1) relative to another star with mass m, the change 
in the component of velocity perpendicular to the direction of travel, Ωv is given by → 

F Ωt Gmb 
Ωv = → 

= Ωt. (1.5)→ 
µ (x2 + b2)3/2 

Assuming a constant speed v during the interaction, this change in perpendicular velocity can be 
integrated over time, giving 

� ≈ F Gm � ≈ dt Gm 
Ωv = → 

dt = = 2 . (1.6)→ 
−≈ µ b2 � � ⎡2

�3/2 bvvt −≈ 
1 + 

b 

We call a scattering “strong” if Ωv = v, so bstrong = 2Gm/v2 . The strong scattering cross section ε → 

is therefore 
⎞ 

2Gm ⎢2 4ψ 
ε = ψb2 = ψ � 

N 2 
R2 , (1.7)strong 2v
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where we have used the virial theorem to get v2 � GmN/R. We now want to see how often a star 
might actually experience a strong encounter with another star. For low number densities n (an 
excellent assumption for galaxies), the probability of a strong scattering encounter during a single 
orbital crossing is given by 

⎩ 
probability of a 

⎜ 

N 4ψ 3 ⎦ strong encounter � � nεR = R2 R = , (1.8)⎪ 4 ψR3 
· 
N 2 

· 
N

in one crossing 3 

a very small number for galaxies with N � 1011! So we can safely say that strong scattering does 
not play a very important role in the orbits of stars within the galaxy. 

We must nonetheless consider the cumulative effects of weak scattering from long-range gravita
tional interactions. Treating the encounters as a collection of steps in a random walk, we find 

(Ωv )total = (Ωv i)2 (1.9)→ →
i 

Integrating over all possible impact parameters, we find that over a time Ωt, the accumulated per
pendicular velocity is given by 

�

(Ωv i)
2 = 

� ≈ 
2ψvΩt bdb n 

⎞ 
2Gm ⎢2 

= Ωt 
8ψGm2n � ≈ db

. (1.10)→
0 � �� � bv v 0 bi volume element 

In order to get a finite value for the integral, we must impose physical bounds on b. The upper limit 
is the size of the galaxy. The lower limit is the impact parameter at which a collision is judged to be 
strong. Taking bmin = Gm/v2 and bmax = R, the integral can be evaluated as 

� bmax db Rv2 

= ln � = ln 
Gm 

� ln N � 25, (1.11) 
bmin b 

where we again use the virial theorem to substitute R/Gm � N/v2 . 

For a system of stars in a galaxy (or globular cluster or any collisionless, gravitationally bound 
system), we can define a relaxation time for which the accumulated perpendicular velocity is com
parable to the average velocity: (Ωv )tot � v. Combining equations (1.9, 1.10, and 1.11), we see →
that 

3v 1 
trelax � . (1.12)

8ψG2nm2 ln � 

The number of orbits needed for the system to “relax” is given by 

3trelax v 1 v v4R2 4 ψ N 
torbit 

� 
8ψG2nm2 ln � R 

� 
8ψG2N m

3
2 ln � 

� 
6 ln N

, (1.13) 

so it seems that weak scattering is also relatively insignificant for calculating orbits within galaxies. 
Evidently we must think of a galaxy not as a large collection of scatterers, but rather as a gravitational 
field that is created by and interacts with the matter in the galaxy. 




