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Problem 1 

The purpose of this recitation is to familiarize students with a variety of integer programming 
modeling techniques as described in the IP Formulation Guide and in the powerpoint tutorial 
on IP formulations. 

We start with an integer program IP1 defined as follows: 

max 21x1 + 32x2 + 40x3 + 49x4 + 57x5 + 
+71x6 + 82x7 + 91x8 + 100x9 + 109x10 

s.t.: 2x1 + 3x2 + 4x3 + 5x4 + 6x5 + 
+7x6 + 8x7 + 9x8 + 10x9 + 11x10 ≤ 900 

∀i = 1, . . . , 3 xi ∈ {0, 1}
∀i = 4, . . . , 10 0 ≤ xi ≤ 100. 
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(IP1)
 

For each of the parts below, you are to add constraint(s) and possibly variables to ensure 
that the logical condition is satisfied by the integer program. Each part is independent; that is, 
no part depends on the parts preceding it. You do not need to repeat the integer programming 
objective or constraints given above. You may use the big M method for formulating constraint 
when it is appropriate. 

(a) (4 points) Write a single linear constraint that is equivalent to the statement “If x1 = 1, 
then x2 = 0.” 

Solution. x1 + x2 ≤ 1 

(b) (4 points) Write a single linear constraint that is equivalent to the statement	 “x2 = 1 or 
x3 = 0,” but not both. 

Solution. x2 = x3 

(c) (4 points) Add a binary variable w1, and add two constraints that ensure that w1 = 1 if 
x5 + x6 ≥ 70, and w1 = 0 if x5 + x6 ≤ 69. 

Solution. x5 + x6 ≥ 70 − M(1 − w1) and x5 + x6 ≤ 69 + Mw1. 

(d) (4 points) Add 3 binary variables w2, w3, and w4 and at most 4 constraints so as to ensure 
that at least one of the following constraints is satisfied: (i) x5 ≤ 92, (ii) x6 ≤ 40, (iii) 
x7 + x8 ≥ 74. 

Solution. x5 ≤ 92 + M(1 − w2), x6 ≤ 40 + M(1 − w3), x7 + x8 ≥ 74 − M(1 − w4) and 
w2 + w3 + w4 ≥ 1. 



(e) (4 points) Add a single binary variable w5 and two constraints to ensure that at least one 
of the following two constraints are satisfied (i) x9 ≤ 45, (ii) x10 ≥ 22. 

Solution. x9 ≤ 45 + Mw5 and x10 ≥ 22 − M(1 − w5). 

(f) (4 points) Add a single integer variable w6 and a constraint that ensures that x8 is divisible 
by 2 but not divisible by 4. (The remainder when dividing by 4 must be 2). 

Solution. x8 − 4w6 = 2. 

(g) (4 points) Add three binary variables w7, w8, and w9 and two constraints that ensures that 
x10 = 13 or 39 or 88. 

Solution. x10 = 13w7 + 39w8 + 88w9 and w7 + w8 + w9 = 1. 

(h) (4 points) Add variable(s) and constraint(s) that model the cost of x4 as f4(x4), which is 
defined as follows: If x4 = 0, then f4(x4) = 0. If x4 ≥ 1, then f4(x4) = 250 + 49x4. 

Solution. We add a binary variable w10 and model the cost of x4 as: 250w10 + 49x4, 
subject to the constraints: w10 ≤ x4 ≤ 100w10. 

(i) (8 points) Add variable(s) and constraint(s) that model the cost of x5 as f5(x5), which is 
defined as follows: If 0 ≤ x5 ≤ 10, then f5(x5) = 57x5. If 11 ≤ x5 ≤ 20, then f5(x5) = 570. 
If 21 ≤ x5 ≤ 100, then f5(x5) = −480 + 50x5. 

Solution. 

Obj function: 57y1 + 570w2 − 480w3 + 50y3 

s.t.: w1 + w2 + w3 = 1 
y1 + y2 + y3 = x5 

0w1 ≤ y1 ≤ 10w1 

11w2 ≤ y2 ≤ 20w2 

21w3 ≤ y3 ≤ 100w3 

w1, w2, w3 ∈ {0, 1}. 

Problem 2 

As the leader of an oil-exploration drilling venture, you need to determine which 5 sites out of 
10 to evaluate for drilling opportunities. The goal is to select 5 sites with the lowest overall cost. 
Label the sites S1, S2, . . . , S10, and the exploration costs associated with each as c1, c2, . . . , c10. 
Regional development restrictions are such that: 

(i) Evaluating sites S2 and S7 will prevent you from evaluating either site S6 or S9. 

(ii) Evaluating sites S1 and S3 will prevent you from also evaluating both sites S5 and S6. 

(iii) Evaluating site S3 or S4 prevents you from evaluating site S6. 

(iv) Of the group S3, S6, S7, S8, at most two sites may be assessed. 

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬ ⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Formulate an integer program to determine the minimum-cost exploration scheme that satis
fies these restrictions. Try to develop a model in which the only variables are x1, . . . , x10, where 
xj is 1 or 0 according as site j is evaluated or not. (For example, the constraint “Evaluating 
sites S2 and S7 will prevent you from exploring site S6 ” can be expressed as x2 + x6 + x7 ≤ 2 
because the only binary solutions prohibited have x2 = x6 = x7 = 1.) 

