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What are Association Rules? 

The availability of detailed information on customer transactions has led to 
the development of techniques that automatically look for associations 
between items that are stored in the database. An example is data collected 
using bar-code scanners in supermarkets. Such ‘market basket’ databases 
consist of a large number of transaction records. Each record lists all items 
bought by a customer on a single purchase transaction. Managers would be 
interested to know if certain groups of items are consistently purchased 
together. They could use this data for store layouts to place items optimally 
with respect to each other, they could use such information for cross-selling, 
for promotions, for catalog design and to identify customer segments based 
on buying patterns. Association rules provide information of this type in the 
form of “if-then” statements. These rules are computed from the data and, 
unlike the if-then rules of logic, association rules are probabilistic in nature. 
In addition to the antecedent (the “if” part) and the consequent (the “then” 
part) an association rule has two numbers that express the degree of 
uncertainty about the rule. In association analysis the antecedent and 
consequent are sets of items (called itemsets) that are disjoint (do not have 
any items in common). 

The first number is called the support for the rule. The support is simply the 
number of transactions that include all items in the antecedent and 
consequent parts of the rule. (The support is sometimes expressed as a 
percentage of the total number of records in the database.) 

The other number is known as the confidence of the rule. Confidence is the 
ratio of the number of transactions that include all items in the consequent as 
well as the antecedent (namely, the support) to the number of transactions 
that include all items in the antecedent. For example if a supermarket 
database has 100,000 point-of-sale transactions, out of which 2,000 include 
both items A and B and 800 of these include item C, the association rule “If 
A and B are purchased then C is purchased on the same trip” has a support 
of 800 transactions (alternatively 0.8% = 800/100,000) and a confidence of 
40% (=800/2,000). 

One way to think of support is that it is the probability that a randomly 
selected transaction from the database will contain all items in the 
antecedent and the consequent, whereas the confidence is the conditional 
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probability that a randomly selected transaction will include all the items in 
the consequent given that the transaction includes all the items in the 
antecedent. 

Example 1 (Han and Kamber) 

The manager of the AllElectronics retail store would like to know what 
items sell together. He has a database of transactions as shown below: 

Transaction ID  Item Codes 
1 2 5 
2 4 
2 3 
1 2 4 
1 3 
2 3 
1 3 

1 2 3 5 

1 2 3 

There are 9 transactions. Each transaction is a record of the items bought 
together in that transaction. Transaction 1 is a point-of-sale purchase of 
items 1, 2, and 5. Transaction 2 is a joint purchase of items 2 and 4, etc. 
Suppose that we want association rules between items for this database that 
have a support count of at least 2 (equivalent to a percentage support of 
2/9=22%). By enumeration we can see that only the following itemsets have 
a count of at least 2: 

{1} with support count of 6; 
{2} with support count of 7; 
{3} with support count of 6; 
{4} with support count of 2; 
{5} with support count of 2; 
{1, 2} with support count of 4; 
{1, 3} with support count of 4; 
{1, 5} with support count of 2; 
{2, 3} with support count of 4; 
{2, 4} with support count of 2; 
{2, 5} with support count of 2; 
{1, 2, 3} with support count of 2; 
{1, 2, 5} with support count of 2. 
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Notice that once we have created a list of all itemsets that have the required 
support, we can deduce the rules that meet the desired confidence ratio by 
examining all subsets of each itemset in the list. Since any subset of a set 
must occur at least as frequently as the set, each subset will also be in the 
list. It is then straightforward to compute the confidence as the ratio of the 
support for the itemset to the support for each subset of the itemset. We 
retain the corresponding association rule only if it exceeds the desired cut-
off value for confidence. For example, from the itemset {1,2,5} we get the 
following association rules: 

{1, 2} => {5} with confidence = support count of {1, 2, 5} divided by 

support count of {1, 2} = 2/4 = 50%;

{1, 5} => {2} with confidence = support count of {1, 2, 5} divided by 

support count of {1, 5} = 2/2 = 100%; 

{2, 5} => {1} with confidence = support count of {1, 2, 5} divided by 

support count of {2, 5} = 2/2 = 100%;

{1} => {2, 5} with confidence = support count of {1, 2, 5} divided by 
support count of {1} = 2/6 = 33%; 
{2} => {1,5} with confidence = support count of {1, 2, 5} divided by 
support count of {2} = 2/7 = 29%; 
{5} => {1,2} with confidence = support count of {1, 2, 5} divided by 
support count of {5} = 2/2 = 100%. 

If the desired confidence cut-off was 70%, we would report only the second, 
third, and last rules. 

We can see from the above that the problem of generating all association 
rules that meet stipulated support and confidence requirements can be 
decomposed into two stages. First we find all itemsets with the requisite 
support (these are called frequent or ‘large’ itemsets) ; and then we generate, 
from each itemset so identified, association rules that meet the confidence 
requirement. For most association analysis data, the computational challenge 
is the first stage. 

The Apriori Algorithm Although several algorithms have been proposed for 
generating association rules, the classic algorithm is the Apriori algorithm of 
Agrawal and Srikant. The key idea of the algorithm is to begin by generating 
frequent itemsets with just one item (1-itemsets) and to recursively generate 
frequent itemsets with 2 items, then frequent 3-itemsets and so on until we 
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have generated frequent itemsets of all sizes. Without loss of generality we 
will denote items by unique, consecutive (positive) integers and that the 
items in each itemset are in increasing order of this item number. The 
example above illustrates this notation. When we refer to an item in a 
computation we actually mean this item number. 

