
1

Lecture 2

Judging the Performance of
Classifiers

Nitin R. Patel

2

In this note we will examine the question of how to judge the usefulness of a classifier and how to
compare different classifiers. Not only do we have a wide choice of different types of classifiers
to choose from but within each type of classifier we have many options such as how many nearest
neighbors to use in a k-nearest neighbors classifier, the minimum number of cases we should
require in a leaf node in a tree classifier, which subsets of predictors to use in a logistic regression
model, and how many hidden layer neurons to use in a neural net.

A Two-class Classifier
Let us first look at a single classifier for two classes with options set at certain values. The two-
class situation is certainly the most common and occurs very frequently in practice. We will
extend our analysis to more than two classes later.

A natural criterion for judging the performance of a classifier is the probability that it makes a
misclassification. A classifier that makes no errors would be perfect but we do not expect to be
able to construct such classifiers in the real world due to “noise” and to not having all the
information needed to precisely classify cases. Is there a minimum probability of
misclassification we should require of a classifier?

Suppose that the two classes are denoted by C0 and C1. Let p(C0) and p(C1) be the apriori
probabilities that a case belongs to C0 and C1 respectively. The apriori probability is the
probability that a case belongs to a class without any more knowledge about it than that it belongs
to a population where the proportion of C0’s is p(C0) and the proportion of C1’s is p(C1) . In this
situation we will minimize the chance of a misclassification error by assigning class C1 to the
case if p C p C() ()1 0> and to C0 otherwise. The probability of making a misclassification would
be the minimum of p(C0) and p(C1). If we are using misclassification rate as our criterion any
classifier that uses predictor variables must have an error rate better than this.

What is the best performance we can expect from a classifier? Clearly the more training data
available to a classifier the more accurate it will be. Suppose we had a huge amount of training
data, would we then be able to build a classifier that makes no errors? The answer is no. The
accuracy of a classifier depends critically on how separated the classes are with respect to the
predictor variables that the classifier uses. We can use the well-known Bayes’ formula from
probability theory to derive the best performance we can expect from a classifier for a given set
of predictor variables if we had a very large amount of training data. Bayes' formula uses the
distributions of the decision variables in the two classes to give us a classifier that will have the
minimum error amongst all classifiers that use the same predictor variables. This classifier
follows the Minimum Error Bayes Rule.

Bayes Rule for Minimum Error

Let us take a simple situation where we have just one continuous predictor variable for
classification, say X. X is a random variable, since it's value depends on the individual case we
sample from the population consisting of all possible cases of the class to which the case belongs.
Suppose that we have a very large training data set. Then the relative frequency histogram of the
variable X in each class would be almost identical to the probability density function (p.d.f.) of X
for that class. Let us assume that we have a huge amount of training data and so we know the
p.d.f.s accurately. These p.d.f.s are denoted f0(x) and f1(x) for classes C0 and C1 in Fig. 1 below.

3

Figure 1

Now suppose we wish to classify an object for which the value of X is x0. Let us use Bayes’
formula to predict the probability that the object belongs to class 1 conditional on the fact that it
has an X value of x0. Appling Bayes’ formula, the probability, denoted by p(C1|X= x0), is given
by:

p C X x
p X x C p C

p X x C p C p X x C p C
(|)

(|) ()

(|) () (|) ()1 0
0 1 1

0 0 0 0 1 1

= = =
= + =

Writing this in terms of the density functions, we get

p C X x
f x p C

f x p C f x p C
(|)

() ()

() () () ()1 0
1 0 1

0 0 0 1 0 1

= =
+

Notice that to calculate p(C1|X= x0) we need to know the apriori probabilities p(C0) and p(C1).
Since there are only two possible classes, if we know p(C1) we can always compute p(C0) because
p(C0) = 1 - p(C1). The apriori probability p(C1) is the probability that an object belongs to C1

without any knowledge of the value of X associated with it. Bayes’ formula enables us to update
this apriori probability to the aposteriori probability, the probability of the object belonging to C1

after knowing that its X value is x0.

When p(C1) = p(C0) = 0.5, the formula shows
that p C X x p C X x if f x f x(|) (|) () ()1 0 0 0 1 0 0 0= > = > . This means that if x0 is greater than a,
and we classify the object as belonging to C1 we will make a smaller misclassification error than
if we were to classify it as belonging to C0 .Similarly if x0 is less than a, and we classify the
object as belonging to C0 we will make a smaller misclassification error than if we were to
classify it as belonging to C1. If x0 is exactly equal to a we have a 50% chance of making an
error for either classification.

x

f0(x) f1(x)

a

4

Figure 2

What if the prior class probabilities were not the same? Suppose C0 is twice as likely apriori as
C1. Then the formula says that p C X x p C X x if f x f x(|) (|) () ()1 0 0 0 1 0 0 02= > = > × . The new
boundary value, b for classification will be to the right of a as shown in Fig.2. This is intuitively
what we would expect. If a class is more likely we would expect the cut-off to move in a direction
that would increase the range over which it is preferred.

