
15.063: Communicating with Data
Summer 2003

Recitation 2: Probability 



Today’s Goal

Review 
Laws of Probability

and 
Discrete Random Variables
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Content

Laws of Probability

Conditional Probability: Problem 2.7

Independence: Rolling two dice

Discrete Random Variables
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Events

An event is a collection of outcomes

First law of probability : the probability of an event is 

between 0 and 1

Two events are disjoint when they have no common
outcome.

Question : consider tossing a quarter and a penny. Let 

event A be “the quarter landed heads” and event B be 

“the penny landed heads”. Are they disjoint?
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Laws of Probability

p(A or B) = p(A) + p(B) when A and B are disjoint. 
Question : If the probability of a plane crash somewhere 

in the world during a whole year is 0.0001, is the 

probability of a crash during 2 years 0.0002?

p(A and B) = p(A) p(B) iff A and B are independent.
Question : If different years are independent, what is 

the probability of no crash in 2 years ?

Remember : if independent ⇒ not disjoint
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Conditional Probability

For events A and B, the probability that A
occurs given that B occurred is:

p( A / B ) = p(A & B) / p(B)

Note : independence not required

Question : Given that a plane did not crash the 
first year, what is the probability of a crash 
during the second year?
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Conditional Probability

See problem 2.7 in the course textbook:

Data, Models, and Decisions: The Fundamentals of Management 
Science by Dimitris Bertsimas and Robert M. Freund, Southwestern 
College Publishing, 2000. 
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Rolling two dice

Exercise :  Two fair six-sided dice are tossed. 

Find the probability of:

a. the sum of the dice is exactly 2

b. the sum of the dice exceeds 2

c. both dice come up with the same number

d. event (a) occurs given that event (c) does

e. both dice come up with odd numbers
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Independence

Two events A and B are said to be independent when

p(A ∩ B) = p(A) p(B) .

Or, using the definition of conditional probability:

Intuition : The fact that you know that event B happened, 
does not change the likelihood of event A.
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Independence
Example :  For the two dice, is the event of getting a 
double independent of the number of the first die?

Let D be the event of obtaining a double.
Let A and B be the numbers of the first and second die.

The possible outcomes are the following 36 equally likely 
combinations:

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

The probability of 
each outcome is 
1/36
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Independence

p(D)= p(A=1 & B=1) + … + p(A=6 & B=6) = 6 (1/36)

= 1/6.

p(D/A=1) = p(B=1) = 1/6,

p(D/A=2) = p(B=2) = 1/6 and so on. 

Therefore p(D/A=i) = p(D) for i=1,2,…, 

which means that the event of getting a double is 

independent of the outcome of the first die.
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Independence

If we are conducting this same experiment in 
Las Vegas, where its very hard to find a ‘fair’ 
die, the conclusion changes.

Suppose the actual probability distribution of 
the two dice we will use is:

The 36 possible outcomes are not equally 
likely, but we can compute their probability 
because the two dice are still independent.

For example:
p(A=2 & B=5)=p(A=2) p(B=5) = 0.2 x 0.1 

= 0.02

xi pi

1 0.1

2 0.2

3 0.3

4 0.2

5 0.1

6 0.1
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Independence

Now, p(D) = p(A=1 & B=1) + … + p(A=6 & B=6)

= p(A=1) p(B=1) + … + p(A=6) p(B=6) 

= p(A=1)2 + … + p(A=6)2

= .12 + .22 + .32 + .22 + .12 + .12 = 0.2

Lets compute the conditional probabilities:

p(D/A=1) = p(B=1) = 0.1,

p(D/A=2) = p(B=2) = 0.2, and so on. 

As p(D/A=i) ≠ p(D), the likelihood of drawing a double 

depends on the outcome of the first die.
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Discrete Random Variables

A random variable assigns a value
(probability) to each possible outcome of 
a probabilistic experiment.

A discrete RV can take only distinct, 
separate values.

Used to model discrete situations and 
compute expected values and variances.
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Selling Newspapers

A city newsstand has 
been keeping records 
for the past year of 
the number of copies 
of the newspapers 
sold daily. Records 
were kept for 200 
days.

Number of copies Frequency

0 24

1 52

2 38

3 16

4 37

5 18

6 13

7 2
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Selling Newspapers

(a) What is the mean of the distribution?

Number
of copies

Frequency

0 24

1 52

2 38

3 16

4 37

5 18

6 13

7 2

Probability
pi

0.120

0.260

0.190

0.080

0.185

0.090

0.065

0.010

1.000

Recall that µx=E(X)= Σi pixi

µx=   0.12 x 0   + 0.26 x 1 

+ 0.19 x 2   + 0.08 x 16 

+ 0.185 x 4 + 0.09 x 5 

+ 0.065 x 6 + 0.01 x 7

= 2.53
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(b) What is the standard deviation of the distribution? 

Number
of copies

Frequency

0 24

1 52

2 38

3 16

4 37

5 18

6 13

7 2

Probability
pi

0.120

0.260

0.190

0.080

0.185

0.090

0.065

0.010

1.000

Recall that µx = 2.53 and 

σ2
x=VAR(X)=Σ pi(xi - µx)2

σx = √ [(0.12)(0 - 2.53)2

+ (0.26)(1-2.53)2

+ (0.19)(2-2.53)2 +... 

+ (0.01)(7-2.53)2]

= 1.838

Selling Newspapers
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Selling Newspapers

(c) Find the probability that at least 2 but no more 
than 6 copies are sold in a day.

Number
of copies

Frequency

0 24

1 52

2 38

3 16

4 37

5 18

6 13

7 2

Probability
pi

0.120

0.260

0.190

0.080

0.185

0.090

0.065

0.010

1.000

p(2 <= X <= 6)

= p(X=2) + ... + p(X=6)

= 0.19 + 0.08 + 0.185

+ 0.09 + 0.065

= 0.87
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Binomial Distribution

Count the number of times something happens

Events have to be repeated and independent

Allow us to compute expectation, variance and 

probability of outcomes

Described by: # trials and success probability
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Binomial Distribution

Example : flipping a coin 10 times. 
RV number of tails is binomial

# trials: 10

success probability in each trial: 1/2

Question : Is the number of aces we get 
in a poker hand a binomial RV?
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Binomial Distribution

Example : flipping a coin 10 times. 
X: RV number of tails is binomial(10,1/2)

E(X) = np = 10/2 = 5 (expected # of tails)

V(X) = np (1-p ) = 10 / 4 = 2.5

stdev(X) = √np (1-p ) = √ 2.5 = 1.6

p(a single tail) = 5! / 4! x (.5)9 (.5)1



The End.


