
15.082J & 6.855J & ESD.78J

Shortest Paths 2:

Bucket implementations of Dijkstra’s Algorithm

R-Heaps

2

A Simple Bucket-based Scheme

Let C = 1 + max(cij : (i,j) ∈ A); then nC is an upper
bound on the minimum length path from 1 to n.

RECALL: When we select nodes for Dijkstra's
Algorithm we select them in increasing order of
distance from node 1.

SIMPLE STORAGE RULE. Create buckets from 0
to nC.

Let BUCKET(k) = {i ∈ T: d(i) = k}. Buckets are sets
of nodes stored as doubly linked lists. O(1) time
for insertion and deletion.

3

Dial’s Algorithm

 Whenever d(j) is updated, update the buckets so

that the simple bucket scheme remains true.

 The FindMin operation looks for the minimum

non-empty bucket.

 To find the minimum non-empty bucket, start

where you last left off, and iteratively scan

buckets with higher numbers.

Dial’s Algorithm

4

Running time for Dial’s Algorithm

C = 1 + max(cij : (i,j) ∈ A).

Number of buckets needed. O(nC)

Time to create buckets. O(nC)

Time to update d() and buckets. O(m)

Time to find min. O(nC).

Total running time. O(m+ nC).

This can be improved in practice; e.g., the space
requirements can be reduced to O(C).

5

Additional comments on Dial’s Algorithm

 Create buckets when needed. Stop creating

buckets when each node has been stored in a

bucket.

 Let d* = max {d*(j): j ∈ N}. Then the maximum

bucket ever used is at most d* + C.

Suppose j ∈ Bucket(d* + C + 1) after update(i).

But then d(j) = d(i) + cij ≤ d* + C

d* d*+1

j

d*+2 d*+3 d*+C d*+C+1

∅

A 2-level bucket scheme

 Have two levels of buckets.

 Lower buckets are labeled 0 to K-1 (e.g., K = 10)

 Upper buckets all have a range of K. First upper

bucket’s range is K to 2K – 1.

 Store node j in the bucket whose range contains d(j).

6

0 1 2 3 4 5 6 7 8 9

10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99

2

12 15

distance label 3 21

5

Find Min

 FindMin consists of two subroutines

 SearchLower: This procedure searches lower

buckets from left to right as in Dial’s algorithm.

When it finds a non-empty bucket, it selects any

node in the bucket.

 SearchUpper: This procedure searches upper

buckets from left to right. When it finds a bucket

that is non-empty, it transfers its elements to

lower buckets.

7

FindMin

If the lower buckets are non-empty, then SearchLower;

Else, SearchUpper and then SearchLower.

More on SearchUpper

 SearchUpper is carried out when the

lower buckets are all empty.

 When SearchUpper finds a non-empty

bucket, it transfers its contents to lower

buckets. First it relabels the lower

buckets.

8

10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99

0 1 2 3 4 5 6 7 8 9

4

30 31 32 33 34 35 36 37 38 39

3
5

3

33

5

30

4

54

2-Level

Bucket

Algorithm

file://localhost/Users/jorlin/Documents/pc-backup/Courses/15.082/15.082%20%20%202010/Animations/V08__2-bucket%20algorithm.ppt

Running Time Analysis

 Time for SearchUpper: O(nC/K)

 O(1) time per bucket

 Number of times that the Lower Buckets are filled

from the upper buckets: at most n.

 Total time for FindMin in SearchLower

 O(nK); O(1) per bucket scanned.

 Total Time for scanning arcs and placing nodes in

the correct buckets: O(m)

 Total Run Time: O(nC/K + nK + m).

 Optimized when K = C.5

 O(nC.5 + m)

9

More on multiple bucket levels

 Running time can be improved with three or more

levels of buckets.

 Runs great in practice with two levels

 Can be improved further with buckets of range

(width) 1, 1, 2, 4, 8, 16 …

 Radix Heap Implementation

10

11

A Special Purpose Data Structure

 RADIX HEAP: a specialized implementation of

priority queues for the shortest path problem.

 A USEFUL PROPERTY (of Dijkstra's algorithm):

The minimum temporary label d() is

monotonically non-decreasing. The algorithm

labels node in order of increasing distance from

the origin.

 C = 1 + max length of an arc

12

Radix Heap Example

1

2 4

53

6

13

5

2

8

15

20

9

0

0 1 2-3 4-7 8-15 16-31 32-63

Buckets:

bucket sizes grow

exponentially

ranges change

dynamically

Radix Heap

Animation

file://localhost/Users/jorlin/Documents/pc-backup/Courses/15.082/15.082%20%20%202010/Animations/V09_Radix_Heaps.ppt

Analysis: FindMin

 Scan from left to right until there is a non-empty

bucket. If the bucket has width 1 or a single

element, then select an element of the bucket.

 Time per find min: O(K), where K is the

number of buckets

13

0 1 2-3 4-7 8-15 16-31 32-63

2

4
5

Analysis: Redistribute Range

 Redistribute Range: suppose that the minimum

non-empty bucket is Bucket j. Determine the min

distance label d* in the bucket. Then distribute

the range of Bucket j into the previous j-1

buckets, starting with value d*.

 Time per redistribute range: O(K). It takes

O(1) steps per bucket.

 Time for determining d*: see next slide.

14

0 1 2-3 4-7 8-15 16-31 32-63

2

4
5

9 10 11-12 13-15

d(5) = 9 (min label)

Analysis: Find min d(j) for j in bucket

 Let b the the number of items in the minimum

bucket. The time to find the min distance label of

a node in the bucket is O(b).

 Every item in the bucket will move to a lower

index bucket after the ranges are

redistributed.

 Thus, the time to find d* is dominated by the

time to update contents of buckets.

 We analyze that next

15

Analysis: Update Contents of Buckets

 When a node j needs to move buckets, it will

always shift left. Determine the correct bucket by

inspecting buckets one at a time.

 O(1) whenever we need to scan the bucket to

the left.

 For node j, updating takes O(K) steps in total.

16

0 1 2-3 4-7 8-15 16-31 32-63

2

4

9 10 11-12 13-15

d(5) = 9

5

Running time analysis

 FindMin and Redistribute ranges

 O(K) per iteration. O(nK) in total

 Find minimum d(j) in bucket

 Dominated by time to update nodes in buckets

 Scanning arcs in Update

 O(1) per arc. O(m) in total.

 Updating nodes in Buckets

 O(K) per node. O(nK) in total

 Running time: O(m + nK)

O(m + n log nC)

 Can be improved to O(m + n log C)

17

18

Summary

 Simple bucket schemes: Dial’s Algorithm

 Double bucket schemes: Denardo and Fox’s

Algorithm

 Radix Heap: A bucket based method for shortest

path

 buckets may be redistributed

 simple implementation leads to a very good

running time

 unusual, global analysis of running time

MIT OpenCourseWare
http://ocw.mit.edu

15.082J / 6.855J / ESD.78J Network Optimization

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

