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The first part of this course will cover the foundational material of homogeneous big bang 
cosmology. There are three basic topics: 

1. General Relativity 

2. Cosmological Models with Idealized Matter 

3. Cosmological Models with Understood Matter 

General Relativity 

References: 

•	 Landau and Lifshitz, Volume 2: The Classical Theory of Fields 

•	 Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of 
Relativity 

•	 Misner, Thorne, and Wheeler, Gravitation 
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This will be a terse introduction to general relativity. It will be logically complete, and adequate 
for out later purposes, but a lot of good stuff is left out (astrophysical applications, tests, black 
holes, gravitational radiation, . . . ). 

1.1 Transformations and Metrics 

We want equations that are independent of coordinates. More precisely, we want them to be 
invariant under “smooth” reparameterizations 

x�µ = x�µ(x) 

To do local physics we need derivatives. Of course 

dx�µ = 
∂x�µ 

dxν (Note: summation convention) 
∂xν


∂x�µ


≡ Rµ
ν ∈ GL(4) (invertible real matrix) 

∂xν 
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We want to have special relativity in small empty regions, so we must introduce more structure. 
The right thing to do is to introduce a symmetric, non-singular (signature + – – –), tensor field 
gµν (x) so that we can define intervals 

ds2 = gµν dx
µdxν (“Pythagoras”) 

For this to be invariant (gµν dx
�µdx�ν = gµν dx

µdxν ), we need 

g
� 

(x�) = (R−1)α (R−1)β 
µν µ ν gαβ(x) 

Since Rµ = ∂x�µ 
, (R−1)ρ = ∂xρ 

(chain rule: δα = ∂x�α 
= ∂xλ ∂x�α 

)ν ∂xν σ ∂x�σ β ∂x�β ∂x�β ∂xλ


We can write the transformation law for gµν in matrix form:


G� = R−1G(R−1)T 

From linear algebra, we can insure G� is diagonal with ±1 (or 0) entries. The signature, e.g. 
1

−1 

−1 , is determined.

−1


There are residual transformations that leave this form of gµν intact. They are the Lorentz 
transformations! 

Generalizing gµν , dx
µ, we define tensors of more general kinds 

Tµ1...µm 
ν1...νn (x) 

by the transformation law 

T �µ1...µm 

ν1...νn (x�) = (R−1)α1 (R−1)αm 
µm 
Rν1 Rνn 

βn 
Tα1...αm 

β1...βn (x)µ1 
· · · β1 

· · · · 

Example: Inverse metric gµν


gµαgαν = δν
µ


Operations: 

• Muliplication by number 

• Tensor, of the same type can be added 

Outer Product • 
V ν1 W ν2 ≡ T ν1ν2 

µ µ 

Contraction •	
T µ1ν2...νn = T̃ ν2...νm


µ1µ2...µm µ2...µm


Example: 

gµν dx
αdxβ = Tµν 

αβ a tensor 

Contraction: Tµν 
µν = ds2 

“0” is a tensor (all components = 0). δν
µ is a tensor. 
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1.2 Covariant Derivatives: Affine Structure 

• Scalar Field φ�(x�) = φ(x) 

Vector A�µ(x�) = ∂xα 
Aα(x) 

� 
(R−1)α

µAα 
� 

• ∂x�µ 

∂ ∂xα ∂ • Operator ∂ν
� ≡ ∂x�ν = ∂x�ν ∂xα 

Is there an invariant derivative? 

∂xα ∂ ∂xβ 

∂ν
�A�µ = Aβ

∂x�ν ∂xα ∂x�µ 

∂xα ∂xβ ∂2xβ 

= ∂αAβ + Aβ
∂x�ν ∂x�µ ∂x�ν ∂x�µ� �� � � �� � 

good bad 
(hard to use ­
not a tensor) 

Add correction term: �ν Aµ ≡ ∂ν Aµ − Γλ 
νµAλ: 

∂2xσ 

��
ν A

�
µ = Sα

ν S
β
µ ∂αAβ + 

∂x�µ∂x�ν Aσ − Γ
�λ

λ AσνµS
σ 

= 
? 
Sα

ν S
β
µ ∂αAβ − Γαβ

σ Aσ 

∂xα
where Sα

ν ≡ (R−1)α
ν = ∂x�ν . 

