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At the end of this recitation, students should be able to: 

1. Understand when an LP is: unbounded, degenerate, has multiple optimal solutions. 

2. Find multiple optimal solutions of an LP, in case they exist. 

3. Perform Phase I of the simplex method. 

Problem 1 

Consider the following simplex tableau: 

Basic x1 x2 x3 s1 s2 Rhs 
(−z) 1 2 5/4 0 
s1 2 1 1 1 6 
s2 2 1 1 4 

As usual, empty cells contain a zero. Assume a maximization problem. 

Part 1.A 

Apply the simplex algorithm to compute an optimal solution. Always pivot in the column with 
largest reduced cost. Write down the optimal solution and optimal objective function value. Is 
the optimal solution that you found unique? Why? 

Solution. Pivot column: x2, pivot row: 2. 

Basic x1 x2 x3 s1 s2 Rhs 
(−z) 1 1/4 -1 -4 
s1 2 1/2 1 -1/2 4 
x2 1 1/2 1/2 2 

Pivot column: x1, pivot row: 1. 

Basic x1 x2 x3 s1 s2 Rhs 
(−z) -1/2 -3/4 -6 
x1 1 1/4 1/2 -1/4 2 
x2 1 1/2 1/2 2 

The optimal solution is x1 = 2, x2 = 2, with cost 6. It is not unique because x3 has zero 
reduced cost in the final tableau, hence it could be pivoted in staying at the same objective 
function value. 



Part 1.B 

Describe all the optimal solutions to the problem. Use the final tableau of Part 1.A as a 
starting point. (Hint: the first step is to compute all optimal vertices. When we say “describe 
all solutions”, we mean that you should find equations that describe them, not that you should 
write down all optimal points. That would be a very lengthy task, seeing as there is an infinite 
number of solutions.) 

Solution. Starting from the optimal tableau, we pivot in x3. The ratio test forces x2 out 
of the basis. We obtain the following optimal tableau. 

Basic x1 x2 x3 s1 s2 Rhs 
(−z) -1/2 -3/4 -6 
x1 1 -1/2 1/2 -1/2 1 
x3 2 1 1 4 

This defines another optimal solution: x1 = 1, x3 = 4, with the same objective function value. 
We could pivot in x2 again, but the ratio test would force x3 out of the basis. Therefore, we 
would go back to the previous tableau and associated optimal solution. It follows that there 
are only two vertices of the feasible region that are optimal. 

Since there are two distinct optimal vertices, the whole segment between them is optimal. We 
can express this segment as the convex combination of its two endpoints: ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ 

x1 2 1
 ⎝x2⎠ = λ ⎝2⎠ + (1 − λ) ⎝0⎠ .
 
x3 0 4
 

with 0 ≤ λ ≤ 1. This can be rewritten as: 

x1 = 1 + λ 

x2 = 2λ 

x3 = 4 − 4λ 

with 0 ≤ λ ≤ 1. 

An alternative way to find the equations describing all optimal solutions is to apply the Δ 
method to the optimal tableau of Part 1.A, with x3 entering the basis. If x3 = Δ, we have: 

x1 = 2 − Δ/4 

x2 = 2 − Δ/2 

x3 = Δ, 

with Δ ≥ 0. Clearly the maximum value that Δ can take while leaving x1, x2 ≥ 0 is 4. This 
system of equations with 0 ≤ Δ ≤ 4 describes the same segment as the system above for 
0 ≤ λ ≤ 1. 

Problem 2 

Consider the following simplex tableau: 
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Basic x1 x2 x3 x4 x5 Rhs 
(−z) 0 -3 0 2 0 -6 
x1 1 -4 2 0 
x3 -6 1 3 2 
x5 -1 1 5 

Assume that this is a maximization problem. 

Part 2.A 

What is the current basic feasible solution and its objective function value? Is the current bfs 
degenerate? 

Solution. The current bfs is x3 = 2, x5 = 5. All the remaining variables have value 0, 
including x1, which is basic. The objective function value is 6. The bfs is degenerate because 
x1 = 0. 

Part 2.B 

Perform one pivot. What is the new basic feasible solution and its objective function value? Did 
anything change with respect to the previous bfs? And with respect to the previous tableau? 

Solution. We pivot in s1 and the ratio test tells us that we have to pivot out x1 (min{0/2, 2/3}
is clearly 0, thus we pivot on the coefficient “2”). We obtain: 

Basic x1 x2 x3 x4 x5 Rhs 
(−z) -1 1 0 0 0 -6 
x4 1/2 -2 1 0 
x3 -3/2 1 2 
x5 -1 1 5 

The new basic feasible solution is therefore x3 = 2, x5 = 5 and all the remaining variables
 
have value zero. The objective function value is 6.
 

