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Discrete Models

@ Definitions of SPD (7t) and risk-neutral probability (Q).

@ Absence of arbitrage is equivalent to existence of the SPD or a
risk-neutral probability:

T T
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@ Price of risk: under Gaussian P and Q distributions,
ef =er +m
@ Log-normal model (discrete version of Black-Scholes):

Wt — It = oMy
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Stochastic Calculus
@ Brownian motion, basic properties (IID Gaussian increments,

continuous trajectories, nowhere differentiable).
@ Quadratic variation. [Z]7 = T. Heuristically,

(dZ;)? = dt.
@ Stochastic integral.
@ lto’s lemma:
of(t, X;) of(t, X¢) 1 0%f(t, X;) 5
f(t, X;) = Xy + ————— (dX;
d(t, %) ot T Tox, it axe (X
@ Multivariate Ito’s lemma.
of of of
f(t, X, Y —dX; + Y,
df(t, Xz, Yi) = 3 dt+ax,d’ aYtd ++
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Black-Scholes Model

@ Arbitrage-free pricing of options by replication.
@ European option with payoff H(Sr).
@ Replicating portfolio delta is

o, — of(t, S)
T es
of(t, S) 0f(t,S) 1 ,p0%f(t,S)
—rf(t,S)+ o1 +rS 35 +2087’682 =0

with the boundary condition (T, S) = H(S).
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Pricing by Replication: Limitations

@ In many models cannot derive a unique price for a derivative.
@ Term structure models, stochastic volatility.

@ Price assets relative to each other. Replication argument combined
with assumptions on prices of risk.

@ Alternatively, specify dynamics directly under Q.
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Risk-Neutral Pricing

@ General pricing formula

.
Py = ES {exp ( J rs ds) Hr}
t

@ Need to specify dynamics of the underlying under Q.

@ If underlying is a stock, only one way to do this: set expected return to
r.

@ Q dynamics is related to P through price of risk
dzZf = —ndt + dzR

@ Risk premium

ds, ds, ds,
Ep[t}—rdt:EP[t]—Eo[ ’]
tl's ! tl's, S
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Risk-Neutral Pricing and PDEs

@ Derive a PDE on derivative prices using Ito’s lemma.
@ One-factor term structure model

Eildf(t, ry)] = nf(t, ) dt

@ Vasicek model:
dft = —K(I’t —7) at+ O'dZtQ

@ f(t, r;) must satisfy the PDE

of(t, r) _Of(tr) 1 L 0%f(tr)
or k(r—r) T + 20 a2 = rf(t, r)
with the boundary condition
f(T,r)=1
@ Expected bond returns satisfy
dP(t, T)
E; ( Pt T) > =(rn+ O'fT]f) dt
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Monte Carlo Simulation

@ Random number generation: inverse transform, acceptance-rejection
method.

@ Variance reduction: antithetic variates, control variates.

@ Intuition behind control variates: carve out the part of the estimated
moment that is known in closed form, no need to estimate that by
Monte Carlo.

@ Good control variates: highly correlated with the variable of interest,
expectation known in closed form.

@ Examples of control variates: stock price, payoff of similar option, etc.
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