
Patrick Griffin 
STS.035 Reading #5 
March 3, 2004 

While computers have proven themselves one of mankind'sbest tools, interfacing 
with them has always been difficult. This is true not only in the sense of difficulties 
programming a machine, telling it what to do in a sensible fashion, but also when dealing 
with program outputs or even understanding the whole process by which a result is 
obtained. While machines are useful because they process arithmetic so much faster and 
more accurately than humans, they are limited to only this capability and thus can 
formulate abstract things, such as mathematical proofs, only with great difficulty. Thus, 
computers are good with numbers, and human beings are good with abstraction and 
patternmatching, but neither side is particularly good at the other's skill. 

Simon describes his efforts, along with Gabe Newell and Cliff Shaw, to make 
computers process mathematical proofs by the same heuristic mechanism that humans 
use. This humanistic approach has proven the weakest of the three approaches listed in 
the first Mackenzie paper, which also mentions nonhumanistic bruteforce proof 
methods and humanguided proof methods.  The other two mechanisms have been able to 
prove longer and more difficult theorems than the simple heuristic search because they 
either better emphasize a computer'snumbercrunching strength or because they rely on 
human input for abstract guidance. While the nonheuristic methods may be the most 
powerful or efficient, they also have verifiability problems, as Mackenzie describes in the 
second paper.  In the case of the fourcolor problem, a computer proof was disbelieved by 
much of the mathematical community because it gave no deeper insight as to the meaning 
of the problem. Essentially, because the computerassisted proof simply demonstrated 
(initially) 1936 reducible cases which couldn'tbe avoided, mathematicians were asked to 
trust that the program was written correctly. Certainly, handchecking 1936 cases was 
infeasible by hand, and doing so would not make any meaning in the solution any clearer. 
Thus, we see again that computers are good with numbers, humans are good with 
abstractions or patterns, and neither set is particularly able to fully comprehend the other. 

Questions of human vs. nonhuman algorithm design appear in fields outside of 
mathematics. One case in point are the placement tools used to translate humanmade 
circuit designs into actual transistor layouts.  Human engineers generally create structured 
designs, where important elements are grouped together into modules – black boxes that 
perform a particular function.  Some placement tools are designed to take these groupings 
into consideration when placing the transistors, so that related elements are near to each 
other. Ideally, this grouping would improve performance by reducing communication 
delays. However, the relationships that group elements in modules do not always imply 
spacial locality. For instance, a clocking module may contain descriptions of signals that 
are sent to every corner of the chip, but a placement program that relied only on 
modularity might place it in the far corner because no one place is better than any other. 
As a result of their inability to recognize which modules actually imply spacial locality 
and which don't,most modern placement engines simply flatten the entire design and 
ignore the manmade grouping information. They then apply a “ simulated annealing” 



method to optimize placement for performance or area. These methods simply try 
random placements variations to find which are best. There is no pattern recognition or 
intelligent guidance involved, the program simply bruteforces through the placement 
program. Often, this method proves more effective than relying on manmade module 
locality information, particularly because computers are perfectly willing to keep working 
on the problem for days. Finally, the most effective placement tools actually mirror the 
humanguided proof algorithms. In this case, an engineer manually places important 
modules that the engineer knows require particular spacial locality, and the simulated 
annealing methods then fill in the rest. While requiring more manhours and being less 
flexible than a completely computer based mechanism, humanassisted placement almost 
always produces better results than either computerguided module placement or straight 
simulated annealing. 