Nothing changed with respect to the previous bfs. We have exactly the same solution because
 
we performed a degenerate pivot.
 

However the tableau has changed: we have different coefficients and a different set of basic
 
variables.
 

Part 2.C 

The tableau that you obtained after Part 2.B is not optimal because some reduced cost is 
positive. In fact, the problem is unbounded (why?). Give the equations describing a ray of the 
feasible region along which the objective function can be increased indefinitely. 

Solution. The problem is unbounded because in the final tableau x2 has positive reduced 
cost and all its coefficients in the rows are nonpositive. This means that x2 can increased 

3
 



indefinitely to increase the objective function value. To describe the corresponding ray, we 
note that if we bring x2 to the rhs of the equations that form the simplex tableau we obtain: 

x4 = 0 + 2x2 

x3 = 2 

x5 = 5 + x2. 

Because x2 is nonnegative, we can increase x2 as much as we want without leaving the feasible 
region, and at the same time increasing the objective function value. The ray can therefore 
be described as: 

x2 = Δ 

x3 = 2 

x4 = 2Δ 

x5 = 5 + Δ 

for Δ ≥ 0. 

Problem 3 

Consider the following LP: 
max x1 + 3x2 

2x1 − 2x2 = 1 
x1 + x2 ≥ 5 
x1, x2 ≥ 0 

⎫ ⎪⎪⎬ ⎪⎪⎭
 
(LP)
 

Observe that a basic feasible solution is not readily apparent. We want to perform Phase I of 
the simplex method to find an initial basic feasible solution. 

Part 3.A 

Add surplus and artificial variables as needed to perform Phase I, then determine the Phase 
I objective function. Write the resulting LP and the corresponding initial Phase I simplex 
tableau. What is the basic feasible solution in this tableau? 

Solution. We start by introducing a nonnegative surplus variable s1 in the second con
straint. 

max x1 + 3x2 

2x1 − 2x2 = 1 
x1 + x2 − s1 = 5 

x1, x2, s1 ≥ 0. 

⎫ ⎪⎪⎬ ⎪⎪⎭
 

There is no isolated variable with a +1 coefficient in any row. We must introduce artificial
 
variables s2, s3. 

max x1 + 3x2 

2x1 − 2x2 + s2 = 1 
x1 + x2 − s1 + s3 = 5 
x1, x2, s1, s2, s3 ≥ 0. 

⎫ ⎪⎪⎬ ⎪⎪⎭
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Next, we must determine the Phase I objective. We want to minimize the sum of the artificial 
variables: min s2 + s3. In maximization form, this can be written as max −s2 − s3. We can 
substitute s2 and s3 with their expression in terms of the original variables found through the 
problem’s constraints. We obtain: w = −s2 − s3 = (2x1 − 2x2 − 1) + (x1 + x2 − s1 − 5) = 
(3x1 − x2 − s1 − 6). This is the Phase I objective function. The Phase I LP is therefore: 

max 3x1 − x2 − s1 − 6 
2x1 − 2x2 + s2 = 1 

x1 + x2 − s1 + s3 = 5 
x1, x2, s1, s2, s3 ≥ 0. 

The corresponding simplex tableau is the following: 

⎫ ⎪⎪⎬ ⎪⎪⎭
 

Basic x1 x2 s1 s2 s3 Rhs 
(−w) 3 -1 -1 6 
s2 2 -2 1 1 
s3 1 1 -1 1 5 

The basic feasible solution is s2 = 1, s3 = 5. 

Part 3.B 

Perform two iterations of the simplex algorithm on the tableau obtained at the end of Part 3.A. 
Is Phase I completed? If we now have a basic feasible solution for the original problem, explain 
why and write the solution. If we do not have a basic feasible solution for the original problem, 
explain why. 

Solution. We start from this tableau: 

Basic x1 x2 s1 s2 s3 Rhs 
(−w) 3 -1 -1 6 
s2 2 -2 1 1 
s3 1 1 -1 1 5 

We can now apply the simplex algorithm in the normal way. Pivot column: x1, pivot row: 1. 

Basic x1 x2 s1 s2 s3 Rhs 
(−w) 2 -1 -3/2 9/2 
x1 1 -1 1/2 1/2 
s3 2 -1 -1/2 1 9/2 

Pivot column: x2, pivot row: 2. 

Basic x1 x2 s1 s2 s3 Rhs 
(−w) -1 -1 0 
x1 1 -1/2 1/4 1/2 11/4 
x2 1 -1/2 -1/4 1/2 9/4 
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After two iterations, the tableau is optimal: all reduced costs are nonpositive. The final 
objective function value is 0. This means that we drove all the artificial variables out of 
the basis. The current basis is x1, x2, and the corresponding basic feasible solution is x1 = 
11/4, x2 = 9/4. This is a basic feasible solution for the original problem. We can now ignore 
the columns corresponding to s2 and s3 and proceed with Phase II of the simplex tableau as 
usual. 

