The first part of this course will cover the foundational material of homogeneous big bang
cosmology. There are three basic topics:

1. General Relativity
2. Cosmological Models with Idealized Matter

3. Cosmological Models with Understood Matter

1 General Relativity
References:
e Landau and Lifshitz, Volume 2: The Classical Theory of Fields

o Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of
Relativity

e Misner, Thorne, and Wheeler, Gravitation
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This will be a terse introduction to general relativity. It will be logically complete, and adequate
for out later purposes, but a lot of good stuff is left out (astrophysical applications, tests, black
holes, gravitational radiation, ...).

1.1 Transformations and Metrics

We want equations that are independent of coordinates. More precisely, we want them to be
invariant under “smooth” reparameterizations

P = a2 (x)

To do local physics we need derivatives. Of course

ox'*
da't = de” (Note: summation convention)
x
oz
B = Rt, e GL(4) (invertible real matrix)
x



We want to have special relativity in small empty regions, so we must introduce more structure.
The right thing to do is to introduce a symmetric, non-singular (signature + — — —), tensor field
9, () so that we can define intervals

ds® = 9y drtdz” (“Pythagoras”)
For this to be invariant (g, da""da’” = g, datda”), we need
g;ux(x/) - (R71>au(R71)ﬁugaﬁ<x)

; wo__ ox'* -1\, _ Oxf ; . _ Oz’ _ 02> 92’
Since R") = G-, (R7')"s = 547 (chain rule: 65 = 555 = 555 555)

We can write the transformation law for g,,, in matrix form:

Gl — R_lG(R_1>T
From linear algebra, we can insure G’ is diagonal with +1 (or 0) entries. The signature, e.g.

1
( -t 1 , is determined.
-1

There are residual transformations that leave this form of g, intact. They are the Lorentz
transformations!
Generalizing g,,,, dz#, we define tensors of more general kinds

Tulmum Vi...Un (.73)

by the transformation law

T/ V1~-~Vn(x/) _ (Rfl)al

M1 m mR 1ﬂ1 e RV ﬂn : T ! ("'U)

aq...Qm

Example: Inverse metric g"”

Operations:
e Muliplication by number

e Tensor, of the same type can be added

e Outer Product
Vl/1 Wl/2 — Tll1l/2
w = 7

e Contraction

H1V2...Un V2...Um
Tmuz---um - Tm---um

Example:

gw,dxadxﬁ =T, @B 4 tensor

Contraction: T," = ds?

“0” is a tensor (all components = 0). 5 is a tensor.



1.2 Covariant Derivatives: Affine Structure

e Scalar Field ¢ (2)) = ¢(x)

e Vector Al(2') = %Aa(l‘) ((R_l)auAa)
e Operator | = af,u = g:fia%

Is there an invariant derivative?

ox* 0 oz?
oAl
DA = ox'v Oz (8:C’NA6>
oz 9P %P
= O Ox'h 8aA'5;+ oz'Vox'H As
good bad

(hard to use -
not a tensor)

Add correction term: V, A, =9, A, — Fl),‘uA)\:

anO'
Ox'" oz
? « lod
=587, (0aAs —T%34,)

VAl = S8%,5P 0,45 + A, —T,),5%\ A,

where S, = (R~ gz>

v 9zv*

This will work if

A7, = 50,5007, 4 00
v A T v O‘ﬁ+8:c’vf)x’“
oz 9%x°

. DY A _
that is, Iy, = R, 5%, 8%, s+ 5= oot

Note that the inhomogeneous part is symmetric in g < v. So we can assume Fz\w = F’\a
consistently. (The antisymmetric “torsion” part is a tensor on its own!)
Given I', we can take covariant derivatives as

VQT ViVn _ aaT 1/1...l/n_r>\ T

Lo VieVn_ ._IO\ T Vl"'V"—FFVl T Av2...Un

1 - o Q1T A2 Qpm = 1. A QX" P12

This gives a tensor. We use the Leibniz rule in products.

1.3 Covariant Derivatives: Metric

Big result: given a metric, there is a unique preferred connection I'
Demand V,g,,, = 0 (and symmetry)

0= 09 — I'\9ar — I'S9au
0= 8ugy,\ - F?\ugau Fffugw

0= 81/.9)\” - nggap - Fzyga)\



Subtract the first line from the sum of the second and third:

QFZCVgCV)\ - a,ltg)\lj + 61/9/\;1, - 8/\9;/,1/
AB

g 1
x5 T =50 (Ougn + 0vgrs — Org)

Conversely, this works!
Extra term in I':

1y 0x? 0z?
59 ﬁ|: a/ /A gou+ <8La$,,/> 9ro

ox? ox? ox? 0x?
/ / / /
+W+ (a”W) 9o |~ 0 2/ Yo — 9 v gau:|

The boxed terms give the desired inhomogeneous terms; the others cancel.

