15.063: Communicating with Data Summer 2003

Recitation 2: Probability

Review Laws of Probability and Discrete Random Variables

#Laws of Probability

#Conditional Probability: Problem 2.7

HIndependence: Rolling two dice

Biscrete Random Variables

Events

₭ An *event* is a collection of *outcomes*

First law of probability : the probability of an event is between **0** and **1**

Here and the second second

Question : consider tossing a quarter and a penny. Let event **A** be "the quarter landed heads" and event **B** be "the penny landed heads". Are they disjoint?

Laws of Probability

- # p(A or B) = p(A) + p(B) when A and B are disjoint. Question : If the probability of a plane crash somewhere in the world during a whole year is 0.0001, is the probability of a crash during 2 years 0.0002?
- # p(A and B) = p(A) p(B) iff A and B are independent.
 Question : If different years are independent, what is
 the probability of no crash in 2 years ?
- **∺** *Remember* : **if independent** ⇒ **not disjoint**

Conditional Probability

₭ For events A and B, the probability that A occurs given that B occurred is:

$$p(A / B) = p(A \& B) / p(B)$$

Note : independence not required

Cuestion : Given that a plane did not crash the first year, what is the probability of a crash during the second year?

Conditional Probability

 \Re See problem 2.7 in the course textbook:

Data, Models, and Decisions: The Fundamentals of Management Science by Dimitris Bertsimas and Robert M. Freund, Southwestern College Publishing, 2000.

Rolling two dice

Exercise : Two fair six-sided dice are tossed.

Find the probability of:

- \bigtriangleup a. the sum of the dice is exactly 2
- \bigtriangleup b. the sum of the dice exceeds 2
- △c. both dice come up with the same number
- △d. event (a) occurs given that event (c) does
- △e. both dice come up with odd numbers

% Two events **A** and **B** are said to be *independent* when $p(A \cap B) = p(A) p(B)$.

 \mathfrak{H} Or, using the definition of conditional probability:

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A)$$

*Intuition* : The fact that you know that event B happened, does not change the likelihood of event A.

- Section 2018 Se
- Let D be the event of obtaining a double.Let A and B be the numbers of the first and second die.
- **%** The possible outcomes are the following 36 equally likely combinations:

The probability of each outcome is 1/36

15.063, Summer 2003

 $\Re p(\mathbf{D}) = p(A=1 \& B=1) + ... + p(A=6 \& B=6) = 6 (1/36)$ = 1/6.

$$\Re$$
 p(**D**/A=1) = p(B=1) = 1/6,
p(**D**/A=2) = p(B=2) = 1/6 and so on.

Therefore **p(D/A=i) = p(D)** for i=1,2,...,

which means that the event of getting a double is *independent* of the outcome of the first die.

If we are conducting this same experiment in Las Vegas, where its very hard to find a 'fair' die, the conclusion changes.

- Suppose the actual probability distribution of the two dice we will use is:
- Solution The 36 possible outcomes are not equally likely, but we can compute their probability because the two dice are still independent.

For example:

$$p(A=2 \& B=5)=p(A=2) p(B=5) = 0.2 \times 0.1$$

= 0.02

15.063, Summer 2003

xi	pi
1	0.1
2	0.2
3	0.3
4	0.2
5	0.1
6	0 1

 $\begin{array}{l} \mbox{$\stackrel{\textbf{H}}{=}$} \mbox{Now, } p(D) = p(A=1 \& B=1) + ... + p(A=6 \& B=6) \\ = p(A=1) \ p(B=1) + ... + p(A=6) \ p(B=6) \\ = p(A=1)^2 + ... + p(A=6)^2 \\ = .1^2 + .2^2 + .3^2 + .2^2 + .1^2 + .1^2 = 0.2 \end{array}$

Lets compute the conditional probabilities:

$$p(D/A=1) = p(B=1) = 0.1$$
,
 $p(D/A=2) = p(B=2) = 0.2$, and so on.

Solution Hereica As p(D/A=i) ≠ p(D), the likelihood of drawing a double depends on the outcome of the first die.

Discrete Random Variables

#A random variable assigns a value (probability) to each possible outcome of a probabilistic experiment.

#A discrete RV can take only distinct, separate values.

#Used to model discrete situations and compute expected values and variances.

A city newsstand has been keeping records for the past year of the number of copies of the newspapers sold daily. Records were kept for 200 days.

Number of copies	Frequency
0	24
1	52
2	38
3	16
4	37
5	18
6	13
7	2

(a) What is the mean of the distribution?

	Number	Frequency	Probability
Recall that $\mu_x = E(X) = \Sigma_i p_i X_i$ —	of copies		<u> </u>
	0	24	0.120
	1	52	0.260
$\mu_{x} = 0.12 \times 0 + 0.26 \times 1$	2	38	0.190
+ 0.19 x 2 + 0.08 x 16	3	16	0.080
	4	37	0.185
+ 0.185 x 4 + 0.09 x 5	5	18	0.090
+ 0.065 x 6 + 0.01 x 7	6	13	0.065
	7	2	0.010
= 2.53			1.000

(b) What is the standard deviation of the distribution?

Recall that $\mu_x = 2.53$ and $-$	Number of copies	Frequency	Probability Di
$\sigma^2 = \frac{1}{\sqrt{D(X)}} = \sum n(x + 1)^2$	0	24	0.120
$O_{X}^{-} VAR(X) - 2 p_{i}(X_{i} - \mu_{X})^{-}$	1	52	0.260
	2	38	0.190
$\sigma_x = \sqrt{(0.12)(0 - 2.53)^2}$	3	16	0.080
$+ (0.26)(1-2.53)^2$	4	37	0.185
	5	18	0.090
+ (0.19)(2-2.53) ² +	6	13	0.065
$+ (0.01)(7-2.53)^2$	7	2	0.010
			1.000
= 1.838			

(c) Find the probability that at least 2 but no more than 6 copies are sold in a day.

	Number of copies	Frequency	Probability Pi
$n(2 \cdot V \cdot i)$	0	24	0.120
h(z <= x <= 0)	1	52	0.260
= p(X=2) + + p(X=6)	2	38	0.190
	3	16	0.080
= 0.19 + 0.08 + 0.185	4	37	0.185
+ 0.09 + 0.065	5	18	0.090
0.07	6	13	0.065
= 0.8/	7	2	0.010
			4

1.000

Binomial Distribution

Count the number of times something happens

#Events have to be **repeated** and **independent**

#Allow us to compute expectation, variance and probability of outcomes

Described by: **# trials** and **success probability**

Binomial Distribution

#Example : flipping a coin 10 times.
RV number of tails is binomial

∠# trials: 10

Success probability in each trial: 1/2

Question : Is the number of aces we get in a poker hand a binomial RV?

Binomial Distribution

#*Example* : flipping a coin 10 times.

- **X**: RV number of tails is binomial(10,1/2)
 - $\triangle E(\mathbf{X}) = np = 10/2 = 5$ (expected # of tails)

$$\sim V(\mathbf{X}) = np(1-p) = 10/4 = 2.5$$

△stdev(**X**) = \sqrt{np} (1-*p*) = $\sqrt{2.5}$ = 1.6

 $\square p(a single tail) = 5! / 4! x (.5)^9 (.5)^1$

The End.