In general we will minimize the misclassification error rate if we classify a case as belonging to
C1 if p C f x p C f x() () () ()1 1 0 0 0 0× > × , and to C0 , otherwise. This rule holds even when X is a
vector consisting of several components, each of which is a random variable. In the remainder of
this note we shall assume that X is a vector.

An important advantage of Bayes’ Rule is that, as a by-product of classifying a case, we can
compute the conditional probability that the case belongs to each class. This has two advantages.

First, we can use this probability as a “score” for each case that we are classifying. The score
enables us to rank cases that we have predicted as belonging to a class in order of confidence that
we have made a correct classification. This capability is important in developing a lift curve
(explained later) that is important for many practical data mining applications.

Second, it enables us to compute the expected profit or loss for a given case. This gives us a
better decision criterion than misclassification error when the loss due to error is different for the
two classes.

x

2f0(x) f1(x)

a b

5

Practical assessment of a classifier using misclassification error as the criterion

In practice, we can estimate p C and p C() ()1 0 from the data we are using to build the classifier
by simply computing the proportion of cases that belong to each class. Of course, these are
estimates and they can be incorrect, but if we have a large enough data set and neither class is
very rare our estimates will be reliable. Sometimes, we may be able to use public data such as
census data to estimate these proportions. However, in most practical business settings we will
not know f x and f x1 0() () . If we want to apply Bayes’ Rule we will need to estimate these
density functions in some way. Many classification methods can be interpreted as being methods
for estimating such density functions1. In practice X will almost always be a vector. This makes
the task difficult and subject to the curse of dimensionality we referred to when discussing the k-
Nearest Neighbors technique.
To obtain an honest estimate of classification error, let us suppose that we have partitioned a data
set into training and validation data sets by random selection of cases. Let us assume that we have
constructed a classifier using the training data. When we apply it to the validation data, we will
classify each case into C0 or C1. The resulting misclassification errors can be displayed in what is
known as a confusion table, with rows and columns corresponding to the true and predicted
classes respectively. We can summarize our results in a confusion table for training data in a
similar fashion. The resulting confusion table will not give us an honest estimate of the
misclassification rate due to over-fitting. However such a table will be useful to signal over-
fitting when it has substantially lower misclassification rates than the confusion table for
validation data.

If we denote the number in the cell at row i and column j by Nij, the estimated misclassification
rate Err = () / ()N N N where N N N N Nval val01 10 00 01 10 11+ ≡ + + + , or the total number of
cases in the validation data set. If Nval is reasonably large, our estimate of the misclassification

1 There are classifiers that focus on simply finding the boundary between the regions to predict each class
without being concerned with estimating the density of cases within each region. For example, Support
Vector Machine classifiers have this characteristic.

Confusion Table
(Validation Cases)

Predicted Class

True Class C0 C1

C0
True Negatives (Number of correctly
classified cases that belong to C0)

False Positives (Number of cases
incorrectly classified as C1 that belong
to C0)

C1
False Negatives (Number of cases
incorrectly classified as C0 that belong
to C1)

True Positives (Number of correctly
classified cases that belong to C1)

6

rate is probably quite accurate. We can compute a confidence interval for Err using the standard
formula for estimating a population proportion from a random sample.

The table below gives an idea of how the accuracy of the estimate varies with Nval . The column
headings are values of the misclassification rate and the rows give the desired accuracy in
estimating the misclassification rate as measured by the half-width of the confidence interval at
the 99% confidence level. For example, if we think that the true misclassification rate is likely to
be around 0.05 and we want to be 99% confident that Err is within ± 0.01 of the true
misclassification rate, we need to have a validation data set with 3,152 cases.

Note that we are assuming that the cost (or benefit) of making correct classifications is zero. At
first glance, this may seem incomplete. After all, the benefit (negative cost) of correctly
classifying a buyer as a buyer would seem substantial. And, in other circumstances (e.g.
calculating the expected profit from having a new mailing list), it will be appropriate to consider
the actual net dollar impact of classifying each case on the list. Here, however, we are attempting
to assess the value of a classifier in terms of misclassifications, so it greatly simplifies matters if
we can capture all cost/benefit information in the misclassification cells. So, instead of recording
the benefit of correctly classifying a buyer, we record the cost of failing to classify him as a
buyer. It amounts to the same thing. In fact the costs we are using are the opportunity costs.