This will work if 

Γ
�λ = Sα

ν S
β Γσ ∂2xσ 

νµS
σ
λ µ αβ + 

∂x�ν∂x�µ 

that is, Γ
�λ = Rλ

σS
α
ν S

β Γσ ∂x�λ ∂2xσ 

νµ µ αβ + 
∂xσ ∂x�ν∂x�µ 

Note that the inhomogeneous part is symmetric in µ ν. So we can assume Γλ = Γλ ↔ αβ βα 
consistently. (The antisymmetric “torsion” part is a tensor on its own!) 

Given Γ, we can take covariant derivatives as 

= ∂αT −Γλ T −. . .−Γλ T +Γν1 T�αTµ1...µm 
ν1...νn 

µ1...µm 
ν1...νn 

αµ1 λµ2...µm 

ν1...νn 
αµm µ1...λ

ν1...νn 
αλ µ1µ2...µm 

λν2...νn 

This gives a tensor. We use the Leibniz rule in products. 

1.3 Covariant Derivatives: Metric 

Big result: given a metric, there is a unique preferred connection Γ 
Demand �λgµν = 0 (and symmetry) 

λµgαν0 = ∂λgµν − Γα αΓ−
������������ 

λν�� gαµ 

λµgαν − Γα 
µν gαλ0 = ∂µgνλ − Γα 

λν gαµ0 = ∂ν gλµ − Γα − Γα 
µν gαλ 
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Subtract the first line from the sum of the second and third: 

2Γα 
µν gαλ = ∂µgλν + ∂ν gλµ − ∂λgµν 

× 
g

2 

λβ 

: Γµν
β = 

2
1 
g λβ � 

∂µgλν + ∂ν gλµ − ∂λgµν 

� 

Conversely, this works! 
Extra term in Γ�: 

1 λβ 
�� 

∂xσ � 
∂xσ 

g 
�
∂�
�
������

2 µ ∂x�λ gσν + ∂µ
�
∂x�ν gλσ 

∂xσ ∂xσ 

− 
�
∂�
�
�
∂x

�
σ
����

∂�
∂xσ � 

+ 
�
∂�
�
������

ν ∂x�λ gσµ + λ gσν − 
��λ����

gσµ 

��
∂ν
�
∂x�µ gλσ ∂x�µ ∂x�ν 

The boxed terms give the desired inhomogeneous terms; the others cancel. 

1.4 Invariant Measure 

∂x�µ 

d4 x� = det d4 x 
∂xν 

Jacobian; = det R 

∂xα ∂xβ 

gµν = 
∂x�µ ∂x�ν gαβ 

G� = R−1G(R−1)T 

1
det g

� 
= 

(det R)2 det gµνµν 

Write g ≡ det(gµν ); then 

g�d4 x� = 
√
gd4 x 

is an invariant measure. 

1.5 Curvature 

In order to make the gµν into dynamical variables, we want them to appear with derivatives in the 
Lagrangian. Can we form tensors such that this occurs? 

Trick: (�µ�ν −�ν �µ) Aβ ≡ − R� 
α �� � 

· Aαβµν ���� 
involves g no derivatives 

This Rα
βµν automatically transforms as a proper tensor; the “hard” part is to show that the 

derivatives on Aα all cancel so we get this form. 

νβ Aλ 

(�ν Aβ ) = ∂µ ����� −Γσ 

�µAβ = ∂µAβ − Γλ 

�µ (�ν Aβ ) − Γµν
σ �σAβ µβ �ν Aσ 

symm etric drop it 

= ���� (Γσ 

⇒ 

µν ∂ν Aσ + Γρ∂µ∂ν Aβ − ∂µ νλAσ) − Γσ 
µβ Γνρ

σ Aσ 

Γσ 
µλ∂ν Aσ + Γρ Γσ 

νλ∂µ νρAσ− ∂µ νλAσ − Γσ Aσ − Γσ 
µβ 

so Rα = ∂µΓα 
µβ + Γα Γνβ 

ρ − Γα Γρ 
βµν νβ − ∂ν Γα 

µρ νρ µβ 
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Symmetry properties of Rαβγδ


We can go to a frame where 
∂gµν = 0 (at point of interest). These are “geodesic coordinates”.

