
15.082J & 6.855J & ESD.78J

Shortest Paths 2: 

Bucket implementations of Dijkstra’s Algorithm

R-Heaps    
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A Simple Bucket-based Scheme

Let C  =  1 + max(cij : (i,j) ∈ A); then nC is an upper 
bound on the minimum length path from 1 to n.    

RECALL: When we select nodes for Dijkstra's 
Algorithm we select them in increasing order of 
distance from node 1.

SIMPLE STORAGE RULE. Create  buckets from 0  
to nC.

Let  BUCKET(k) = {i ∈ T:  d(i) = k}.  Buckets are sets 
of nodes stored as doubly linked lists.  O(1) time 
for insertion and deletion.
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Dial’s Algorithm

 Whenever d(j) is updated, update the buckets so 

that the simple bucket scheme remains true.

 The FindMin operation looks for the minimum 

non-empty bucket.

 To find the minimum non-empty bucket, start 

where you last left off, and iteratively scan 

buckets with higher numbers.

Dial’s Algorithm
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Running time for Dial’s Algorithm

C  =  1 + max(cij : (i,j) ∈ A).

Number of buckets needed.  O(nC)

Time to create buckets. O(nC)

Time to update d( ) and buckets. O(m)

Time to find min. O(nC).

Total running time.  O(m+ nC).

This can be improved in practice; e.g., the space 
requirements can be reduced to O(C).
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Additional comments on Dial’s Algorithm

 Create buckets when needed.  Stop creating 

buckets when each node has been stored in a 

bucket.  

 Let d* = max {d*(j): j ∈ N}.  Then the maximum 

bucket ever used is at most d* + C.

Suppose j ∈ Bucket( d* + C + 1) after update(i).  

But then d(j) = d(i) + cij ≤ d* + C

d* d*+1

j

d*+2 d*+3 d*+C d*+C+1

∅



A 2-level bucket scheme

 Have two levels of buckets.

 Lower buckets are labeled 0 to K-1 (e.g., K = 10)

 Upper buckets all have a range of K.  First upper 

bucket’s range is K to 2K – 1.

 Store node j in the bucket whose range contains d(j).
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Find Min

 FindMin consists of two subroutines

 SearchLower:   This procedure searches lower 

buckets from left to right as in Dial’s algorithm.  

When it finds a non-empty bucket, it selects any 

node in the bucket.

 SearchUpper:   This procedure searches upper 

buckets from left to right.  When it finds a bucket 

that is non-empty, it transfers its elements to 

lower buckets.

7

FindMin

If the lower buckets are non-empty, then SearchLower;

Else, SearchUpper and then SearchLower.



More on SearchUpper

 SearchUpper is carried out when the 

lower buckets are all empty.

 When SearchUpper finds a non-empty 

bucket, it transfers its contents to lower 

buckets.  First it relabels the lower 

buckets. 
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Running Time Analysis

 Time for SearchUpper:   O(nC/K)

 O(1) time per bucket

 Number of times that the Lower Buckets are filled 

from the upper buckets:    at most n.

 Total time for FindMin in SearchLower

 O(nK);     O(1) per bucket scanned.

 Total Time for scanning arcs and placing nodes in 

the correct buckets:   O(m)

 Total Run Time:   O(nC/K + nK + m).  

 Optimized when K = C.5

 O(nC.5 + m)
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More on multiple bucket levels

 Running time can be improved with three or more 

levels of buckets.

 Runs great in practice with two levels

 Can be improved further with buckets of range 

(width)  1, 1, 2, 4, 8, 16 …

 Radix Heap Implementation
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A Special Purpose Data Structure

 RADIX HEAP:  a specialized implementation of 

priority queues  for the shortest path problem.

 A USEFUL PROPERTY (of Dijkstra's algorithm):  

The minimum temporary label  d( ) is 

monotonically non-decreasing.    The algorithm 

labels node in order of increasing distance from 

the origin.

 C = 1 + max length of an arc 
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Radix Heap Example

1

2 4

53

6

13

5

2

8

15

20

9

0

0 1 2-3 4-7 8-15 16-31 32-63

Buckets:  

bucket sizes grow 

exponentially

ranges change 

dynamically

Radix Heap 

Animation
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Analysis:  FindMin

 Scan from left to right until there is a non-empty 

bucket.   If the bucket has width 1 or a single 

element, then select an element of the bucket. 

 Time per find min:  O(K), where K is the 

number of buckets
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Analysis:  Redistribute Range

 Redistribute Range:   suppose that the minimum 

non-empty bucket is Bucket j.  Determine the min 

distance label d* in the bucket.  Then distribute 

the range of Bucket j into the previous j-1 

buckets, starting with value d*.

 Time per redistribute range:  O(K).  It takes 

O(1) steps per bucket.

 Time for determining d*: see next slide.
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Analysis:  Find min d(j) for j in bucket

 Let b the the number of items in the minimum 

bucket.  The time to find the min distance label of 

a node in the bucket is O(b).

 Every item in the bucket will move to a lower 

index bucket after the ranges are 

redistributed.

 Thus, the time to find d* is dominated by the 

time to update contents of buckets.

 We analyze that next

15



Analysis:  Update Contents of Buckets

 When a node j needs to move buckets, it will 

always shift left.  Determine the correct bucket by 

inspecting buckets one at a time.

 O(1) whenever we need to scan the bucket to 

the left.

 For node j, updating takes O(K) steps in total.
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Running time analysis

 FindMin and Redistribute ranges

 O(K) per iteration.  O(nK) in total

 Find minimum d(j) in bucket

 Dominated by time to update nodes in buckets

 Scanning arcs in Update 

 O(1) per arc.   O(m) in total.

 Updating nodes in Buckets

 O(K) per node. O(nK) in total

 Running time:   O(m + nK)

O(m + n log nC)

 Can be improved to O(m + n log C)
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Summary

 Simple bucket schemes:    Dial’s Algorithm

 Double bucket schemes:    Denardo and Fox’s 

Algorithm

 Radix Heap:  A bucket based method for shortest 

path

 buckets may be redistributed

 simple implementation leads to a very good 

running time

 unusual, global analysis of running time
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