Problem 4 

(Note: this problem is more difficult than the rest, and will require some serious thinking. You 
will not be tested on Problem 4 in the upcoming quizzes, problem sets or midterms. However 
it is very useful for understanding some subtleties of Phase I of the simplex method.) 

Suppose that we have an LP with three nonnegative variables x1, x2, x3 to which we have 
to apply Phase I of the simplex method to find an initial basic feasible solution. The artificial 
variables are labeled s1, s2, s3. After a few iterations of the simplex method in Phase I, we obtain 
the following optimal tableau with an objective function value of zero, where b is a parameter 
that will be specified later: 

Basic x1 x2 x3 s1 s2 s3 Rhs 
(−w) -1 -3 -1 
x1 1 2 1 2 4 
x2 1 1 -3 5 1 
s2 b 1 1 -1 

The artificial variable s2 is still basic, therefore we do not have a basis for the original problem. 
But the objective value of Phase I is zero, therefore a bfs for the original problem exists. Our 
goal is to find a basis to start Phase II of the simplex method. 

Part 4.A 

Assume b = −2. How do we proceed in this case? Determine a basis for the original problem 
and the corresponding tableau that can be used to start Phase II (after restoring the original 
objective function, which is not relevant for the purposes of this problem). (Hint: try to perform 
a pivot to drive the artificial variable out of the basis; this pivot may be something that you 
are normally not allowed to do, but notice that the basis is degenerate.) 

Solution. If b = −2, the tableau reads as follows: 

Basic x1 x2 x3 s1 s2 s3 Rhs 
(−w) -1 -3 -1 
x1 1 2 1 2 4 
x2 1 1 -3 5 1 
s2 -2 1 1 -1 

The troublesome row is the third one, where s2 is still basic. However, because the Phase I 
objective function value is zero, all artificial variables must have value zero, as is the case. We 
can therefore pivot in x3 and pivot out s2, regardless of the fact that x3 has negative reduced 
cost: the rhs value of the third constraint is zero, therefore the solution will not “move”. Also 
note that we are pivoting on a negative element: usually, this is not allowed because dividing 
the constraint by a negative coefficient would make the rhs negative, but since the rhs is zero, 
there is no risk in this case. We perform the pivot and obtain: 
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Basic x1 x2 x3 s1 s2 s3 Rhs 
(−w) 0 -7/2 -1/2 -1/2 
x1 1 2 1 1 4 
x2 1 -5/2 1/2 9/2 1 
x3 1 -1/2 -1/2 1/2 

Now the basis contains only original variables. The corresponding basic feasible solution is 
x1 = 4, x2 = 1, x3 = 0. We can drop the columns corresponding to s1, s2, s3, restore the 
original objective function, and proceed with Phase II. 

More generally, this method for driving an artificial variable out of the basis at the end of 
Phase I can always be used, as long as there is least one nonzero coefficient for the original 
variables in the row where the artificial variable is basic. In Part 4.B we examine what 
happens when this is not the case. 

Part 4.B 

Assume b = 0. How do we proceed in this case? Determine a basis for the original problem and 
the corresponding tableau that can be used to start Phase II restoring the original objective 
function. (Hint: write down the equation corresponding to the last row of the tableau, and 
observe that this is a linear combination of the original constraints. What does this row mean 
in terms of the original equations?) 

Solution. If b = 0, the tableau reads as follows: 

Basic x1 x2 x3 s1 s2 s3 Rhs 
(−w) -1 -3 -1 
x1 1 2 1 2 4 
x2 1 1 -3 5 1 
s2 1 1 -1 

In this case, we cannot pivot out s2 and pivot in x3 because the corresponding element of the 
tableau is zero. However, the last equation in the tableau reads: 0x1 +0x2 +0x3 +s1 +s2 −s3 = 
0. This means that by performing row operations we have obtained a linear combination of 
the original problem constraints that is identically zero, hence the constraints are linearly 
dependent, and one of them is redundant. It follows that we can simply drop the third row, 
together with the artifical variables. The tableau that we can use to start Phase II is: 

Basic x1 x2 x3 Rhs 
(−w) -1 
x1 

x2 

1 
1 

2 
1 

4 
1 

The corresponding basic feasible solution is x1 = 4, x2 = 1, x3 = 0.
 

In general, if all coefficients for the original variables in the row where the artificial variable
 
is basic are zero, then the corresponding equation is redundant, and the initial constraint can
 
be dropped.
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