∂xλ 

There we know that Γα = 0 (but not its derivatives!) βγ 
Then 

1 � � � � �� 
Rα

βµν = 2 
∂µ g ασ ∂ν gσβ − ∂β gνσ − ∂σgβν − (µ ↔ ν) 

1 � � 
= g ασ ∂µ∂βgνβ − ∂µ∂σgβν − ∂ν ∂β gµσ − ∂ν ∂σgβµ 2
= g ασRσβγδ 

with Rαβγδ = 2
1 ∂α∂δgβγ + ∂β∂γ gαδ − ∂α∂γ gβδ − ∂β∂δgαγ 

⇒ Rαβγδ = −Rβαγδ 

Rαβγδ = −Rαβδγ 

Rαβγδ = Rγδαβ 

Rαβγδ + Rαγδβ + Rαδβγ = 0 

(e.g. Look at the coefficient of ∂α∂δgβγ : 

+1 in Rαβγδ 

−1 in Rαγδβ 

0 in Rαδβγ ) 

Since these are tensor identities, they hold in any frame! 
Also notable is the Bianchi identity; 

�αRµνβγ + �β Rµνγα + �γ Rµναβ = 0 

It follows from: 

[�α, [�β, �γ ]] + [�β , [�γ , �α]] + [�γ , [�α, �β]] = 

�α�β�γ −�α�γ �β −�β �γ �α + �γ �β �α + 

�β�γ �α −�β �α�γ −�γ �α�β + �α�γ �β + 

�γ �α�β −�γ �β �α −�α�β�γ + �β �α�γ = 0 

e.g.: 

� � (1) (2) 

=�α[�β, �γ ]Aµ = −�α R
ν
µβγ Aν −�αR

ν
µβγ Aν − Rν

µβγ �αAν 

−[�β , �γ ]�αAµ = Rν
αβγ �ν Aµ + Rν

µβγ �αAν 
(3) (4) 

(2) cancels against (4), (3) will go away by the symmetry of Rν
αβγ + Rν

βγα + Rν
γαβ = 0, so (1) 

generates the Bianchi identity. This identity is the gravity analogue of 

∂αFβγ + ∂βFγα + ∂γ Fαβ = 0 

in electromagnetism, or � · B = 0, �× E = −∂B (existence of vector potential). ∂t 
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1.6 Invariant Actions 

Since we have an invariant measure 
� √

gd4x (L ), we get invariant field theories by putting invariant 
expressions inside (L ). 

Given a special-relativistic invariant theory, we just need to change 

d4 x → √
gd4 x 

ηµν → gµν 

∂µ → �µ 

to make a general-relativistic invariant theory. This is the “minimal coupling” procedure. 
Examples: 

1. Scalar field: L = 1 gµν ∂µφ∂ν φ − V (φ)2 

2. Transverse vector field 

Fµν = �µAν −�ν Aµ = ∂µAν − Γµν
σ Aσ − ∂ν Aµ + Γνµ

σ Aσ 

= ∂µAν − ∂ν Aµ 

(no need for Γ, or ∂g) 
1 

L = − g αγ g βδFαβ Fγδ4


supports gauge symmetry Aµ → Aµ + ∂µχ


3. Longitudinal vector field (instructive) 

�µA
µ = ∂µA

µ + Γµα
µ Aα 

Γµ = gµσ ∂µgασ − ∂σgµαµα 2
1 � 

∂αgσµ + ��������� 

1 
= gµσ∂αgσµ2

= √
1 
g
∂α
√
g 

[To prove ∂αg = ggµσ∂αgµσ , use expansion by minors and expansion for inverse matrix. Check 
on diagonal matrices!] 

Aµ 1 d4 AµSo �µ = √g ∂µ 
�√
gAµ 

� 
. Thus 

� 
x 
√
g �µ = 

� 
d4x ∂µ(

√
gaµ) is semi-trivial: it is a 

boundary term. � 
d4 x�µA

µ�ν A
ν gives dynamics. 