It is easy to generate frequent 1-itemsets. All we need to do is to count, for 
each item, how many transactions in the database include the item. These 
transaction counts are the supports for the 1-itemsets. We drop 1-itemsets 
that have support below the desired cut-off value to create a list of the 
frequent 1-itemsets. 

The general procedure to obtain k-itemsets from (k-1)-itemsets for k = 2, 3, 
… , is as follows. Create a candidate list of k-itemsets by performing a join 
operation on pairs of (k-1)-itemsets in the list. The join is over the first (k-2) 
items, i.e. a pair is combined if the first (k-2) items are the same in both 
members of the pair. If this condition is met the join of pair is a k-itemset 
that contains the common first (k-2) items and the two items that are not in 
common, one from each member of the pair. All frequent k-itemsets must be 
in this candidate list since every subset of size (k-1) of a frequent k-itemset 
must be a frequent (k-1) itemset. However, some k-itemsets in the candidate 
list may not be frequent k-itemsets. We need to delete these to create the list 
of frequent k-itemsets. To identify the k-itemsets that are not frequent we 
examine all subsets of size (k-1) of each candidate k-itemset. Notice that we 
need examine only (k-1)-itemsets that contain the last two items of the 
candidate k-itemset (Why?). If any one of these subsets of size (k-1) is not 
present in the frequent (k-1) itemset list, we know that the candidate k
itemset cannot be a frequent itemset. We delete such k-itemsets from the 
candidate list. Proceeding in this manner with every itemset in the candidate 
list we are assured that at the end of our scan the k-itemset candidate list will 
have been pruned to become the list of frequent k-itemsets. We repeat the 
procedure recursively by incrementing k. We stop only when the candidate 
list is empty. 

A critical aspect for efficiency in this algorithm is the data structure of the 
candidate and frequent itemset lists. Hash trees were used in the original 
version but there have been several proposals to improve on this structure. 

There are also other algorithms that can be faster than the Apriori algorithm 
in practice. 
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Let us examine the output from an application of this algorithm to a small 
randomly generated database of 50 records shown in Example 2. 

Example 2


Tr# Items 

11


12


13


14


15


16


17


18


19


20


21


22


23


24


25


26


27


28


29


30


31


32


33


34


35


36


37


38


39


40


8 
3 4 8 

8 

3 9 
9 

1 8 

6 9 
3 5 7 9 

8 

8 
1 7 9 

1 4 5 8 9 

5 7 9 
6 7 8 

3 7 9 

1 4 9 
6 7 8 

8 

8 
9 

2 5 6 8 

4 6 9 
4 9 

8 9 

6 8 

1 6 8 

5 8 

4 8 9 
9 

8 

1 5 8 
3 6 9 

7 9 

7 8 9 
3 4 6 8 

1 4 8 

4 7 8 
8 9 

4 5 7 9 

2 8 9 
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41 2 5 9


42 1 2 7 9


43 5 8


44 1 7 8


45 8


46 2 7 9


47 4 6 9


48 9


49 9


50 6 7 8


Association Rules Output 
Input 

Data: $A$5:$E$54

Min. 

Support

: 2 = 4%

Min. 

Conf. 

%: 70


Confidence Lift 
Rule # Confidence Antecedent Consequent Support Support Support If pr(c|a) = pr(c) Ratio 

% % 
80 

(a) 
2 => 

(c) 
9 

(a) 
5 

(c) 
27 

(a U c) 
4 54 

(conf/prev.col. ) 
1.5 

100 5, 7 => 9 3 27 3 54 1.9 
100 6, 7 => 8 3 29 3 58 1.7 
100 1, 5 => 8 2 29 2 58 1.7 
100 2, 7 => 9 2 27 2 54 1.9 
100 3, 8 => 4 2 11 2 22 4.5 
100 3, 4 => 8 2 29 2 58 1.7 
100 3, 7 => 9 2 27 2 54 1.9 
100 4, 5 => 9 2 27 2 54 1.9 

A high value of confidence suggests a strong association rule. However this 
can be deceptive because if the antecedent and/or the consequent have a high 
support, we can have a high value for confidence even when they are 
independent! A better measure to judge the strength of an association rule is 
to compare the confidence of the rule with the benchmark value where we 
assume that the occurrence of the consequent itemset in a transaction is 
independent of the occurance of the antecedant for each rule. We can 
compute this benchmark from the frequency counts of the frequent itemsets. 
The benchmark confidence value for a rule is the support for the consequent 
divided by the number of transactions in the database. This enables us to 
compute the lift ratio of a rule. The lift ratio is the confidence of the rule 
divided by the confidence assuming independence of consequent from 
antecedent. A lift ratio greater than 1.0 suggests that there is some usefulness 
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to the rule. The larger the lift ratio, the greater is the strength of the 
association. (What does a ratio less than 1.00 mean? Can it be useful to 
know such rules?) 

In our example the lift ratios highlight Rule 6 as most interesting in that it 
suggests purchase of item 4 is almost 5 times as likely when items 3 and 8 
are purchased than if item 4 was not associated with the itemset {3,8}. 

Shortcomings 

Association rules have not been as useful in practice as one would have 
hoped. One major shortcoming is that the support confidence framework 
often generates too many rules. Another is that often most of them are 
obvious. Insights such as the celebrated “on Friday evenings diapers and 
beers are bought together” story are not as common as might be expected. 
There is need for skill in association analysis and it seems likely, as some 
researchers have argued, that a more rigorous statistical discipline to cope 
with rule proliferation would be beneficial. 

Extensions 

The general approach of association analysis utilizing support and 
confidence concepts has been extended to sequences where one is looking 
for patterns that evolve in time. The computation problems are even more 
formidable, but there have been several successful applications. 

8 


