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2 Cosmological Models with Idealized Matter 

2.1 Model spaces: Construction 

Spaces (and spacetimes) of high symmetry play a very important role in cosmological model-
building, and as examples (“solvable models”) of general relativity. The most important ones can 
be considered as different odd sorts of spheres, so we start with those 

1. 3d sphere 
4

x 2 
i = R2 

i=1 

•	 Spherical coordinates 

x	 x 
x1 = R cos	 x3 = R sin sin(θ) cos(φ)

R	 R 
x	 x 

x2 = R sin	 x4 = R sin sin(θ) sin(φ)
R R � � x � � � 

dl2 = dx2 
i = dx2 + R2 sin2 dθ2 + sin2(θ)dφ2����	 R 

i Exercise 

•	 Quasi-flat coordinates

Write x4

2 = R2 − r2


rdr	 r2dr2 

dx4 = 
x4 

dx2
4 = 

R2 2− r

3

dl2 = dxi 
2 + dx2

4 
i=1 � � r2dr2 

= dr2 + r 2 dθ2 + sin2(θ)dφ2 + 
R2 2− r

= 
dr2 

+ r 2 � dθ2 + sin2(θ)dφ2
�	

(1)
1 − 

R

2

2 
r

du2 �	 � r 
= R2 + u 2 dθ2 + sin2(θ)dφ2 , u = 

1 − u2 R 

Conformal coordinates It is often useful to write • 

ds2 = f2(x)ds2 
flat 

if that is possible. (Penrose diagrams. . . later.) Starting from out previous form, we will 
have this if we use η in place of r such that 

dr2 

= f2dη2 

1 − 
R
r2

2 

r 2 = f2η2 

dη dr 
2

⇒ 
η r 1 − 

R
r

2 

1 
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leading to η = tan u with sin(u) = r . Write r = R sin(u); qdr = du = 2 R r2 sin(u) � � �� � r 1− 
R2 

u dηd log tan 2 = η = d log(η).


or, after some algebra:


4R2 � � �� 
dl2 = dη2 + η2 dθ2 + sin2(θ)dφ2

(1 + η2)2 

2 

f2 r
= 

η2 

2 

sin2(u) = 
R

r
2 � u � � u � � 

η2 �� 
1 

�� 

4 sin2 cos2 = 4 
2 2 1 + η2 1 + η2 

The sphere supports the symmetry SO(4). 

2. 3d hyperboloid (space of constant negative curvature) 

(figure) 

3

x0
2 − xi 

2 = R2 

i=1 

• Spherical coordinates 

x 
x0 = R cosh 

R 
x 

x1 = R sinh cos(θ)
R 

. . . 

dl2 = −dx2
0 + dx2 � x � � � 

= dx2 + R2 sinh2 dθ2 + sin2(θ)dφ2

R 

• Quasi-flat coordinates 

|x| = r 

x0
2 = R2 + r 2 

. . . 

dr2 � � 
dl2 = 2 + r 2 dθ2 + sin2(θ)dφ2

1 + 
R
r

2 

du2 � � 
= R2 + u 2 dθ2 + sin2(θ)dφ2

1 + u2 

Conformal coordinates • 

4 � � �� 
dl2 = dη2 + η2 dθ2 + sin2(θ)dφ2

(1 − η2)2 

2 
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with η = tanh u 
2 , sinh(u) = R

r 

Supports symmetry SO(3, 1), i.e. “Lorentz” symmetry, acting purely spatially! 
To bring this out, use 

x0 = r2 + R2 cosh(λ) x2 = r cos(φ) 

x1 = r2 + R2 sinh(λ) x3 = r sin(φ) 

1 
dl2 = 2 dr2 + r 2dφ2 + (r 2 + R2)dλ2 

1 + 
R
r

2 

“Translations” λ λ + constant, corrisponding to boosts in the original variables, leave →
this invariant. 

3. de-Sitter spacetime 

(figure) 
x0

2 − x1
2 − x2

2 − x3
2 − x4

2 = −R2 

x 
x1 = R cosh cos(λ)

R 
x 

x2 = R cosh sin(λ) cos(θ)
R 
x 

x3 = R cosh sin(λ) sin(θ) cos(φ)
R 
x 

x4 = R cosh sin(λ) sin(θ) sin(φ)
R 
x 

x0 = R sinh 
R 

• Spherical coordinates 

ds2 = dx2
0 − dx2 

i 
i ⎛ ⎞ � x �⎜ � �⎟ = dx2 − R2 cosh2 ⎝dλ2 + sin2(λ) dθ2 + sin2(θ)dφ2 ⎠ 

R � �� � 
unit 3-sphere 

(?): exponential expansion!; minimum radius; spheres 

• Quasi-flat coordinates 

r2dr2 

x 20 = r 2 − R2 dx2
0 = 

r2 − R2 

dr2
2 � � �� 

ds2 = 2 − 1 
− r dλ2 + sin2(λ) dθ2 + sin2(θ)dφ2

r

R2
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•	 Light-front coordinates 
Seperate out planes (x2, x3, x4) = x⊥ 

