15.082J, 6.855J, and ESD.78J September 21, 2010

Eulerian Walks Flow Decomposition and Transformations

Eulerian Walks in Directed Graphs in O(m) time.

Step 1. Create a breadth first search tree into node
1. For j not equal to 1, put the arc out of j in T last on the arc list A(j).

Step 2. Create an Eulerian cycle by starting a walk at node 1 and selecting arcs in the order they appear on the arc lists. Relies on the following observation and invariant:

Observation: The walk will terminate at node 1. Whenever the walk visits node j for j ≠ 1, the walk has traversed one more arc entering node j than leaving node j.

Invariant: If the walk has not traversed the tree arc for node j, then there is a path from node j to node 1 consisting of nontraversed tree arcs.

> Eulerian Cycle Animation

Eulerian Cycles in undirected graphs

Strategy: reduce to the directed graph problem as follows:

Step 1. Use dfs to partition the arcs into disjoint cycles

Step 2. Orient each arc along its directed cycle. Afterwards, for all i, the number of arcs entering node i is the same as the number of arcs leaving node i.

Step 3. Run the algorithm for finding Eulerian Cycles in directed graphs

Flow Decomposition and Transformations

- Flow Decomposition
- Removing Lower Bounds
- Removing Upper Bounds
- Node splitting

Arc flows: an arc flow x is a vector x satisfying:

Let
$$b(i) = \sum_{j} x_{ij} - \sum_{i} x_{ji}$$

We are not focused on upper and lower bounds on x for now.

Usual: represent flows in terms of flows in arcs.

Alternative: represent a flow as the sum of flows in paths and cycles.

$$1 \xrightarrow{2} 2 \xrightarrow{2} 3 \xrightarrow{2} 4 \xrightarrow{2} 5$$

Two units of flow in the path P

One unit of flow around the cycle C

Let P be a directed path.

Let Flow(M,P) be a flow of M units in each arc of the path P.

Observation. If P is a path from s to t, then Flow(TM ,P) sends units of δ flow from s to t, and has conservation of flow at other nodes.

Property of Cycle Flows

 If p is a cycle, then sending one unit of flow along p satisfies conservation of flow everywhere.

Let \mathcal{P} be a collection of Paths; let f(P) denote the flow in path P

Let C be a collection of cycles; let f(C) denote the flow in cycle C.

One can convert the path and cycle flows into an arc flow x as follows: for each arc (i,j) $\in A$

$$\mathbf{x}_{ij} = \sum_{\mathsf{P} \ni (i,j)} \mathsf{f}(\mathsf{P}) + \sum_{\mathsf{C} \ni (i,j)} \mathsf{f}(\mathsf{C})$$

Flow Decomposition

- **x**: Initial flow
- y: updated flow
- G(y): subgraph with arcs (i, j) with y_{ij} > 0 and incident nodes
- **f(P)** Flow around path P (during the algorithm)
- **P**: paths with flow in the decomposition
- *C*: cycles with flow in the decomposition **INVARIANT**

$$\mathbf{x}_{ij} = \mathbf{y}_{ij} + \sum_{\mathsf{P} \ni (i,j)} f(\mathsf{P}) + \sum_{\mathsf{C} \ni (i,j)} f(\mathsf{C})$$

Initially, x = y and f = 0. At end, y = 0, and f gives the flow decomposition.

10

Let x be a flow (not necessarily feasible)

- If the flow out of node i exceeds the flow into node i, then node i is a deficit node. Its deficit is $\sum_{i} x_{ii} - \sum_{k} x_{ki}$.
- If the flow out of node i is less than the flow into node i, then node i is an excess node. Its excess is $-\sum_j x_{ij} + \sum_k x_{ki}$.

If the flow out of node i equals the flow into node i, then node i is a balanced node.

Flow Decomposition Algorithm

Step 0. Initialize: y := x; f := 0; $\mathcal{P} := \emptyset$; $\mathcal{C} := \emptyset$;

Step 1. Select a deficit node j in G(y). If no deficit node exists, select a node j with an incident arc in G(y);

Step 2. Carry out depth first search from j in G(y) until finding a directed cycle W in G(y) or a path W in G(y) from s to a node t with excess in G(y).

Step 3.

- **1.** Let Δ = capacity of W in G(y). (See next slide)
- 2. Add W to the decomposition with $f(W) = \Delta$.
- **3.** Update y (subtract flow in W) and excesses and deficits
- 4. If $y \neq 0$, then go to Step 1

Capacities of Paths and Cycles

Animation

The capacity of C is = min arc flow on C wrt flow y. capacity = 4

The capacity of P is denoted as $\Delta(\mathbf{P}, \mathbf{y}) =$ min[def(s), excess(t), min $(x_{ij} : (i,j) \in P)$]

 $\chi \alpha \pi \alpha \chi \iota \tau \psi = 2$

Select initial node:

 O(1) per path or cycle, assuming that we maintain a set of supply nodes and a set of balanced nodes incident to a positive flow arc

Find cycle or path

 O(n) per path or cycle since finding the next arc in depth first search takes O(1) steps.

