Optimization Methods in Management Science / Operations Research 15.053/058

LP Transformation Techniques

LP Transformation Techniques

Hello friends. Mita and I are here again to introduce a tutorial on LP transformation techniques

¹ Donald Knuth claimed that a "technique" is a trick that is used more than once. Knuth was the developer of TeX, and one of the greatest computer scientists of the 20th century. The tutorial will show three different types of non-linear constraints that can be transformed into linear constraints. This is important since linear programs are so much easier to solve than nonlinear programs.

Photo of Donald Knuth removed due to copyright restrictions.

Donald E. Knuth

Mita 2

We'll begin with the MSR example which was described in the tutorial on algebraic formulations. The goal is to minimize the cost of reaching 1.5 million people using ads of different types.

		τν	Radio	Mail	Newspaper
	Audience Size (in 1000s)	50	25	20	15
A CARLER AND	Cost/Impression	\$500	\$200	\$250	\$125
Ella	Max # of ads	20	15	25	15

Minimize $500 x_1 + 200 x_2 + 250 x_3 + 125 x_4$ subject to $50 x_1 + 25 x_2 + 20x_3 + 15 x_4 \ge 1,500$ $0 \le x_1 \le 20$ $0 \le x_2 \le 15$ $0 \le x_3 \le 25$ $0 \le x_4 \le 15$

We are now going to introduce a non-linear constraint. Suppose that we require that the total of ads from the electronic media is within 5 of the number of ads of paper-based media. This can be modeled as follows: $|x_1 + x_2 - x_3 - x_4| \le 5.$ Radio TV Mail Newspaper **Audience Size** 50,000 25,000 20,000 15,000 **Cost/Impression** \$500 \$250 \$200 **\$125** Ella Max # of ads 20 15 25 15 Minimize 500 x_1 + 200 x_2 + 250 x_3 + 125 x_4 subject to 50 x_1 + 25 x_2 + 20 x_3 + 15 $x_4 \ge 1,500$ $0 \le x_1 \le 20$ $0 \le x_2 \le 15$ $0 \le x_3 \le 25$ $0 \le x_4 \le 15$ 4 $|\mathbf{x}_1 + \mathbf{x}_2 - \mathbf{x}_3 - \mathbf{x}_4| \le 5.$

Minimize		500 x ₁ + 200 x ₂ + 250 x ₃ + 125 x ₄		
subject to 50 x_1 + 25 x_2 + 20 x_3 + 15 $x_4 \ge 1,500$				
	$0 \leq x_1 \leq 20$	$0 \leq x_2 \leq 15$	$0 \leq x_3 \leq 25$	$0 \leq x_4 \leq 15$
$ \mathbf{x}_1 + \mathbf{x}_2 - \mathbf{x}_3 - \mathbf{x}_4 \le 5.$				

The non-linear program above is equivalent to the linear program below.

Minimize		500 x ₁ + 200 x ₂ + 250 x ₃ + 125 x ₄		
subject to	50	50 x_1 + 25 x_2 + 20 x_3 + 15 $x_4 \ge 1,500$		
	$0 \leq x_1 \leq 20$	$0 \leq x_2 \leq 15$	$0 \leq x_3 \leq 25$	$0 \leq x_4 \leq 15$
$x_1 + x_2 - x_3 - x_4 \le 5$ - $x_1 - x_2 + x_3 + x_4 \le 5$				

6

The optimization problems are equivalent in the sense that any feasible solution for the non-linear program is feasible for the linear program, and vice versa. That is, the feasible regions are exactly the same.

0

Dinosaurs are not feasible

any more. We are extinct.

program with no feasible

equivalent to a linear

solutions.

The set of living dinosaurs is

Stan

I think I understand. But

problems still look different

to me. What do you mean by

the two optimization

equivalent?

0

What does it mean to minimize the max or maximize the min?