x+ = x0 + x1	 x− = x0 − x1 

x 20 − x 21 −x2 = −R2	 x = 
x⊥ 

2 − R2 � �� � ⊥	 − 
x+ 

x+x− 

ds2 = dx+dx− − dx2 
⊥ 

dx =
2x · dx dx

2
+ (x2 

− 
x+ 

− 
x ⊥ − R2) 

ds2 = dx+ 
2x · dx dx

2
+ � x2 − R2

� 
− dx2 

x+ 
− 

x+ 

To remove the ugly cross-term, introduce v = f(x+)x. So 

dv = f �dx+x + fdx 

dv2 = (f �)2x2dx2 + 2ff �x dv + f2dx2 
+ · 

1 � � 
−dx2 = 

f2 −dv2 + (f �)2x2dx2 + 2ff �x · dx+ 

1 1The x-term cancels if f
f 

� 
= −x+ 

, f = ±x+ 
(x+ > 0). 

xThus with v ≡ x+ 

ds2 = dx+ 
dx

2
+ (x2 − R2) − x+

2 dv2 +
1 
2 x

2dx2 
+− 

x+ x+ 

dx2 

= R2 + 2 dv2 
2 − x+x+ 

Now with x+ ≡ Ret/R


ds2 = dt2 − R2 et/Rdv2


which is an expanding flat spatial metric. 

•	 Conformal coordinates � � 
dx2 

ds2 = R2 x 2 + − dv2 
+ 4x+ 

so with x+ ≡ 1 
u 

ds2 = 
R

2

2 � 
du2 − dv2

� 
u

de-Sitter space has the symmetry SO(4, 1) from the hyperboloid definition. 
In the light-front coordinates we have translation symmetries v v + const. Where 
do these sit? See Appendix 3. 

→ 

We’ll have much more to say about de-Sitter space later (inflation). 
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2.2 FRW (Friedman-Robertson-Walker) spacetimes 

These are constructed by choosing one of the maximally symmetric paces and letting its overall 
scale vary with time. Thus 

ds2 = dt2 − a 2(t)dl2 

dl2 = 
du2 

+ u 2 � dθ2 + sin2(θ)dφ2
� 

1 + κu2 

where 
K = 1 hyperbolic sections 
K = 0 flat sections 

K = −1 spherical sections 

These model spacetimes are homogeneous and isotropic, but evolving. They supply interesting first 
models for the observed universe averaged over large scales. 

2.3 Curvature Calculations 

Our master formulas (with correct signs) are 

efν � � 
ωµ

ef =
2 

∂µe eν − ∂ν e eµ + eaµe eρ∂ρe aν − (e ↔ f) 

Rµν
αβ = −Fµν 

ab ea
α eb

β 

F ab = ∂µω ab ab a ω c a ω c 
µν ν − ∂ν ωµ − ωµ c ν b + ων c µ v 

This is best exploited (for gµν diagonal) by using certain quasi-cartesian vierbeins 

eα
a = δα

a ga (so e aα = ηaα ga
−1) 

1 
ηfν δe1st term: gf

−1 

2 � �� ν� ∂µge → 0 (symmetric in e ↔ f) 

ηef 

2nd term: −
2
1 
ηfν gf

−1δµ
e ∂ν ge = −

2
1 
ηfν gf

−1δµ
e ∂ν ge 

1 
ηfν η ηeρηa g−�1 gag

−1 1 
δf ηeρ g−13rd term: aµ ν f �� e ∂ρgf = µ e ∂ρgf
2 � �� �� 2


f,ν,µ,a all equal 

So 
ωef = δf ηeρ g−1∂ρgf − δe ηfρ g−1∂ρgeµ µ e µ f 

mnemonic: “µ matches on index, the other differentiates its g” 
Example 1: 2d sphere (warm-up) 

e 1 
θ = 1 = g1 e 2 

φ = sin(θ) = g2 

ω12 = 0 (δe only, but ∂2g1 = 0)θ µ 

ωφ 
12 = + cos(θ) (δ2 

f=2η1ρ g1
−1∂1g2) 

Fθφ 
12 = ∂θωφ 

12 + (vanishing)


= − sin(θ)

1 

1 sin(θ)���� ���� 
R θφ = −(− sin(θ) e θ e φ ) = 1θφ 1 2 
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By the way, this is the gauge field of a magnetic monopole (gauge group SO(2) = U(1))! 
Example 2: 3d sphere 

eχ 
1 = 1 eθ 

2 = sin(χ) eφ 
3 = sin(χ) sin(φ) 

ω12 = 0 ω12 = cos(χ) ω12 = 0 χ θ φ 

ωχ 
13 = 0 ωθ 

13 = 0 ωφ 
13 = cos(χ) sin(θ) 

