Implementing the Vision 2nd Space Exploration Conference

Exploration Strategy and Architecture

EMBARGOED until Monday, December 4, 12:00 EST

Doug Cooke

Deputy Associate Administrator NASA Exploration Systems Mission Directorate

December 6, 2006

DRAFT

A Bold Vision for Space Exploration, Authorized by Congress

- Complete the International Space Station
- Safely fly the Space Shuttle until 2010
- Develop and fly the Crew Exploration Vehicle no later than 2014 (goal of 2012)
- Return to the Moon no later than 2020
- Extend human presence across the solar system and beyond
- Implement a sustained and affordable human and robotic program
- Develop supporting innovative technologies, knowledge, and infrastructures
- Promote international and commercial participation in exploration

NASA Authorization Act of 2005

The Administrator shall establish a program to develop a sustained human presence on the Moon, including a robust precursor program to promote exploration, science, commerce and U.S. preeminence in space, and as a stepping stone to future exploration of Mars and other destinations.

US Role in Exploration – Derived from the Vision

- Leadership in US Exploration Strategy and Architecture
 Development-
 - A collaborative effort
 - Identifying common interests with others
- Provide the US Transportation and certain exploration infrastructure.
- Extend operational experience in a hostile planetary environment
- Early US Robotic and Human mission definition
- Prepare for Human exploration of Mars
- Early experiments and demos to characterize the planetary environment and test feasibility of planned operations (ISRU for example)

- Provide Educational Benefits
- Provide and facilitate opportunities for :
 - Science
 - Economic development
 - International participation

Our Approach: An Architecture Driven By A Strategy

Global Exploration Strategy Development

Themes & Objectives

National Priorities Defined

Architecture Assessment

Reference Architecture & Design Reference Mission

Detailed Requirements Defined

Detailed Design

Operations Concept, Technology Needs, Element Requirements

NASA Exploration Lunar Activities addressing Themes

Human Civilization

Scientific Knowledge

Exploration Preparation

Global Partnerships

Economic Expansion

Public Engagement

What are the Big Lunar Architecture Questions?

- What are the US priorities and phasing for what we will achieve at the moon? How do priorities drive important decisions?
 - Outpost vs. Sorties
 - Landing site(s)
 - Architecture flexibility to address lower US priorities or far-term interests
- What infrastructure is required to support priorities? Considerations:
- Schedule/ flight rate
- Cost/ available budget
- What will we plan on developing ourselves?
 - Critical path hardware to achieve primary objectives
 - Allowing for parallel developments from commercial and/or international communities
- What level of limiting resources will allow for optimum realizable capability?
 - Enabled by basic NASA transportation architecture
 - Down-mass and up-mass at the Moon
 - Power

Lunar Architecture Framework — Point of Departure

- Human lunar missions will be used to build an outpost at a polar site
- The ability to fly human sorties and cargo missions with the human lander will be preserved
- Initial power architecture will be solar with the potential augmentation of nuclear power at a later time

- Robotic missions will be used to:
 - Characterize critical
 - environmental parameters and lunar resources
 - Test technical capabilities as needed
- The ability to fly robotic missions from the outpost or from Earth will be a possible augmentation

NASA Implementation Philosophy

The US will build the transportation infrastructure and initial communication & navigation and initial EVA
Open Architecture: NASA will welcome external development of lunar surface infrastructure

- The US will perform early demonstrations to encourage subsequent development
- External parallel development of NASA developed capabilities will be welcomed

Open Architecture: Infrastructure Open for Potential External Cooperation

- Lander and ascent vehicle
- EVA system
 - CEV and Initial Surface capability
 - Long duration surface suit
 - Power
 - Basic power
 - Augmented
 - Habitation
 - Mobility
 - Basic rover
 - Pressurized rover
 - Other; mules, regolith moving,
 - module unloading
- Navigation and Communication
 - Basic mission support
 - Augmented
 - High bandwidth
- ISRU
 - Characterization
 - Demos
 - Production

- **Robotic Missions**
 - LRO- Remote sensing and map development
 - Basic environmental data
 - Flight system validation (Descent and landing)
 - Lander
 - Small sats
 - Rovers
 - Instrumentation
 - Materials identification and characterization for ISRU

- ISRU demonstration
- ISRU Production
- Parallel missions
- Logistics Resupply
- Specific Capabilities
 - Drills, scoops, sample handling, arms
 - Logistics rover
 - Instrumentation
 - Components
 - Sample return

Forward Work (January – July 07)

Using current architecture as a point of departure

Develop global view and mature architecture

Coordinate lunar exploration plans among international and commercial partners and continue to look for other collaboration opportunities

- Refine campaign and architecture concepts and also element hardware concepts
- Update and baseline ESMD Requirements
- Develop Mars Reference Mission
- Continue to engage academia, the private sector, and other stakeholders in defining a sustainable program of exploration

Post 2025 Opportunities

By 2025 NASA will have developed the capabilities required to enable various future paths. Agency decision: Which future path(s) to take?

Agency Decision on Future Path(s)

2025 Capabilities

- Mature transportation system
- Closed loop habitat
- Long duration human missions beyond LEO
- Surface EVA and mobility
- Autonomous operations
- Advanced robotic missions
- Minimize reliance on Earth via In-Situ fabrication and resource utilization
- Enhanced by Commercial and International Partners

NASA Follow-on Strategy

Humans to Mars

Expand Lunar Outpost Site Exploration

Mars

Expand Lunar Outpost via Commercial and/or International Partners

Implementing the vision

Human Exploration of Other Lunar Sites via Sorties