1.4 Invariant Measure

ox'M
d*z' = det <0 ” d*z
X
—_——
Jacobian; =det R

N zP
Y = Ox't Hxv 9ap
G'=R'GR 1T

/ 1
det gl“j = W det gl“j

Write g = det(g,,, ); then
Vot = /gd'x

is an invariant measure.

1.5 Curvature

In order to make the g, into dynamical variables, we want them to appear with derivatives in the
Lagrangian. Can we form tensors such that this occurs?

Trick: (V,V, —V,V,)Ag=— R%, - Aa
rick: (V, ) Ag Bu

involves g 1© derivatives

This R“ﬁ , automatically transforms as a proper tensor; the “hard” part is to show that the
derivatives on A, all cancel so we get this form.

VuAg = 0,45 — s\
Vu(VoAg) = 0,(VoAg) — T, %A5 —T9V,4,
———
sjum etric = drop it
= 00745 — 0, (T')\As) — 7,00 Ay + FZBFZpAJ

— 9T\ Ay — T938, Ay — T9,0, Ay + 75T, A,

— P P
80 R, = Oul'ys = O + T T = T T



Symmetry properties of R ;.

We can go to a frame where %q;;’ = 0 (at point of interest). These are “geodesic coordinates”.
There we know that I'g = 0 (but not its derivatives!)
Then

1
R = 5 [00 (97 (00905 — 0595 — o9,) — (11 = v))]

—_

= igo“7 [8,/959”5 - 8Magg/gl, - 81,859“(, - 8,,8595#]
_ gaaRaﬁqd

with Ry 5 = 5 060505, + 050,005 — 003955 — 050500 |

= Rogys = —Rgays
Ropgys = —Rapsy
Rapgys = Rosap
Ragys + Rarsp + Raspy =0

(e.g. Look at the coefficient of 80485957:

+]. in Raﬂ"/(s
—1in Ra’y5ﬁ
0 in Ra&ﬁ’y)

Since these are tensor identities, they hold in any frame!
Also notable is the Bianchi identity;

VaRusy + VaRusa + VaR s =0

It follows from:

(Vo [V, VAl + [V, [Vo, Vall + [V, [Va, V] =
VaVsVy = VoV, Vs — V3V, Vo + V, V5V, +
V5VaVa — VaVaVy — Vo VoV + VoV, Vs +
VoVaVs =V V5Va — VaV3V, 4+ V5VaV, =0

e.g.:
) (V) L @
VQ[Vﬁ, V'Y]AH — —Va (R MB'YAV) == —VQR ,u,,@'yAl/ — R MMVQA,,
—[V5, Vy[Vad, = Ryaﬂ'yvVAH + RV;LBWVCVAV
3) (4)

(2) cancels a'gains.t .(4), (3) will 80 away b}.f the symrgetry of RV \5 +R"g ,+ R ,3=0,s0 (1)
generates the Bianchi identity. This identity is the gravity analogue of

aaFﬁ,y + 8ﬂF'ya + ({%Fag =0

in electromagnetism, or V-B =0,V x E = —%—]? (existence of vector potential).



1.6 Invariant Actions

Since we have an invariant measure [ \/§d4x (&), we get invariant field theories by putting invariant
expressions inside (.Z).
Given a special-relativistic invariant theory, we just need to change

dtx — Jfgd*x
N = Yo
O — Vyu
to make a general-relativistic invariant theory. This is the “minimal coupling” procedure.
Examples:
1. Scalar field: . = $g"8,¢9,¢ — V()
2. Transverse vector field
F,, =V,A, -V, A, =0,A, —T],A; — A, + 17,4,
= 0,A, —0,A,
(no need for T, or dg)
& = —ig‘”gﬂ‘sFag Fs
supports gauge symmetry A, — A, + 0, x
3. Longitudinal vector field (instructive)

VAR = 9, A" 4 TH, A
1 g
Tlia = 59" (Padop + Oplor—"0500)

1 ag
= 59“ OaYop

1
— ﬁaa\/g

[To prove 0,9 = ggH° 04 9uo» Use expansion by minors and expansion for inverse matrix. Check
on diagonal matrices!]