F 12 = ∂χω12 = − sin(χ)χθ θ 

F 13 = ∂χω13 = − sin(χ) sin(θ)χφ φ 

F 13 = ∂θω
13 − ω12ω23 = cos(χ) cos(θ) − cos(χ) cos(θ) = 0 θφ φ θ φ 

F 23 = ∂θω
23 − ω21ω13 = − sin(θ) + cos2(χ) sin(θ) = − sin2(χ) sin(θ)θφ φ θ φ 

Thus 
−Fµν 

ab = eµ
a eν

b − eµ
b eν

a 

((?) The antisymmetry on indices µ, ν and a, b is automatic!) 
or 

Rµν
ab = δµ

αδν
β − δµ

β δν
α 

R β = 2δβ 
ν ν 

R = 6 

Example 3: FRW cosmology (spatially flat case)

(Note: Mid-Latin indices are spatial, early Latin indices are internal)


et 
0 = 1 ei

c = δi
c a(t) 

ds2 = dt2 − a(t)2dx2 

The only non-zero ω is 
ωi 

0c = δi
c ȧ

The non-vanishing components of the field strength are 

F0i 
0c = ∂0ωi 

0c = δi
c ä

F cd = −ωc0ω0d + ωc0ω0d 
ij i j j i 

= δi
cδj

d − δk
c δd ȧ2 

I 

leading to the Ricci tensor components 

ä
R0

0 = −3 (= −F0i 
0c e ic) a 

Ri
l = −Fij

cl 
c
l 

d
j − F0i 

0c 
c
l e e e 

ȧ2 ä
= −2 

a2 − 
a

δi
l 

ȧ2 ä
R = −6 

2 − 6 
a a 
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2.4 FRW Dynamics 

The field equations (in gαβ) are 
1 

Rµ µ
ν R = 8πG
 νν − 

2
δ

We interpret T 00 
i
j 

i
j

µ
µ = 0, p =
 1 

3 ρ)
(Check 1: for electromagnetism, T
= −pδ
From the preceding calculation 

= ρ, T


⎧ ⎪ ȧ2 ⎪⎨ 8πGρ = 3 
2a (2)⎪⎪ ä ȧ2 ⎩ 8πGp = −2 
a 
− 

a2 

ȧ2 ä
8πG(p + ρ) = 2 

2 −a a 

Another important and appealing equation comes from differentiating the first of these and 
eliminating: 

ȧ ä ȧ2 

8πG ρ̇ = 6 
2a a 

− 
a

ȧ
= −3 · 8πG 

a 
(ρ + p) 

or simply 
ȧ

ρ̇ = −3(ρ + p) (3) 
a 

Another interesting thing is to see who’s responsible for acceleration: 

ä
8πG(ρ + 3p) = −6 

a 

There is a simple interpretation of (2) and (3): 
(2): Imagine a test particle along for the ride. Gravity “outside” cancels (Birkhoff theorem). 

Conservation of particle’s energy 

2v

−

G
 π4· 3 ρr3a3m


= mkr2 

r 
8πGρ 

ȧ2 a 2 = k− 
3 

m 2 ˙ 2 r a
2


We have this with k = 0: neutral binding, critical “escape velocity”! 
The non-zero values of k arise in FRW spaces with hyperbolic (k > 0) or (?) spherical (k < 0) 

spatial sections - see the problem set. 
(3): Imagine work done by an expanding fluid against pressure; take it from mass-energy 

d 4π d 4π 
dt 3 

ρa3 r 3 = −p
dt 3 

a 3 r 3 

d � � d 
ρa3 = −p (a 3)

dt dt
ȧ

ρ̇ = −3(ρ + p) 
a 
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Appendix 3: Translations within SO(4, 1) 

Write the metric in block form: 

−g = 

� 
J 
0 

0 
1 

� 

J ≡ 

� 
−1 
0 

0 
1 

� 

The condition for a near-identity transformation
� � 

S = 1 + 
a b 
c d 

to leave the metric invariant is 

ST gS ≈ g; 
� 

aT 

bT 
cT 

dT 

� � 
J 
0 

0 
1 

� 

+ 

� 
J 
0 

0 
1 

� � 
a 
c 

b 
d 

� 

≈ 0 

or (to 1st order) 

a T J + Ja = 0 

Jb − c T = 0 

bT J − c = 0 

dT + d = 0 

With a = d = 0 the transformations 1 + 
bT
0 
J 0 

b translate vectors ( rs ) by 
bT
bs 
Jr , i.e. with things 

spelled out completely ⎛ ⎞ � � δ 
α β γ 

−α 
b = 

δ η φ 
; so bT J = ⎝−β η⎠ 

−γ φ 

and 

αs1 + βs2 + γs3Δr = bs = 
δs1 + ηs2 + φs3 ⎛ ⎞ 
−αr1 + δr2 

Δs = bT Jr = ⎝−βr1 + ηr2⎠ 

−γr1 + φr2 

Transformations with δ = −α, η = −β, φ = −γ leave r1 + r2 fixed while translating s through ⎛ ⎞ 
α


Δs = − ⎝β⎠ (r1 + r2)

γ 

So s/(r1 + r2) is translated in the conventional way. In our previous notation this is 

s (x2, x3, x4) x
= ⊥ = v 

r1 + r2 x0 + x1 x+ 

(This explains v.) 
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