
15.094/SMA5223 Systems Optimization: Models and Computation

Assignment 6 (100 points)

Due May 7, 2004

1 Benders’ Decomposition Problem (25 points)

You should download the files bender1.osc, eci bender1 opl master.mod, eci bender1 opl sub.mod,
and eci opl.dat from the assignment section. These files are an OPLScript based model of
the powerplant planning problem discussed in the lecture.

• The file bender1.osc is the script file that runs the problem.

• The file eci bender1 opl master.mod is the model file for the master problem.

• The file eci bender1 opl sub.mod is the model file for the sub problem.

• The file eci opl.dat is the data file for the problem.

a) The current model uses a five-point probability distribution for the gas turbine

operating costs as well as for the coal plant operating costs. Modify the model

and/or data file so that the stochastic program instead uses only the one-point

average values for the gas turbine and coal plant operating costs. How does use

of stochastic operating costs versus average operating costs impact the capacity

allocation? Can you explain why?

b) The first column of Table 1 shows the probability distribution of the economic

growth rates in the current version of the model. The second, third, fourth, and

fifth columns portray ever-cruder approximations of this distribution. Compute

the optimal capacity allocation for each one of these distributions. Using these

allocations, compute the expected costs assuming that the actual growth rate

distribution is the original one given in the first column of Table 1. Compare these

costs to the optimal expected cost. What do you observe?

1

#1 #2 #3 #4 #5

Growth Prob. Growth Prob. Growth Prob. Growth Prob. Growth Prob.
−1% 20% −0.6% 20% −0.2% 30.0% 0.6% 50% 3% 100%
1% 20% 1.8% 25% 3% 35.0% 5.4% 50%
3% 20% 4.2% 25% 6.2% 35.0%
5% 20% 6.6% 30%
7% 20%

Table 1: Original and ever-cruder growth rate distributions.

2 Another Benders’ Decomposition Problem (25 points)

The current version of the powerplant planning model uses the strategy of adding one
constraint for every scenario in the model at each iteration of the Benders’ decomposition
method. This means that k = 125 new constraints are added to the model at each
outer iteration of the method. As discussed in class, this strategy outperforms the
alternative strategy of adding only k = 1 new constraint at each outer iteration of the
model. In this question, you are asked to explore intermediate strategies that might
improve computation time for solving the powerplant planning model using Benders’
decomposition.

By adding your own control logic in the region indicated in the script file, bender1.osc,
experiment with different strategies for limiting and/or controlling the number of new
constraints added to the model at each outer iteration. You may also modify the model
files or the data file if necessary. (One strategy that you might try would be to add a
fixed number of constraints, say k = 10, 20, or 30, etc., constraints per outer iteration.)

3 SDP Truss Dynamics Problem (25 points)

Code Preparation:

a) unzip sdptruss.zip. This will create a folder called SDPT3-3.0. Work directly in

this folder for the truss dynamics SDP exercises.

b) Create matlab mex files. To do this, start matlab from within the SDPT3-3.0

folder. At the matlab prompt, type Installmex You will see a bunch of warnings,

but after about 1 minute the script will finish and SDPT3 will be ready to use.

2

c) Now you are ready to use SDPT3-3.0.

For the truss problem, we have provided wrap-around scripts to avoid having to call
SDPT3 directly. For detailed information about these scripts, see the README-TRUSS
file in the SDPT3-3.0/ directory. For the homework, the commands needed are explained
right in the homework itself though, so you can probably avoid reading this.

a) After downloading and unzipping the truss and SDPT3 packages, you will see a
file called bridge1.txt. Download the text file bridge1.txt for the bridge shown in
Figure 1.

bridge1

5

0

1

2

3

4

12

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

−1

0 1 2 3 4 5 6 7 8 9 10

Figure 1: Geometry of a bridge1 with labeled nodes.

The format of the input in this file is “node1x node1y node2x node2y area”. For
example, the first line of the bridge1.txt file is “1 0 0 0 1.6”, which means that
there is a bar from (1,0) to (0,0) of area 1.6. (Note that the file contains an extra
last line.) Run truss.m (just type truss) to prepare an input file for the SDPT3
program. Constrain the two end nodes of the bridge (nodes 2 and 32 as you can
see in Figure 1) in both the x and y degrees of freedom (you will be prompted for
this information).

b) What is the current lowest natural frequency of the bridge (this is output from the
program truss.m)?

3

When prompted for a desired threshold frequency for the optimization, assume
that design specifications require the lowest frequency to be 700 Hz. A file called
truss.sdpa is generated which is the input to the following optimization problem.

c) Optimization. Now run solvetruss.m and SDPT3 will compute the optimal areas
using the original areas in the file bridge1.txt as lower bounds.

d) What is the maximum increase in the areas among all of the bars of the truss?
(Hint: the original areas are stored in the areas array (a Matlab row vector), and
the new areas are stored in SDPT3 output array y (a Matlab column vector).

e) What is the resulting weight of the structure? (Hint: The objective value for the
primal and dual are stored in a 2 × 1 array called obj. The negative sign is a result
of writing our problem in SDPT3 format.)

f) Sensitivity to nearly infeasible and nearly feasible problems. As it turns out,
the highest threshold frequency possible for this truss (above which the model

¯is infeasible) is Ω = 1012.7 Hz. Try to create a plot of IPM iterations versus
¯threshold frequency in the range 700 ≤ Ω ≤ 1012.7. (Hint: To generate such a

plot, rather than re-input the truss geometry every time, just run reenterOmega.m
and after that rerun solvetruss.m.) As frequency is increased, the problem should
become harder to solve. What types of messages does the code give indicating
this? Nevertheless, the code does well. What is your overall observation from the
plot you have created?

g) Now try to create a plot of IPM iterations versus threshold frequency in the range
¯1012.7 ≤ Ω ≤ 2000. As frequency is increased, the software should take fewer

iterations to declare the problem to be infeasible. What types of messages does
the code give indicating this? What is your overall observation from the plot you
have created?

4	 Another Semidefinite Optimization Exercise (25

points)

This exercise is designed for you to explore solving ever-larger instances of a truss dy-
namics SDP problem. We have created a Matlab script for you that automatically:

•	 generates finer and finer meshed towers such as that shown in Figure 2 and Figure
3,

4

•	 determines each tower’s natural frequency, and

•	 runs SDPT3 to find the minimum weight structure with a natural frequency that
is 10 percent larger than the original.

tower3
100 7 8

1

2

5 6

90

80

70

60

50

40

4
30

20

10

0

−60 −40 −20 0 3 20 40 60

Figure 2: Geometry of a tower with 3 segments with labeled nodes.

tower5
100 1112

1

2

5 6

7 8

90

80
 9 10

70

60

50

40

30

20
 4

10

0
 3−60 −40 −20 0 20 40 60

Figure 3: Geometry of a tower with 5 segments with labeled nodes.

a) Solve the SDP optimization problem with each of these finer and finer meshes for
the towers by running the script runtowers.m.

Note that generating the SDPA formatted input data will take progressively longer
with each mesh refinement. You may want to reduce the number of mesh refine-
ments if you find that your computer runs out of memory.

b) Plot IPM iterations and CPU times versus the number of nodes. What do you
observe regarding computational efficiency?

5