So VAl = =0, (gA"). Thus [dlz gV, A" = [d'z0,(/ga") is semi-trivial: it is a
boundary term.
/ d4a:V#A“V,,A” gives dynamics.

This supports a gauge transformation

VIAR — JGAP 4 dPTY,N

Ay = =4,

4. Gravity itself
R = gﬁVRO‘ﬁM and 1 are invariant. The latter is non-trivial, due to the measure factor

[dz /g ‘ “Cosmological term”

5. Spinors! These are foundational, but relegated to the Appendix.



1.7 Field Equations

1. Scalar field
A

S = / d*z \/g (;g“”amaycb - V(¢)>

SN SA
"o0u0 8
O (V99" 0u8) = —/gV'(9)
or V. (¢"¢) =-V'(9)

2. Transverse vector field

S = —i / d*2\/99%7 9% (0aAg — 95A4) (05 As — DsA,) — / d*z /95" A,

—_—
coupling to current

N ,
3um = —0u (\/§9M9 ° (0,45 — 36/17))
- _au (\/ngj) exer:.cise! VY VMFMV
N
SO, A, V9

Equation of motion: V,F* = j”
or 0y (\/ﬁg“”g”‘sta) = V45"
As a consistency condition we have: 0, (\/gj" ) =0=,/9V.,j"

3. Longitudinal vector field
1 1
\Y A“V,,A”:/ —0 AM) —0, AY
/ V9V V9 7 i (VgAY) 7 (V9A”)

1
= / % up'uaupy

0.2 1
Bt L 5RO°
Oy 500" 20, <\/§51,80p >

1
=20, [ —08,p°
<\/§ p>

If there is no source, then we have that ﬁ&,p" = )\, which is constant.

So [/gV, A"V, AY — A2 J /g gives a “dynamical” cosmological term

4. Field equation for gravity



a. The hard part of finding the field equation for gravity is varying \/ggaﬁRaﬁ. However,
we can use the trick that \/ggaﬁéR ap 18 @ total derivative.
To prove this relatively painlessly, we can adopt a system of locally geodesic coordinates

<:> 8agm = 0).
Then

990 R 5 = g°7 (9,0Th 5 — 00T, )
=9, <gaﬁérg 5 g“ﬁaraa)
= 0wt

Note that 61" has no inhomogeneous terms in its transformation law - it is a tensor! So
go‘ﬁéRaﬁ = Jywt — V,w is now valid in any coordinate system. So ﬁgaﬁéRaﬁ =
VIVt =0, (\/f]w“) is a boundary term; it does not contribute to the Euler-Lagrange
equations.

Thus with S =« [ \/gR we get

R

——
68 =k / 53/9 9P Ro +v/369° Ry
- 69°° R + \/gR, 309"
K \/§ga5 [Y V9R.509

e ()

b. We have for the cosmological term
S=-A / 09

(i)

S:/\/ng
. /(5[1& 5\fA)

O 60,,9°°

c. Matter

We define the energy-momentum tensor by

SVIA o SVEA _ VG,

§gos ) g“ﬁ 2

We will now see that this makes sense with both examples and conservation laws.

i. Examples:



e Scalar field:

A= 50°00u0056 — S’

SSGA 1
598 = 73 V99

1 1 1 1
gTa@ =-3 <\/§9aﬁ <2g“”au¢ay¢ — 2m2¢2>> + 5 V/00a0030

1 1
Top = 000030 + 5005m*$" = 59059"" 0ud0ut
In flat space we have:
L 9.9 1 2
Tyy = Qo6+ 5m*6* — = (900000 — (V6)?)
1. 1 1
=~ 4 = (V) + =m?p* LW SB
2 2 2
e Maxwell field: (now we use 59%)
(0% 1 8%

0 <\/§g 9% Fog Fﬁ) = 59w 09" 9" Fap Fy5 + 299" Fs F

2 /1 5
T = 75 (1) 0 (Voo e )
1
1) )
= _F,uﬂ FI/5 gﬁ + Zguugafygﬁ Faﬂ ch? =

9T, =0 (V)

In flat space we have:

As an exercise, check the Poynting vector and stresses for the Maxwell field.

ii. Conservation laws
Preliminary: We expect the conservation of energy-momentum to be tied up with

invariance under translations. So: let us translate!

e small, vanishing at oo

» oz oz,
gty = 200 oo )

~ g (x) + e g™ + Ope” g’
g1 (@) m g + Dagh e

Thus dgh = g (&) = Bact'g™ + Dac’g"® — Dagh”e®

not z’