0.01 0.05 0.10 0.15 0.20 0.30 0.40 0.50

±0.025 250 504 956 1,354 1,699 2,230 2,548 2,654
±0.010 657 3,152 5,972 8,461 10,617 13,935 15,926 16,589
±0.005 2,628 12,608 23,889 33,842 42,469 55,741 63,703 66,358

7

Asymmetric misclassification costs and Bayes’ Risk

Up to this point we have been using the misclassification error rate as the criterion for judging the
efficacy of a classifier. However, there are circumstances when this measure is not appropriate.
Sometimes the error of misclassifying a case belonging to one class is more serious than for the
other class. For example, misclassifying a household as unlikely to respond to a sales offer when
it belongs to the class that would respond incurs a greater opportunity cost than the converse
error. In such a scenario using misclassification error as a criterion can be misleading. Consider
the situation where the sales offer is accepted by 1% of the households on a list. If a classifier
simply classifies every household as a non-responder it will have an error rate of only 1% but will
be useless in practice. A classifier that misclassifies 30% of buying households as non-buyers and
2% of the non-buyers as buyers would have a higher error rate but would be better if the profit
from a sale is substantially higher than the cost of sending out an offer. In these situations, if we
have estimates of the cost of both types of misclassification, we can use the confusion table to
compute the expected cost of misclassification for each case in the validation data. This enables
us to compare different classifiers using opportunity cost as the criterion. This may suffice for
some situations, but a better method would be to change the classification rules (and hence the
misclassification rates) to reflect the asymmetric costs. In fact, there is a Bayes classifier for this
situation which gives rules that are optimal for minimizing the expected opportunity loss from
misclassification. This classifier is known as the Bayes’ Risk Classifier and the corresponding
minimum expected opportunity cost of misclassification is known as the Bayes’ Risk. The Bayes’
Risk Classifier employs the following classification rule:

Classify a case as belonging to C1 if p C f x C p C f x C() () (|) () () (|)1 1 0 0 0 001 10× × > × × , and to
C0 , otherwise. Here C(0|1) is the opportunity cost of misclassifying a C1 case as belonging to C0

and C(1|0) is the opportunity cost of misclassifying a C0 case as belonging to C1. Note that the
opportunity cost of correct classification for either class is zero. Notice also that this rule reduces
to the Minimum Error Bayes Rule when C(0|1) = C(1|0).

Again, as we rarely know f x and f x1 0() () , we cannot construct this classifier in practice.
Nonetheless, it provides us with an ideal that the various classifiers we construct for minimizing
expected opportunity cost attempt to emulate. The method used most often in practice is to use
stratified sampling instead of random sampling so as to change the ratio of cases in the training
set to reflect the relative costs of making the two types of misclassification errors.

8

Stratified sampling to make the classifier sensitive to asymmetric costs

The basic idea in using stratified sampling is to oversample the cases from a class to increase the
weight given to errors made in classifying cases in that class. If we feel that the opportunity cost
of misclassifying a class C1 case as a C0 case is ten times that of misclassifying a class C0 case as
a C1 case, we randomly sample ten times as many C1 cases as we randomly sample C0 cases. By
virtue of this oversampling, the training data will automatically tune the classifier to be more
accurate in classifying C1 cases than C0 cases. Most of the time the class that has a higher
misclassification cost will be the less frequently occurring class (for example fraudulent cases). In
this situation rather than reduce the number of cases that are not fraudulent to a small fraction of
the fraud cases and thus have a drastic reduction in the training data size, a good thumb rule often
used in practice is to sample an equal number of cases from each class. This is a very commonly
used option as it tends to produce rules that are quite efficient relative to the best over a wide
range of misclassification cost ratios.

Generalization to more than two classes

All the comments made above about two-class classifiers extend readily to classification into
more than two classes. Let us suppose we have k classes C0, C1, C2, … Ck-1. Then Bayes formula
gives us:

p C X x
f x p C

f x p C
j

j j

i i
i

k(|)
() ()

() ()
= =

=

−

�
0

0

0
1

1

The Bayes Rule for Minimum Error is to classify a case as belonging to Cj

if p C f x Max p C f xj j
i k

i i() () () ()
, ,

× ≥ ×
= −0

0 1 1
0

�

.

The confusion table has k rows and k columns. The opportunity cost associated with the diagonal
cells is always zero. If the costs are asymmetric the Bayes Risk Classifier follows the rule:
Classify a case as belonging to C1

if p C f x C j j Max p C f x C i ij j
i j

i i() () (~ |) () () (~ |)× × ≥ × ×
≠0 0 .

where C(~j|j) is the cost of misclassifying a case that belongs to Cj to any other class Ci, i ≠ j.