This supports a gauge transformation 
√
gAµ → √

gAµ + �µνρσ∂ν Λρσ 

Λρσ = −Λσρ 

4. Gravity itself 

R = gβγ Rα and 1 are invariant. The latter is non-trivial, due to the measure factor � βαγ 

d4x 
√
g “Cosmological term” 

5. Spinors! These are foundational, but relegated to the Appendix. 
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1.7 Field Equations 

1. Scalar field 

S = 
� 
d4 x 

Λ � �� � 
√
g 

�
1 
2
gµν ∂µφ∂ν φ − V (φ) 

� 

δΛ δΛ 
∂µ 
δ∂µφ 

= 
δφ 

∂µ (
√
ggµν ∂ν φ) = −√gV �(φ) 

or �µ (gµν ∂ν φ) = −V �(φ) 

2. Transverse vector field 

d4 αγ d4S = − 
1 

x
√
gg g βδ (∂αAβ − ∂β Aα) (∂γ Aδ − ∂δAγ ) − x

√
gjµAµ4 

coupling to current 

∂µ 
δ
√
gL 

= −∂µ 

�√
ggµγ g νδ (∂γ Aδ − ∂δAγ ) 

� 

δ∂µAν 

= −∂µ (
√
gF µν ) ·

F µν= 
exercise! 

−√g �µ

δ
√
gL 

= −√gjν 

δ∂µAν 

Equation of motion: �µF µν = jν 

µγor ∂µ 
√
gg g νδFγδ = 

√
gjν 

As a consistency condition we have: ∂ν 
�√
gjν 

� 
= 0 ⇒ √

g �ν j
ν 

3. Longitudinal vector field 

√
g �µA

µ�ν A
ν = 

√
g √

1 
g
∂µ (

√
gAµ) √

1 
g
∂ν (

√
gAν ) 

1 ν≡ √
g
∂µp

µ∂ν p 

δL 1 
∂µ 
δ∂µp

= 2∂µ √
g
δν
µ∂σp σ 

ν 

= 2∂ν √
1 
g
∂σp σ 

If there is no source, then we have that √1g ∂σp
σ = λ, which is constant. 

So 
� √

g �µA
µ�ν A

ν → λ2 
� √

g gives a “dynamical” cosmological term 

4. Field equation for gravity 
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a. The hard part of finding the field equation for gravity is varying 
√
ggαβRαβ . However, 

we can use the trick that 
√
ggαβδRαβ is a total derivative. 

To prove this relatively painlessly, we can adopt a system of locally geodesic coordinates
∂αgβγ = 0 .⇒ 

Then 

g αβ δRαβ = g αβ δΓµ 
βµ ∂µ αβ − ∂αδΓ
µ 

= ∂µ g αβ δΓµ µβ δΓβα 
α 

αβ − g

≡ ∂µω
µ 

Note that δΓ has no inhomogeneous terms in its transformation law - it is a tensor! So 
gαβδRαβ = ∂µ�ωµ → �µ is now valid in any coordinate system. So 

√
ggαβ δRαβ =ωµ 

ωµ√
g�µ = ∂µ 

√
gωµ 

� 
is a boundary term; it does not contribute to the Euler-Lagrange 

equations.

Thus with S = κ 

� √
gR we get
 ⎛ ⎞ � R ⎜ ⎟
δS = κ ⎝δ√g g αβ Rαβ +

√
gδgαβRαβ ⎠ 

1√
ggαβ δg

αβ R + 
√
gRαβ δg

αβ= κ −
2

= κ 
√
g Rαβ − 

1
2
gαβ R δgαβ 

b. We have for the cosmological term 

δS = −Λ δ
√
g 

= Λ 
√
g 

2
1 
gαβ δgαβ 

c. Matter 

S = 
√
gΛ 

δ
√
gΛ δ

√
gΛ 

δS = 
δgαβ − ∂µ 

δ∂µgαβ δgαβ 

We define the energy-momentum tensor by 

δ
√
gΛ δ

√
gΛ 

√
g

= 
δgαβ − ∂µ 

δ∂µgαβ 2 
Tαβ 

We will now see that this makes sense with both examples and conservation laws. 

i. Examples: 
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Scalar field: • 

1 1
Λ = g αβ∂αφ∂β φ − m 2φ2 

2 2

δ
√
gΛ 1√

ggαβ Λ

δgαβ = −

2
√

2 

g
Tαβ = −

2
1 

� 
√
ggαβ 

�
2
1 
gµν ∂µφ∂ν φ − 

2
1 
m 2φ2 

�� 

+ 
2
1√

g∂αφ∂βφ 

Tαβ = ∂αφ∂βφ + 
1
2
gαβ m 2φ2 − 

1
2
gαβ g

µν ∂µφ∂ν φ 

In flat space we have:


1 1 � �

T00 = ∂0φ∂0φ +

2
m 2φ2 − 

2 
∂0φ∂0φ − (�φ)2 

1 
φ̇2 +

1 1 2φ2 � = (�φ)2 + m = WSB 
2 2 2


Maxwell field: (now we use δ )
•	 δgµν 

αγ	 αγδ 
�√

gg g βδFαβ Fγδ 

� 
= −

2
1 
gµν 
√
gg g βδFαβ Fγδ + 2

√
gg βδFµβ Fµδ 

αγTµν = √
2 
g 

− 
1
4 

δ 
√
gg g βδFαβ Fγδ 

1 
= −Fµβ Fνδ g βδ +

4
gµν g αγ g βδFαβ Fγδ ⇒ 

gµν Tµν = 0 (�) 

In flat space we have:


1 � �

T00	 = E2 +

4 
· 2 B2 − E2

� 1 � � 
= E2 + B2

2


As an exercise, check the Poynting vector and stresses for the Maxwell field.

ii. Conservation laws 

Preliminary: We expect the conservation of energy-momentum to be tied up with 
invariance under translations. So: let us translate! 

x�µ − xµ = δxµ = �µ, small, vanishing at ∞ 

g
�µν (x�) = 

∂x�µ ∂x�ν 

g αβ(x)
∂xα ∂xβ 

≈ gµν (x) + ∂α�
µg αν + ∂β �

ν gµβ 

�µν (x�) ≈ gµν + ∂αg
µν �α g

Thus δgµν = g
�µν (x) = ∂α�

µgαν + ∂α�
ν gµα − ∂αg

µν �α


not 
↑
x�
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Now notice that 

δgµν = gαµ�α�
ν + g αν �α�

µ (Killing equations) 
Γν 

αρ 

1 � � 
= gαµ∂α�

ν + gαµ g νβ �ρ · 
2

∂αgβρ + ∂ρgαβ − ∂β gαρ 

+ g αν ∂α�
µ + g αν 1 

gµβ � 
∂αgβρ + ∂ρgαβ − ∂β gαρ 

� 
�ρ · 

2
= gαµ∂α�

ν + g αν ∂α�
µ + gαµg ρν ∂ρgαβ �

ρ 

= gαµ∂α�
ν + g αν ∂α�

µ − ∂ρg αβ �ρ 

where the last step follows from differentiating: gαµ g
µβ = δα

β ; so ∂λgαµg
µβ +


gαµ ∂λg
µβ = 0. Multiplying by gρα, we get ∂λgαµg

µβ gρα = −∂λg
ρβ .


We can also write this as δgµν = �ν;µ + �µ;ν .

Now we have, from the invariance of the action and symmetry of Tµν in its definition


0 = 
√
g Tµν �

µ;ν 

But also 

∂ν0 = 
�√
g Tµν �

µ � 

µ= 
√
g �

� 
Tµν �

µ � 

= 
√
g �ν Tµν + 

√
gTµν �

µ;ν 

0 

Since this holds for an arbitrary �µ, we conclude that �ν Tµν = 0. 

1.8 Newtonian Limit 

We should be able to identify Newtonian gravity (and fix the coupling constant) by looking at the 
situation with nearly flat space and only T00 = ρ significant. (For now, of course, we ignore the 
cosmological term.) The stationary action condition gives 

1 1 
κ Rαβ − gαβ R = Tαβ or

2 2

2κRαβ = Tαβ − 
2
1 
Tgαβ (g00 ≈ c 2 � gij ) 

Focus on R00: 
ρ

2κR00 = 
2 

in R· terms with ΓΓ pieces higher order. Also terms with 
∂x
∂ 

0 
1 
c ∂x

∂ 
i are small. Thus in ··· ∼ 

R00 ≈ ∂γ Γ
γ 

0γ00 − ∂0Γ
γ 

1≈ 2−→ 
2
� g00 
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and finally 
= ρ2κ�2 g00 

To interpret this, wrte g00 = 1 + � (g00 = 1 − �). The action density of matter is perturbed by 

