Auto Industry Socio-Tech System Study

Module 1: Integrating Social and Technical Systems

© Joel Cutcher-Gershenfeld and Thomas Kochan -- An MIT/Sloan Foundation Industry System Study -- distributed through the Engineering Systems Learning Center, Engineering Systems Division, MIT

Overview and Expected Outcomes – Module 1

Overview

- Welcome and overview
- The "big picture"
- Social and technical framework
- Exercise: Focus on the Seven Wastes and the 5 S's
- Sample Socio-Tech Implementation
- Exercise: Cellular Design Socio-Tech Analysis
- Conclusion

Expected outcomes

- Awareness of shifts in social and technical systems over time
- Understanding of the interdependency between social and technical systems
- Identification of potential "guiding principles" for designing, implementing and sustaining change in social and technical aspects of new work systems

The "Big Picture"

Social Systems <u>Technical</u> <u>Systems</u>

Craft Production

Mass Production

Decentralized Enterprises Mastery of Craft Custom Manufacture Specialized Tools

Vertical Hierarchies Scientific management Assembly Line Interchangable Parts

Knowledge-Driven Work

Network Alliances Team-Based Work Systems

Flexible Specialization Information Systems

Adapted from: "Knowledge-Driven Work: Unexpected Lessons from Japanese and United States Work Practices" (Oxford University Press, 1998)

© Joel Cutcher-Gershenfeld and Thomas Kochan -- An MIT/Sloan Foundation Industry System Study -- distributed through the Engineering Systems Learning Center, Engineering Systems Division, MIT

Sample Social System Transformation Initiatives

•	 Socio-Technical Work Systems	Semi-autonomous teams
•	 Employee Involvement/QWL Late 1970s-1990s 	EI/QWL groups (off-line)
•	 Total Quality Management	Quality circles (off-line)
•	Re-engineering	Nork-out events (off-line)
•	 Six Sigma	Black belt let project teams (off-line)
•	Lean Production/Enterprise Systems ι ◆ 1950s-present	ean production teams/Integrated product & Process teams

Social and Technical Systems Framework: Delivering Value to Multiple Stakeholders

© Joel Cutcher-Gershenfeld and Thomas Kochan -- An MIT/Sloan Foundation Industry System Study -- distributed through the Engineering Systems Learning Center, Engineering Systems Division, MIT

Focus on Social Systems

Structure & Sub-Systems

- Structure
 - Groups
 - Organizations
 - Institutions
- Sub-Systems
 - Communications
 - Information
 - Rewards & reinforcement
 - Selection & retention
 - Learning and feedback
 - Conflict resolution

Social Interaction Processes

- Leadership
- Negotiations
- Problem-solving
- Decision-making
- Partnership

Capability & Motivation

- Individual knowledge, skills & ability
- Group stages of development
- Fear, satisfaction and commitment

Focus on Technical Systems

Equipment & New Technology

- Equipment and machinery
- Physical infrastructure
- Information technology
- Nano-technology, bio-technology, and other frontiers of science

Methods & Processes

- Job design/office design
- Work flow/process mapping methods
- Value stream mapping
- Constraint analysis
- Statistical Process Control (SPC)
- System optimization and decomposition methods

Materials & Supply Chain

- Interchangeable parts and mass production systems
- Just-In-Time delivery (JIT) systems
- Synchronous material flow systems
- e-commerce

Exercise: The Seven Wastes and the Five S's

The Seven Wastes

- Over Production
- Waiting
- Transportation
- Inventory
- Processing
- Motion
- Defects

The Five S's

- Simplify or Sort
- Straighten or Simplify
- Scrub or Shine
- Stabilize or Standardize
- Sustain or Self-Discipline

How are social and technical systems interdependent when it comes to addressing the Seven Waste?

How are they interdependent when it comes to the 5S's?

Sample Socio-Tech Implementation

Data on Technical Milestones

© Joel Cutcher-Gershenfeld and Thomas Kochan -- An MIT/Sloan Foundation Industry System Study -- distributed through the Engineering Systems Learning Center, Engineering Systems Division, MIT

Data on Social Milestones

© Joel Cutcher-Gershenfeld and Thomas Kochan -- An MIT/Sloan Foundation Industry System Study -- distributed through the Engineering Systems Learning Center, Engineering Systems Division, MIT

Socio-Tech Data

© Joel Cutcher-Gershenfeld and Thomas Kochan -- An MIT/Sloan Foundation Industry System Study -- distributed through the Engineering Systems Learning Center, Engineering Systems Division, MIT

Exercise: Cellular Manufacturing Socio-Tech Analysis

Step 1: Group Formation and Stakeholder Analysis

Form small groups of 2-3 people (individuals at remote locations may link by phone), study the "current state" and "desired state" illustrations on a hypothetical cellular manufacturing intervention (next slide), and list stakeholders involved in your phase of this intervention.

Note: Some groups will be assigned to "Preparing," "Implementing," and "Sustaining" phases of this intervention

Step 2: Social Systems

Identify the most important social system changes in this work system that are relevant to your phase of the intervention.

Step 3: Technical Systems

Identify the most important technical changes in this work system that are relevant to your phase of the intervention.

Step 4: Integration and Guiding Principles

Discuss ways in which the social and technical changes are or are not interdependent. Derive 1-3 "Guiding Principles" for implementing a systems change of this type.

Exercise: Cellular Manufacturing

Revisit the Social and Technical Systems Framework

- distributed through the Engineering Systems Learning Center, Engineering Systems Division, MIT

Module 1

15

Conclusion

A unique historical moment

The constant challenge and opportunity presented by social and technical interdependency

A fragile foundation for a global transformation

Appendix: Japanese Model of Production System and "Humanware"

Source HaruoShimada and John Paul MacDuffie, Industrial Relations and "Humanware" (Slaon School of Management Work Paper, September, 1986)