9

Lift Charts for two-class classifiers

Often in practice, opportunity costs are not known accurately and decision makers would like to
examine a range of possible opportunity costs. In such cases, when the classifier gives a
probability of belonging to each class and not just a binary (or “hard”) classification to C1 or C0,
we can use a very useful device known as the lift curve. The lift curve is a popular technique in
direct marketing. The input required to construct a lift curve is a validation data set that has been
“scored” by appending the probability predicted by a classifier to each case. In fact we can use
classifiers that do not predict probabilities but give scores that enable us to rank cases in order of
how likely the cases are to belong to one of the classes.

Example: Boston Housing (Two classes)

Let us fit a logistic regression model to the Boston Housing data. We fit a logistic regression
model to the training data (304 randomly selected cases) with all the 13 variables available in the
data set as predictor variables and with the binary variable HICLASS (high valued property
neighborhood) as the dependent variable. The model coefficients are applied to the validation
data (the remaining 202 cases in the data set). The first three columns of XLMiner output for the
first 30 cases in the validation data are shown below.

Predicted
Log-odds of

Success

Predicted
Prob. of

Success

Actual
Value of

HICLASS

1 3.5993 0.9734 1

2 -6.5073 0.0015 0

3 0.4061 0.6002 0

4 -14.2910 0.0000 0

5 4.5273 0.9893 1

6 -1.2916 0.2156 0

7 -37.6119 0.0000 0

8 -1.1157 0.2468 0

9 -4.3290 0.0130 0

10 -24.5364 0.0000 0

11 -21.6854 0.0000 0

12 -19.8654 0.0000 0

13 -13.1040 0.0000 0

14 4.4472 0.9884 1

15 3.5294 0.9715 1

16 3.6381 0.9744 1

17 -2.6806 0.0641 0

18 -0.0402 0.4900 0

19 -10.0750 0.0000 0

20 -10.2859 0.0000 0

21 -14.6084 0.0000 0

22 8.9016 0.9999 1

23 0.0874 0.5218 0

24 -6.0590 0.0023 1

25 -1.9183 0.1281 1

26 -13.2349 0.0000 0

10

27 -9.6509 0.0001 0

28 -13.4562 0.0000 0

29 -13.9340 0.0000 0

30 1.7257 0.8489 1

The same 30 cases are shown below sorted in descending order of the predicted probability of
being a HCLASS=1 case.

Predicted
Log-odds of

Success

Predicted
Prob. of

Success

Actual
Value of

HICLASS

22 8.9016 0.9999 1

5 4.5273 0.9893 1

14 4.4472 0.9884 1

16 3.6381 0.9744 1

1 3.5993 0.9734 1

15 3.5294 0.9715 1

30 1.7257 0.8489 1

3 0.4061 0.6002 0

23 0.0874 0.5218 0

18 -0.0402 0.4900 0

8 -1.1157 0.2468 0

6 -1.2916 0.2156 0

25 -1.9183 0.1281 1

17 -2.6806 0.0641 0

9 -4.3290 0.0130 0

24 -6.0590 0.0023 1

2 -6.5073 0.0015 0

27 -9.6509 0.0001 0

19 -10.0750 0.0000 0

20 -10.2859 0.0000 0

13 -13.1040 0.0000 0

26 -13.2349 0.0000 0

28 -13.4562 0.0000 0

29 -13.9340 0.0000 0

4 -14.2910 0.0000 0

21 -14.6084 0.0000 0

12 -19.8654 0.0000 0

11 -21.6854 0.0000 0

10 -24.5364 0.0000 0

7 -37.6119 0.0000 0

First, we need to set a cutoff probability value, above which we will consider a case to be a
positive or "1," and below which we will consider a case to be a negative or "0." For any given
cutoff level, we can use the sorted table to compute a confusion table for a given cut-off
probability. For example, if we use a cut-off probability level of 0.400, we will predict 10
positives (7 true positives and 3 false positives); we will also predict 20 negatives (18 true
negatives and 2 false negatives). For each cut-off level, we can calculate the appropriate
confusion table. Instead of looking at a large number of confusion tables, it is much more
convenient to look at the cumulative lift curve (sometimes called a gains chart) which

11

summarizes all the information in these multiple confusion tables into a graph. The graph is
constructed with the cumulative number of cases (in descending order of probability) on the x
axis and the cumulative number of true positives on the y axis as shown below.