δ(
√
gΛ) ρ 

δg00 ≈ − 
2 
� 

This looks like the Newtonian coupling if � = 2φ. The equation 

2κ�2 g00 = ρ ⇒ 4κ�2φ = ρ 

This fixes κ = 1 .16πGN 

GN M GN 
2 

M 
r̂ 

Gauss 
dV 2φ = 4πGN Mφ = − 

r 
; �φ = 

r
−−−→ ����� 

M = 
4κ 

Note on the appendices and scholia: 
These are not necessarily self-contained, specifically, they refer to facts about quantum field 

theory and the standard model that are not assumed elsewhere in the course. Don’t worry if not 
everything is clear (or even meaningful) to you at this stage. Ask me if you’re curious! 

Central material 

1. The notion of local Lorentz invariance, vierbeins, and R recipe (Appendices 1-2). 

2. The idea that we are building a model of the world and are free to try anything (Scholium 
4). 

Appendix 1: Spinors and Local Lorentz Invariance 

Spinor fields play a very important role in fundamental physics, so we must learn how to treat them 
in general relativity. The essential thing is to define γa matrices. They transform under Lorentz 
transformations (that are in SO(3, 1) not GL(4)). Indeed the defining relation 

γaγb + γbγa = 2ηab 

refers to the flat-space Minkowski metric and the transformation law 

γ�
a = S−1(Λ)γaS(Λ) = Λa

bγ
b 

requires an S that does not exist in general. (Λ ∈ GL(4).) 
So we postulate local Lorentz invariance under transformations of this form with Λ(x) a function 

aof x, Λ(x) ∈ SO(3, 1). To connect this structure to the metric we introduce a vierbein e (x) such µ

that 

ηab eµ
a (x)eν

b (x) = gµν (x) (“square root” of the metric) 

gµν e aµ(x)e bν (x) = ηab (“moving frame”) 

Now, for example, we can form the Dirac equation 

(γa ea
µDµ + m) ψ = 0 
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But Dµ needs discussion. We want invariance under local Lorentz transformations. This requires 
(exercise!) 

DµS(Λ(x)) = S(Λ(x))Dµ 

a typical gauge invariance. We solve this problem “as usual” by introducing a gauge potential 

ωab(x) ∈ so(3, 1)µ 

where so(3, 1) is the Lie algebra corresponding to SO(3, 1), and thus ωµ
ab(x) = −ωµ

ba(x), and (in 
matrix notation) 

ωµ
� (x) = Λ−1ωµ(x)Λ − Λ−1∂µΛ 

and writing 
Dµ = �µ + ωµ · τ 

where the τ matrices provide the appropriate representation of the symmetry, e.g. σab = 4 
i γa, γb 

for spin 1
2 or the identity for spin 1. 

To avoid introducing additional structure (c.f. Scholium 4) we demand 

Dµe 
a = ∂µe 

a
ν − Γα a

α + ω a
b e 

b = 0 (1)ν µν e µ ν 

leading to a unique determination 

ω a ν ∂µeν
a + e ν e a Γα 

µ c = −ec c α µν 

Appendix 2: Moving Frames Method and Recipe 

The discussion of Appendix 1 is not as profound as it should be: ωµ
ab should be “more primitive” 

than Γ. This is worth pursuing, since it leads to a beautiful analogy and useful formulae. 
We can eliminate Γ from the defining relation (1) for ω by antisymmetrizing in µ ν. Thus↔ 

∂µe 
a
ν − ∂ν e 

a
µ = ωµ

ac ecν − ων
ac ecµ 

To solve for ω we go through a slight rigamarole, reminiscent of what we did to get Γ from �g = 0 

