
15.082J, 6.855J, and ESD.78J

Sept 16, 2010

Lecture 3. Graph Search

Breadth First Search

Depth First Search

Intro to program verification

Topological Sort

2

Overview

Today: Different ways of searching a graph

 a generic approach

 breadth first search

 depth first search

 program verification

 data structures to support network search

 topological order

 Fundamental for most algorithms considered in

this subject

3

Searching a Directed Graph

ALGORITHM SEARCH

INPUT: A directed network G, and node s

OUTPUT: The set S = {j : there is a directed path from s to j in G}.

These are the nodes reachable from s. For each node j ∈ S\s,

pred(j) is a node that precedes j on some path from s;

e.g. (pred(2) = 1, pred(8) = 4

1

2 4

5

3 6 9

7

8

1

2 4

5

3 6 9

7

8

Marked nodes, admissible arcs

A node is either marked or unmarked. Initially
only node s is marked. If a node is marked, it
is reachable from node s.

An arc (i,j) ∈ A is admissible if node i is marked
and j is not.

4

1

2 4

5

3 6 9

7

8

1

2 4

5

3 6 9

7

8 Marked
nodes

Admissible
arcs

5

Scanning arcs

1 2 53

1

2

3

5

CurrentArc(1) CurrentArc(1) CurrentArc(1)

Scan through the arc list for

the selected node, and keep

track using current arc. Stop

when an admissible arc is

identified or when the arc list

is fully scanned

6

Algorithm Search

Initialize as follows:

unmark all nodes in N;

mark node s;

pred(s) = 0; {that is, it has no predecessor}

LIST = {s}

while LIST ≠ ø do

select a node i in LIST;

if node i is incident to an admissible arc (i,j) then

mark node j;

pred(j) := i;

add node j to the end of LIST;

else delete node i from LIST

The algorithm in the book also keeps track of the

order in which nodes are marked.

Breadth first search

7

It is a breadth first search (bfs) if the selected node is

the first node on LIST.

Breadth First Search

Animation

8

More on Breadth First Search

Theorem. The breadth first search tree is the

“shortest path tree”, that is, the path from s to j

in the tree has the fewest possible number of

arcs.

1 2

3

2

1

2 4

5

3 6 9

7

8

1
10

2

1

5

3

4

6

8

6

7

96 99

3

3

The numbers next to the nodes are the distances from node 1.

Depth first search

9

It is a depth first search (dfs) if the selected node is

the last node on LIST.

Depth First Search

Animation

10

1

3

2 9

8

7

54 8

6

7

9

6

5

4

2 3

1

The depth first search tree

Note that each

induced subtree has

consecutively

labeled nodes.

(The descendents

are visited in order.)

Algorithm Analysis

How does one prove that an algorithm is correct?

How does one prove that it terminates in finite

time?

How does one obtain a tight upper bound on

running time?

11

Some useful approaches

Subdivide the algorithm into “chunks”.

Invariants: properties that are true throughout the

running of the algorithm

Things that change: functions that increase

monotonically every time the algorithm reenters

the same loop.

12

13

Algorithm Search

Initialize

while LIST ≠ ø do

select a node i in LIST;

if node i is incident to an admissible arc (i,j) then

mark node j;

pred(j) := i;

add node j to the end of LIST;

else delete node i from LIST

loop

14

Algorithm Invariants

Select Node 2

LIST 1 2 4 85 6 9 7

8

7

5

3

1

2 4

5

3 6 9

7

8

11 1

22

1

22 4 8 44 884

5

4

5

6

6

5

6 96 9

7

9

77

9966

55

442

Invariants: whenever control of the program is at loop:

1.Any marked node is reachable from s.

2.All nodes on LIST are marked.

3.If a marked node j is not on LIST, then A(j) has been fully scanned.

Proving the correctness of the invariants

An Important step in proving algorithm correctness:

Prove that the algorithm invariants are true using induction.

• Prove that they are true after the initialization

• Assuming that they are true at the beginning of the k-th

iteration of the while loop, prove that they are true at the

beginning of the subsequent iteration of the while loop.

15

Things that change and proof of finiteness

Things that change between successive times that

the control of the program is at loop:

1. Either a new node is marked and added to LIST, or a new

node is fully scanned and deleted from LIST.

16

Number of iterations of while loop is at most 2n.

Therefore the algorithm terminates in O(n) calls of the

“while loop.”

Proof of Correctness

The algorithm terminates when LIST = ∅.

17

Let S = marked

nodes.

Let T = unmarked

nodes.

1

2

4

5 t

6

s

3

s

5

4

2

6

S

T

Then no arc (i,j) is directed from S to T. Otherwise, by Invariant 2,

j would have been marked when (i, j) was scanned.

By invariant 1, all nodes in S are reachable from s.

By invariant 3, all arcs out of S have been scanned.

Therefore, no node in T is reachable from s.

18

Cutset Theorem

Corollary of algorithm’s correctness. There

is no directed path from s to t if and only if

the following is true:

there is a partition of the node set N into

subsets S and T = N - S such that there is

no arc directed from a node in S to a node

in T.