The previous linear program is given below. Now we want to maximize z subject to the constraint that z is at most the number of ads seen for each media. Click and you'll see. This technique works whenever you need to maximize the minimum of linear functions. A similar trick works whenever you want to minimize the maximum of linear functions.

maximize z				
subject to 50 x_1 + 25 x_2 + 20 x_3 + 15 $x_4 \ge 1,500$				
	$0 \leq x_1 \leq 20$	$0 \leq x_2 \leq 15$	$0 \leq x_3 \leq 25$	$0 \leq x_4 \leq 15$
	z ≤ 50x ₁ ,	z ≤25x ₂ ,	z ≤20x ₃ ,	z ≤15x ₄

14

Try it yourself. Suppose that you want to minimize the maximum of 3x + 1, and 4y - 2, subject to linear constraints. How would you do it? Click to find out.

Minimize $max \{3x + 1, 4y - 2\}$ subject tolinear constraints> $x \ge 0, y \ge 0$

28. The selling prices of a number of houses in a particular section of the city overlooking the bay are given in the following table, along with the size of the lot and its elevation:

Selling price P _i	<i>Lot size</i> (sq. ft.) <i>L_i</i>	Elevation (feet) E_i
\$155,000	\$12,000	350
120,000	10,000	300
100,000	9,000	100
70,000	8,000	200
60,000	6,000	100
100,000	9.000	200

Problem statement © S. P. Bradley, A. C. Hax, and T. L. Magnanti, from *Applied Mathematical Programming*, 1977. All rights reserved. **16** This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

A real-estate agent wishes to construct a model to forecast the selling prices of other houses in this section of the city from their lot sizes and elevations. The agent feels that a linear model of the form

$$P = b_0 + b_1 L + b_2 E$$

would be reasonably accurate and easy to use. Here b_1 and b_2 would indicate how the price varies with lot size and elevation, respectively, while b_0 would reflect a base price for this section of the city.

The agent would like to select the "best" linear model in some sense, but he is unsure how to proceed. It he knew the three parameters b_0 , b_1 and b_2 , the six observations in the table would each provide a forecast of the selling price as follows:

$$\hat{P}_i = b_0 + b_1 L_i + b_2 E_i$$
 $i = 1, 2, \dots, 6.$

However, since b_0 , b_1 , and b_2 cannot, in general, be chosen so that the actual prices P_i are exactly equal to the forecast prices \hat{P}_i for all observations, the agent would like to minimize the absolute value of the residuals $R_i = P_i - \hat{P}_i$. Formulate mathematical programs to find the "best" values of b_0 , b_1 , and b_2 by minimizing each of the following criteria:

$x_1/(x_1 + x_2 + x_3 + x_4) \ge .2$

As you can see, the constraint is not linear. But if we multiply by the denominator, the constraint becomes linear.

 $x_1/(x_1 + x_2 + x_3 + x_4) \ge .2$

 $x_1 \ge .2 (x_1 + x_2 + x_3 + x_4)$

Equivalently, $.8x_1 - .2 x_2 - .2 x_3 - .2 x_4 \ge 0$ But be careful. You can only multiply by the denominator if you know that the value of the denominator is positive for all possible choices of x. If you multiplied both sides of an inequality by a negative number, the direction of the inequality reverses.

> The new constraint also is valid if x = 0. So, you don't need to worry about this special case.

Most of the time, if there is a constraint or objective that isn't linear, it cannot be transformed into a constraint or objective that is linear. But sometimes transformations into linear programs can be done. As we showed you in this tutorial, you can transform some constraints or objectives involving absolute values into linear constraints and objectives. You can transform maximizing the min of linear functions or minimizing the max of linear functions. And you can transform ratio constraints into linear constraints. These techniques are really useful.

That's all for the tutorial on transformations into linear programs. We hope you found it worthwhile.

Amit and I wish you a very good day and/or night. We hope to see you again soon.

15.053 Optimization Methods in Management Science Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.