∂µe = − �����+eaρ 
a
ν − ∂ν e

a
µ ωµ

aceaρecν ων
ac 
�� eaρecµ 

a a ωac ωac −eaµ ∂ν eρ − ∂ρeν = −��e�aµ
�� 

ρ�� eaµecνν ecρ + ����� 

= �����+eaν ∂ρe
a
µ − ∂µe

a
ρ ωρ

aceaν ecµ − ωµ
aceaν ecρ 

eaρ∂µe 
a
ν − eaρ∂ν e 

a
µ − eaµ∂ν e 

a
ρ + eaµ∂ρe 

a
ν + eaν ∂ρe 

a
µ − eaν ∂µe 

a
ρ = 2ωµ

ac eaρecν 

using ωac = −ωca . Multiplying both sides by eeρefν , we getµ µ 

A B C C B A � �� � � �� � � �� � � �� � � �� � � �� � 
2ωµ

ef = e fν ∂µe 
e
ν − e fν ∂ν e 

a
µ − eaµe 

ρe e νf ∂ν e 
a
ρ + eaµe 

eρ e fν ∂ρe 
a
ν + e ρe∂ρe 

f
µ − e ρe∂µe 

f
ρ 

or 
efν � � 

ωµ
ef =

2 
∂µe 

e
ν − ∂ν e 

e
µ + eaµe 

eρ∂ρe 
a
ν − (e ↔ f) 
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Now we can construct a curvature by differentiating (say) a space-time scalar, which is a local 
Lorentz vector field 

(DµDν − Dν Dµ)φa = R a
b φ

b 
µν 

This leads to 
a a a a c a cRµν b = ∂µων b − ∂ν ωµ b + ωµ cων b − ων cωµ b 

Now you will be delighted (but not too surprised) to learn that this “gauge” curvature is intimately 
related to the Riemann curvature we had before; indeed 

Rµναβ = Rµν
a
b eaαeβ

b 

This actually gives the most powerful recipe for computing R. The technique of introducing frames 
aeµ(x) to make the geometry “locally flat” was developed by E. Cartan and is called the moving 

frame method. It is usually presented in very obscure ways. 

Scholium 1: Structure and Redundancy 

Allowing a very general framework and demanding symmetry is an alternative to finding a canon­
ical form that “solves” the symmetry. Thus we consider general coordinate transformations, but 
postulate a metric to avoid “solving” for local Lorentz frames and then pasting them together. 

Vierbeins or moving frames make this much explicit. 
Fixing down to a specific frame is gauge fixing in the usual sense. 

Scholium 2: Why General Relativity? 

Ordinary spin-1 gauge fields are in danger of producing wrong-metric particles or “ghosts”. This 
is because covariant quantization conditions (commutation relatives (?) ) for the different polar­
izations: 

[a† , aν ] = −gµνµ

if normal for the space-like pieces are abnormal for the time-like and vice versa. Gauge symmetry 
allows me to show the wrong-metric excitations don’t couple (e.g. one can choose A0 = 0 gauge). 

Similarly, general convariance/local Lorentz symmetry are required for consistent quantum 
theories of spin 2. 

Scholium 3: General Relatvitiy vs. Standard Model 

In the Standard Model symmetry and weak cutoff dependence (renormalizability) greatly restrict 
the possible couplings. One requries a linear manifold of fields (i.e. φ1(x) + φ2(x) is allowed if 
φ1(x), φ2(x) are). 

In General Relativity there is still symmetry, and minimal coupling leads to weak cutoff de­
1 2pendence below the Planck scale. However, the fields manifold is not linear (gµν + g may not µν 

be invertible, hence not allowed) and there is a dimensional fundamental coupling. It looks like an 
aeffective theory thus, with spontaneous symmetry breaking, i.e. e = �?�, like the σ−model. µ 
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Scholium 4: Gauge and Dilaton Extensions 

The standard assumption of Riemannian geometry is �αg
µν = 0. However, we might want to relax 

this to incorporation additional symmetry. Some important physical ideas have arisen (or have 
natural interpretations) along this line. 

Weyl wanted to unify electromagnetism with gravity. He postulated 

�αgµν = sαgµν 

and the symmetry 

g
� 

(x) = λ(x)gµν (x)µν 

s�α(x) = sα + ∂αλ 

This was the historical origin of gauge invariance! 
He wanted to identify sα with the electromagnetic potential Aα. That has problems, but the 

ideas are profound. 
Symmetry of the type gµν (x) = λ(x)gµν (x) arises in modern conformal field theory and string 

theory. It is called “Weyl symmetry”. Given the importance of massless particles, and the idea 
that massive fundamental particles can acquire mass by spontaneous symmetry breaking, this idea 
of a scale symmetry retains considerable appeal. 

A closely related variant is 

�αgµν = ∂αφ gµν 

g
� 

= λgµνµν 

φ� = φ + λ 

φ-fields of this sort are called “dilatons”. 
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