Now notice that

dgM" = gV o€e” + g*" Ve (Killing equations)

v
s,

1
= gD’ + g™ - §guﬁ (8aggp 4 apgaﬁ _ aﬁgap) eP

1
+ gV Ot + g™ - 59143 (8agﬂp + apgaﬁ — 85904)) eP
= g™ 0a€” + g™ Oae" + g™ 9" Opgopze’
= g 0" + g™ Dpet — (%g“ﬁep
where the last step follows from differentiating: g,, g"? = 55 i 80 O\gayu g +
gau(?)\g“ﬂ = 0. Multiplying by g%, we get 8,\ga#g“f8gpa = —O\g"".

We can also write this as dgH"” = e'F + etV
Now we have, from the invariance of the action and symmetry of 7},,, in its definition

0= /\/ETW,EMU
But also
0= [0 (VaT,e)
= [vav (@)
_ / VIV, + / VGT,, e
0

(S —
Since this holds for an arbitrary €, we conclude that V"7, = 0.

1.8 Newtonian Limit

We should be able to identify Newtonian gravity (and fix the coupling constant) by looking at the
situation with nearly flat space and only Tpy = p significant. (For now, of course, we ignore the
cosmological term.) The stationary action condition gives

1 1
K <Rocﬁ — 2gaﬁR> = iTaﬁ or

1
2’€Raﬂ = Taﬂ - §Tgaﬁ (900 ~ 02 > gij)

Focus on Ry:

QHROO = g

in R, terms with I'T" pieces higher order. Also terms with % ~ %% are small. Thus in
Ry = 0,1 — 80F87
1

~ 7V2
—>2 900

10



and finally
2V %909 = p

To interpret this, wrte ggo = 1+ € (¢°° = 1 — €). The action density of matter is perturbed by

6(vgh)  p

6g00 T2

This looks like the Newtonian coupling if € = 2¢. The equation
QKVQgOO =p=4kV3p=p

: _ 1
This fixes k = zerel

GNM GNM
(0= —"2=5ve =22

E— Gauss, /dV V2 = 47rGNM)

_M

s
Note on the appendices and scholia:

These are not necessarily self-contained, specifically, they refer to facts about quantum field
theory and the standard model that are not assumed elsewhere in the course. Don’t worry if not
everything is clear (or even meaningful) to you at this stage. Ask me if you're curious!

Central material

1. The notion of local Lorentz invariance, vierbeins, and % recipe (Appendices 1-2).
2. The idea that we are building a model of the world and are free to try anything (Scholium
4).
Appendix 1: Spinors and Local Lorentz Invariance

Spinor fields play a very important role in fundamental physics, so we must learn how to treat them
in general relativity. The essential thing is to define v* matrices. They transform under Lorentz
transformations (that are in SO(3,1) not GL(4)). Indeed the defining relation

’Ya’Yb + ’Yb’Ya — 277ab
refers to the flat-space Minkowski metric and the transformation law
7 =57 AN S(A) = A%

requires an S that does not exist in general. (A € GL(4).)

So we postulate local Lorentz invariance under transformations of this form with A(z) a function
of z, A(x) € SO(3,1). To connect this structure to the metric we introduce a vierbein ef,(z) such
that

nabeZ(:c)eg(x) = g () (“square root” of the metric)
9””62(55)65@) =7 (“moving frame”)

Now, for example, we can form the Dirac equation

(Vg Dy +m)y =0

11



But D,, needs discussion. We want invariance under local Lorentz transformations. This requires
(exercisel!)
D,S(A(2)) = S(A(x))D,,

a typical gauge invariance. We solve this problem “as usual” by introducing a gauge potential

wz’b(m) €s0(3,1)

where 50(3,1) is the Lie algebra corresponding to SO(3,1), and thus w®(z) = —w’(z), and (in

1 I
matrix notation)

wy,(r) = A rw,(z)A — A9, A

and writing
D,=V,+w, 1

where the 7 matrices provide the appropriate representation of the symmetry, e.g. 0% = % ['ya, '7b]
for spin % or the identity for spin 1.
To avoid introducing additional structure (c.f. Scholium 4) we demand
Dyl = Ouel — T%el + w,eb =0 (1)
leading to a unique determination
w,"e = —ecouey, +eleq,