Update step

O(n) per path or cycle

Complexity Analysis (continued)

Lemma. The number of paths and cycles found in the flow decomposition is at most m + n - 1.

Proof. In the update step for a cycle, at least one of the arcs has its capacity reduced to 0, and the arc is eliminated.

In an update step for a path, either an arc is eliminated, or a deficit node has its deficit reduced to 0, or an excess node has its excess reduced to 0.

(Also, there is never a situation with exactly one node whose excess or deficit is non-zero).

Conclusion

Flow Decomposition Theorem. Any non-negative feasible flow x can be decomposed into the following:

- i. the sum of flows in paths directed from deficit nodes to excess nodes, plus
- ii. the sum of flows around directed cycles.

It will always have at most n + m paths and cycles.

Remark. The decomposition usually is not unique.

A *circulation* is a flow with the property that the flow in is the flow out for each node.

Flow Decomposition Theorem for circulations. Any non-negative feasible flow x can be decomposed into the sum of flows around directed cycles.

It will always have at most m cycles.

An application of Flow Decomposition

Consider a feasible flow where the supply of node 1 is n-1, and the supply of every other node is -1.

$$\sum_{j} x_{ij} - \sum_{j} x_{ji} = \begin{cases} n-1 & \text{if } i=1\\ -1 & \text{if } i\neq 1 \end{cases}$$

Suppose the arcs with positive flow have no cycle. Then the flow can be decomposed into unit flows along paths from node 1 to node j for each $j \neq 1$.

A flow and its decomposition

The decomposition of flows yields the paths:

1-2, 1-3, 1-3-4

1-3-4-5 and 1-3-4-6.

There are no cycles in the decomposition.

Application to shortest paths

To find a shortest path from node 1 to each other node in a network, find a minimum cost flow in which b(1) = n-1 and b(j) = -1 for $j \neq 1$.

The flow decomposition gives the shortest paths.

Other Applications of Flow Decomposition

- Reformulations of Problems.
 - There are network flow models that use path and cycle based formulations.
 - Multicommodity Flows
- Used in proving theorems
- Can be used in developing algorithms

The min cost flow problem (again)

The minimum cost flow problem

The model seems very limiting

- The lower bounds are 0.
- The supply/demand constraints must be satisfied exactly
- There are no constraints on the flow entering or leaving a node.
- We can model each of these constraints using transformations.
- In addition, we can transform a min cost flow problem into an equivalent problem with no upper bounds.

Eliminating Lower Bound on Arc Flows

Suppose that there is a lower bound *I*_{ij} on the arc flow in (i,j)

Then let
$$y_{ij} = x_{ij} - I_{ij}$$
. Then $x_{ij} = y_{ij} + I_{ij}$
Minimize $\sum c_{ij}(y_{ij} + I_{ij})$
 $\sum_j (y_{ij} + I_{ij}) - \sum_k (y_{ij} + I_{ij}) = b_i$ for all $i \in N$.
and $I_{ij} \leq (y_{ij} + I_{ij}) \leq u_{ij}$ for all $(i,j) \in A$.

Then simplify the expressions.

Allowing inequality constraints

Let $B = \sum_i b_i$. For feasibility, we need $B \ge 0$

Create a "dummy node" n+1, with $b_{n+1} = -B$. Add arcs (i, n+1) for i = 1 to n, with $c_{i,n+1} = 0$. Any feasible solution for the original problem can be transformed into a feasible solution for the new problem by sending excess flow to node n+1.

Node Splitting

Suppose that we want to add the constraint that the flow into node 4 is at most 7.

Method: split node 4 into two nodes, say 4' and 4"

Flow x' can be obtained from flow x, and vice versa.

Eliminating Upper Bounds on Arc Flows

The minimum cost flow problem

$$\begin{split} & \text{Min} \ \sum \ c_{ij} x_{ij} \\ & \text{s.t.} \ \sum_j \ x_i \ - \ \sum_k x_{ki} \ = \ b_i \ \text{for all} \ i \in \mathsf{N}. \\ & \text{and} \ 0 \leq x_{ij} \leq u_{ij} \ \text{for all} \ (i,j) \in \mathsf{A}. \end{split}$$

- 1. Efficient implementation of finding an eulerian cycle.
- 2. Flow decomposition theorem
- 3. Transformations that can be used to incorporate constraints into minimum cost flow problems.

15.082J / 6.855J / ESD.78J Network Optimization Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.