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� � � � 

Discrete Models


Definitions of SPD (π) and risk-neutral probability (Q). 

Absence of arbitrage is equivalent to existence of the SPD or a 
risk-neutral probability: 

T T

Pt = EP 
t 

� π

π

u

t 
Du = EQ 

t 

� 

B
B

u

t Du 

u=t+1 u=t+1 

Price of risk: under Gaussian P and Q distributions, 

εQ = εP + ηtt t 

Log-normal model (discrete version of Black-Scholes): 

µt − rt = σt ηt 
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Stochastic Calculus


Brownian motion, basic properties (IID Gaussian increments, 
continuous trajectories, nowhere differentiable). 
Quadratic variation. [Z ]T = T . Heuristically, 

(dZt )
2 = dt . 

Stochastic integral. 
Ito’s lemma: 

df (t , Xt ) = 
∂f (t , Xt ) dt + 

∂f (t , Xt ) dXt + 
1 ∂2f (t , Xt )

(dXt )
2 
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Multivariate Ito’s lemma. 
∂f ∂f ∂f

df (t , Xt , Yt ) = dt + dXt + dYt + 
∂t ∂Xt ∂Yt 
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Black-Scholes Model


Arbitrage-free pricing of options by replication. 

European option with payoff H(ST ). 

Replicating portfolio delta is 

∂f (t , St )
θt = 

∂St 

∂f (t , S) ∂f (t , S) 1 
σ2S2 ∂

2f (t , S)
−r f (t , S) + + rS + = 0 

∂t ∂S 2 ∂S2


with the boundary condition f (T , S) = H(S).
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Pricing by Replication: Limitations


In many models cannot derive a unique price for a derivative. 

Term structure models, stochastic volatility. 

Price assets relative to each other. Replication argument combined 
with assumptions on prices of risk. 

Alternatively, specify dynamics directly under Q. 
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� � � � � � 

Risk-Neutral Pricing 

General pricing formula � � �T � � 

= EQ exp − rs dsPt t HT 
t 

Need to specify dynamics of the underlying under Q. 
If underlying is a stock, only one way to do this: set expected return to 
r . 
Q dynamics is related to P through price of risk 

dZt 
P = −ηt dt + dZt 
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� � 

Risk-Neutral Pricing and PDEs 

Derive a PDE on derivative prices using Ito’s lemma. 
One-factor term structure model 

Et [df (t , rt )] = rt f (t , rt ) dt 

Vasicek model: 
drt = −κ(rt − r ) dt + σ dZt 

Q 

f (t , rt ) must satisfy the PDE 

∂f (t , r )
− κ(r − r ) 

∂f (t , r )
+ 

1 
σ2 ∂

2f (t , r)
= rf (t , r )

∂t ∂r 2 ∂r 2 

with the boundary condition


f (T , r ) = 1


Expected bond returns satisfy 

dP(t , T )
Et P(t , T ) 

= (rt + σP
t ηt ) dt 
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Monte Carlo Simulation


Random number generation: inverse transform, acceptance-rejection 
method. 

Variance reduction: antithetic variates, control variates. 

Intuition behind control variates: carve out the part of the estimated 
moment that is known in closed form, no need to estimate that by 
Monte Carlo. 

Good control variates: highly correlated with the variable of interest, 
expectation known in closed form. 

Examples of control variates: stock price, payoff of similar option, etc. 
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