Appendix 2: Moving Frames Method and Recipe

The discussion of Appendix 1 is not as profound as it should be: wzb should be “more primitive”
than I'. This is worth pursuing, since it leads to a beautiful analogy and useful formulae.
We can eliminate I" from the defining relation (1) for w by antisymmetrizing in pu < v. Thus

ouey, — Ove), = wy ey, — wy©

w “ev €

v “cp

To solve for w we go through a slight rigamarole, reminiscent of what we did to get I' from Vg =0

a a J— ac ac
teg, (Ouel — Dyet) = wifeg e, — wieqseo,

a a —_ ac ac
—eqp (0vel — Dpel) = —wileqrey, + Wyleares,

_ ac ac
tea, (Opel — Ouel) = Wiltaite, — WieayCep

a a a a a a __ ac
€apOuey, — €q,0u€), — €4,0v€, + €,,0p€,, + €,,0p€), — €4,0u€, = 2w €, €0,

using wy,© = —wy". Multiplying both sides by ePel? | we get
A B c c B A

f f f f f f !
ef _ _fv e _fv a pe v a ep fv a pe __pe
2w, =e'"Oue, — e’ Oyey, — ey, 7€ Dyl + €., eV Opey, + e 0pe), — PO,

m

or

fv
w;f — % (el — dvey, + €4, 0pey — (e — )

12



Now we can construct a curvature by differentiating (say) a space-time scalar, which is a local
Lorentz vector field
(DHDV - DVDM)¢Q = %,w/ab(bb

This leads to

a __ a a a c a c
<%,ul/b_a,ﬂa("')u b_anub+wu Wb T Wy cw,ub

Now you will be delighted (but not too surprised) to learn that this “gauge” curvature is intimately
related to the Riemann curvature we had before; indeed

_ a b
Ruua,@ - ‘%p,u b€aafp

This actually gives the most powerful recipe for computing R. The technique of introducing frames

eZ(:c) to make the geometry “locally flat” was developed by E. Cartan and is called the moving

frame method. It is usually presented in very obscure ways.

Scholium 1: Structure and Redundancy

Allowing a very general framework and demanding symmetry is an alternative to finding a canon-
ical form that “solves” the symmetry. Thus we consider general coordinate transformations, but
postulate a metric to avoid “solving” for local Lorentz frames and then pasting them together.
Vierbeins or moving frames make this much explicit.
Fixing down to a specific frame is gauge fixing in the usual sense.

Scholium 2: Why General Relativity?

Ordinary spin-1 gauge fields are in danger of producing wrong-metric particles or “ghosts”. This
is because covariant quantization conditions (commutation relatives (?) ) for the different polar-
izations:

[a;ru al/] = 9w

if normal for the space-like pieces are abnormal for the time-like and vice versa. Gauge symmetry
allows me to show the wrong-metric excitations don’t couple (e.g. one can choose Ag = 0 gauge).

Similarly, general convariance/local Lorentz symmetry are required for consistent quantum
theories of spin 2.

Scholium 3: General Relatvitiy vs. Standard Model

In the Standard Model symmetry and weak cutoff dependence (renormalizability) greatly restrict
the possible couplings. One requries a linear manifold of fields (i.e. ¢1(x) + ¢a2(z) is allowed if
¢1(x), Pa2(x) are).

In General Relativity there is still symmetry, and minimal coupling leads to weak cutoff de-
pendence below the Planck scale. However, the fields manifold is not linear (g}w + gi,, may not
be invertible, hence not allowed) and there is a dimensional fundamental coupling. It looks like an
effective theory thus, with spontaneous symmetry breaking, i.e. e}, = (7), like the o—model.

13



Scholium 4: Gauge and Dilaton Extensions

The standard assumption of Riemannian geometry is V,g*” = 0. However, we might want to relax
this to incorporation additional symmetry. Some important physical ideas have arisen (or have
natural interpretations) along this line.

Weyl wanted to unify electromagnetism with gravity. He postulated

vozguy = Sag/,uj

and the symmetry

9 (%) = N@) 9,4 ()
s (1) = 8 + DA

«

This was the historical origin of gauge invariance!

He wanted to identify s, with the electromagnetic potential A,. That has problems, but the
ideas are profound.

Symmetry of the type g;w(x) = A(®)g,,, (x) arises in modern conformal field theory and string
theory. It is called “Weyl symmetry”. Given the importance of massless particles, and the idea
that massive fundamental particles can acquire mass by spontaneous symmetry breaking, this idea
of a scale symmetry retains considerable appeal.

A closely related variant is

vaguy = 8ad)guu
g;w = )‘g;u/
¢ = ¢+

¢-fields of this sort are called “dilatons”.
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