Probability
Rank

Predicted
Prob. of

Success

Actual
Value of

HICLASS

cumulative
Actual Value

1 0.9999 1 1
2 0.9893 1 2
3 0.9884 1 3
4 0.9744 1 4
5 0.9734 1 5
6 0.9715 1 6
7 0.8489 1 7
8 0.6002 0 7
9 0.5218 0 7

10 0.4900 0 7
11 0.2468 0 7
12 0.2156 0 7
13 0.1281 1 8
14 0.0641 0 8
15 0.0130 0 8
16 0.0023 1 9
17 0.0015 0 9
18 0.0001 0 9
19 0.0000 0 9
20 0.0000 0 9
21 0.0000 0 9
22 0.0000 0 9
23 0.0000 0 9
24 0.0000 0 9
25 0.0000 0 9
26 0.0000 0 9
27 0.0000 0 9
28 0.0000 0 9
29 0.0000 0 9
30 0.0000 0 9

The cumulative lift chart is shown below.

12

The line joining the points (0,0) to (30,9) is a reference line. It represents the expected number of
positives we would predict if we did not have a model but simply selected cases at random. It
provides a benchmark against which we can see performance of the model. If we had to choose
10 neighborhoods as HICLASS=1 neighborhoods and used our model to pick the ones most
likely to be "1's,", the lift curve tells us that we would be right about 7 of them. If we simply
select 10 cases at random we expect to be right for 10 × 9/30 = 3 cases. The model gives us a
"lift" in predicting HICLASS of 7/3 = 2.33. The lift will vary with the number of cases we choose
to act on. A good classifier will give us a high lift when we act on only a few cases (i.e. use the
prediction for the ones at the top). As we include more cases the lift will decrease. The lift curve
for the best possible classifier is shown as a broken line.

XLMiner automatically creates lift charts from probabilities predicted by logistic regression for
both training and validation data. The charts created for the full Boston Housing data are shown
below.

Cumulative Lift

0

1

2

3

4

5
6

7

8

9

10

0 5 10 15 20 25 30 35

Score rank

C
u

m
u

la
ti

ve
p

o
si

ti
ve

s

13

It is worth mentioning that a curve that captures the same information as the lift curve in a
slightly different manner is also popular in data mining applications. This is the ROC (short for
Receiver Operating Characteristic) curve. It uses the same variable on the y axis as the lift curve
(but expressed as a percentage of the maximum) and on the x axis it shows the false positives
(also expressed as a percentage of the maximum) for differing cut-off levels.

Lift chart (validation dataset)

0

5

10

15

20

25

30

35

40

45

0 100 200 300

cases

C
u

m
u

la
ti

ve
Cumulative
HIGHCLASS when
sorted using
predicted values

Cumulative
HIGHCLASS using
average

Lift chart (training dataset)

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400

cases

C
u

m
u

la
ti

ve

Cumulative
HIGHCLASS when
sorted using
predicted values

Cumulative
HIGHCLASS using
average

14

The ROC curve for our 30 cases example above is shown below.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

False Positive Cases %

T
ru

e
P

o
si

ti
ve

C
as

es
%

15

Classification using a Triage strategy

In some cases it is useful to have a “can’t say” option for the classifier. In a two-class situation
this means that for a case we can make one of three predictions. The case belongs to C0, or the
case belongs to C1, or we cannot make a prediction because there is not enough information to
confidently pick C0 or C1. Cases that the classifier cannot classify are subjected to closer scrutiny
either by using expert judgment or by enriching the set of predictor variables by gathering
additional information that is perhaps more difficult or expensive to obtain. This is analogous to
the strategy of triage that is often employed during retreat in battle. The wounded are classified
into those who are well enough to retreat, those who are too ill to retreat even if medically treated
under the prevailing conditions, and those who are likely to become well enough to retreat if
given medical attention. An example is in processing credit card transactions where a classifier
may be used to identify clearly legitimate cases and the obviously fraudulent ones while referring
the remaining cases to a human decision-maker who may look up a database to form a judgment.
Since the vast majority of transactions are legitimate, such a classifier would substantially reduce
the burden on human experts.

To gain some insight into forming such a strategy let us revisit the simple two-class, one predictor
variable, classifier that we examined at the beginning of this chapter.

Clearly the grey area of greatest doubt in classification is the area around a. At a the ratio of the
conditional probabilities of belonging to the classes is one. A sensible rule way to define the grey
area is the set of x values such that:

t
p C f x

p C f x
t> ×

×
>() ()

() ()
/1 1 0

0 0 0

1

where t is a threshold for the ratio. A typical value of t may in the range 1.05 or 1.2.

x

f0(x) f1(x)

a

“Grey” area