S

s
T

t

Running time analysis

19

Initialize.

while LIST ≠ ø do

select a node i in LIST;

if node i is incident to an admissible arc (i,j) then

mark node j;

pred(j) := i;

add node j to the end of LIST;

else delete node i from LIST

loop

Total time spent in while loop

(other than arc scans)

• O(1) time per loop

• < 2n iterations of the loop

• O(n) time in total

Total time spent in scanning

arcs

• O(1) time per arc scanned

• m arcs

• O(m) time in total.

Running time: O(n + m)

20

Initialize

Initialize

begin

unmark all nodes in N;

mark node s;

pred(s) = 0; {that is, it has no predecessor}

LIST = {s}

end

Unmarking takes O(n)

All else takes O(1)

21

Theorem. Algorithm search determines all nodes

reachable from node s in O(n + m) time.

All U.S. Presidents have worn glasses

True

No President (before Obama) has been an only child

True

No President was a bachelor

False. James Buchanan was a bachelor.

George Washington grew marijuana on his Plantation.

True

Mental Break

George Washington’s false teeth were made of wood.

False. They were made of whale bone.

Three of the first 10 Presidents died on July 4.

True. Thomas Jefferson, John Adams, James Monroe

John Quincy Adams kept a pet alligator in the East

Room of the White House

True.

Calvin Coolidge believed that the world was flat.

False. But Andrew Jackson did.

Mental Break

24

Finding all connected components in an

undirected graph

Breadth first search will find a connected

component of an undirected graph in time

proportional to the number of arcs in the

component. (A component of an undirected

graph is a maximally connected subgraph.)

To find all components: Maintain a set U of

unmarked nodes.

• Delete a node from U after it is marked.

• After each component is searched, select a node

of U and begin a search.

• Running time O(1) per selection and deletion

Comp 1

Comp 2

Comp 3

25

Proof of bfs Theorem

Theorem. The breadth first search tree is the “shortest path tree”,

that is, the path from s to j in the tree has the fewest possible

number of arcs.

Let d(j) be the fewest number of arcs on a path from s to j.

Suffices to prove a 4th invariant:

4. If d(i) < d(j), then i is marked before j.

If the 4th invariant is true, then nodes are marked in order of

increasing distance from node s.

26

Select node 5

LIST 5 3 4

5
2

4

1

2 4

5

3 6 9

7

8

3
11

2

5

3

2 4

5

4. If d(i) < d(j), then i is marked before j. (Note that

no unmarked node has a distance that is less than

d(4).)

27

Preliminary to Topological Sorting

COROLLARY 2. If G

has no directed

cycle, then one can

relabel the nodes so

that for each arc (i,j),

i < j.

LEMMA. If each node has at

least one arc going out, then

the first inadmissible arc of

a depth first search

determines a directed cycle.

COROLLARY 1. If G has no

directed cycle, then there is

a node in G with no arcs

going out. Similarly, there is

at least one node in G with

no arcs coming in.

1

2

4

5

6

7

8

7

5

6 1

2

28

Topological ordering

INITIALIZE as follows:

for all i ∈ N do indegree(i) := 0;

for all (i,j) ∈ A do indegree(j) := indegree(j) + 1;

LIST := ∅;

next := 0;

for all i ∈ N do if indegree(i) = 0, then LIST := LIST ∪ { i };

while LIST ≠ ∅ do

select a node i from LIST and delete it from LIST;

next := next + 1;

order(i) := next;

for all (i,j) ∈ A(i) do

indegree(j) := indegree(j) – 1;

if indegree(j) = 0 then LIST := LIST ∪ { j };

if next < n then the network contains a directed cycle

else the network is acyclic and the order is topological

Animation

file://localhost/Users/jorlin/Documents/pc-backup/Courses/15.082/15.082%20%20%202010/Animations/03_Topological_Ordering.ppt

29

Invariant For Topological Sorting

A node is called marked when it receives an order.

INVARIANT (at the beginning of the while loop)

1. indegree(i) is the number of arcs directed to i

from nodes that are not marked.

Thus if j is on LIST, then there are no arcs into node

j from unmarked nodes.

If the algorithm ends before labeling all nodes, then

there is a directed cycle in the unmarked nodes.

Every unmarked node has at least one incoming arc, and

so there is a directed cycle.

30

More on Topological Sorting

Runs in O(n+m) time.

Useful starting point for many algorithms that

involve acyclic graphs.

31

Summary on Graph Search

 Graph Search

Finds all nodes reachable from s in O(m) time.

Determine the connected components of an

undirected graph.

Breadth first search

Depth first search

Algorithm Validation (proofs of correctness).

• Prove invariants using induction

• Establish things that change

32

Summary on Graph Search

 Topological sort (or order);

Running time is O(n+m) using simple data

structures and algorithms.

Very important for preprocessing.

MIT OpenCourseWare
http://ocw.mit.edu

15.082J / 6.855J / ESD.78J Network Optimization

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