Solution. The formulation depends on how you interpreted the constraint logic. In this 
case, well let xi = 1 if we drill at site i, and 0 otherwise. For all parts our objective function 
is as 

101 
min cixi. 

i=1 

Our only constraint initially is that we must select 5 sites, thus: 

101 
cixi = 5. 

i=1 

The additional constraints for each part are as follows: 

(i) For this condition, we need two constraints: 

x2 + x7 + x6 ≤ 2, 

x2 + x7 + x9 ≤ 2. 

Each constraint restricts the system to only explore two out of the three sites listed. 
Thus, if x2 and x7 both equal 1, x6 and x9 must both be 0. 

(ii) We can still represent this condition with one constraint as follows: 

x1 + x3 + x5 + x6 ≤ 3. 

Essentially, we can select up to 3 of the set, but we any 4th selection would break the 
constraint as expected. 

(iii) We can represent this with two constraints: 

x3 + x6 ≤ 1, 

x4 + x6 ≤ 1. 

(iv) This type of constraint is the easiest to translate as 

x3 + x6 + x7 + x8 < 2. 

Problem 3 

Suppose you want to minimize or maximize a piecewise linear function of one variable, subject 
to linear constraints. This is a problem that can be solved by resorting to linear constraints 
only, possibly by adding extra variables. In this example, we consider the function with three 
pieces shown in Figure 1. 
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Figure 1: Piecewise linear function discussed in Problem 5. 

(a) Suppose we want to minimize f(x) shown in Figure 1. Assume that x is subject to a set of 
linear constraints that involve other variables A(x'|x) = b, so that we cannot simply solve 
the problem by inspection because we do not know what values x will take. How can we 
formulate this problem in linear form? Do we need integer variables? (In your formulation, 
you can ignore the additional constraints A(x'|x) = b.) 

Solution. Notice that f(x) can be expressed as the maximum of the three linear 
functions, that is, 

f(x) = max{4 − x, 1 + 0.5x, −5 + 2x} 

So the problem is to formulate 

max f(x) = min max{4 − x, 1 + 0.5x, −5 + 2x}. 

This problem can be formulated as a linear program by introducing an extra variable y 
and setting y = max{4 − x, 1+0.5x, −5+2x}. This implies that y is greater that or equal 
to each piece of f(x). This results in the following formulation: 

min y 
s.t.: 4 − x ≤ y 

1 + 0.5x ≤ y 
−5 + 2x ≤ y 

x, y ≥ 0. 
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(b) Consider now the problem of maximizing f(x) of Figure 1, subject to a set of linear con
straints that involve other variables. We cannot use the same approach of Part 2.A. Explain 
why and find an alternative way of formulating the problem, adding (binary or integer) vari
ables as needed. 

Solution. As mentioned previously, f(x) is the maximum of a number of linear func
tions. Therefore, we deal with the following situation 

max f(x) = max max{4 − x, 1 + 0.5x, −5 + 2x}. 

In general, such a problem cannot be expressed in the simple way of Part 5.A. We must use 
a more general approach where we select the active piece of the piecewise linear function 
with binary variables, then maximize the corresponding piece. 

We introduce two new variables for every pice of the function:   
1 if 0 ≤ x < 3, x if 0 ≤ x < 3, 

w1 = x1 =
0 otherwise. 0 otherwise.   
1 if 2 ≤ x < 4, x if 2 ≤ x < 4, 

w2 = x2 =
0 otherwise. 0 otherwise.   

w3 =
1 

0 

if 4 ≤ x ≤ 6, 

otherwise. 
x3 =

x 

0 

if 4 ≤ x ≤ 6, 

otherwise. 

We can now write the integer program as follows: 

max 4w1 − x1 + 1w2 + 0.5x2 − 5w3 + 2x3 

s.t.: x1 + x2 + x3 = x 
w1 + w2 + w3 = 1 

0w1 ≤ x1 ≤ 2w1 

2w2 ≤ x2 ≤ 4w2 

4w3 ≤ x3 ≤ 6w3 

w1, w2, w3 ∈ {0, 1}. 

⎫ ⎪⎪⎪⎪⎪⎪⎪⎪⎬ ⎪⎪⎪⎪⎪⎪⎪⎪⎭
 

We next show that each solution of the above integer program corresponds to a point of 
the original problem with the same objective function value and vice versa. Suppose that 
(w, x) = (w1, w2, w3, x1, x2, x3, x) is a feasible solution to the integer program. Then 
exactly one of the three binary variables w1, w2, w3 must be 1. Suppose that w2 = 2. It 
then follows from the constrains that w1 = w3 = 0, and in addition 2 ≤ x2 = x ≤ 4. 
Moreover, the objective function value for (w, x) is 1 + 0.5x. Hence, the solution (w, x) 
corresponds to the point x (2 ≤ x ≤ 4) with the same the objective function value. 

Now consider a point x in [0,6]. Assume that 2 ≤ x ≤ 4. In this case, by setting 
w2 = 1, w1 = w3 = 0, x1 = x3 = 0, x2 = x, we get a feasible solution for the integer 
program, whose objective function value equals 1 + 0.5x. 

In Problem 4, the function f(x) is the maximum of a number of linear functions. There
fore, f is a convex piecewise linear function and minimizing such a function can be repre
sented by a linear program, but we need an integer program to formulate min f(x). On 
the other hand, minimizing a concave piecewise linear function (a function that can be 
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written as the minimum of a number of linear functions) can be expressed by a linear 
program, but we need an integer program to formulate the maximization version. 
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