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0 Stochastic Integral
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Brownian Motion

@ Consider a random walk x;, na; With equally likely increments of ++/At.
@ Let the time step of the random walk shrink to zero: At — 0.

@ The limit is a continuous-time process called Brownian motion, which we
denote Z;, or Z(t).

@ We always set Z; = 0.
@ Brownian motion is a basic building block of continuous-time models.
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Stochastic Integral

Properties of Brownian Motion

@ Brownian motion has independent increments: if t < t’ < t”, then Zy — Z; is
independent of Zy» — Z;.

@ Increments of the Brownian motion have normal distribution with zero mean,
and variance equal to the time interval between the observation points

Zy —Zi ~N(0,t' — 1)

Thus, for example,
EilZv —Z] =0
Intuition: Central Limit Theorem applied to the random walk.
@ Trajectories of the Brownian motion are continuous.

@ Trajectories of the Brownian motion are nowhere differentiable, therefore
standard calculus rules do not apply.
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lto Integral

@ lto integral, also called the stochastic integral (with respect to the Brownian
motion) is an object

t
J o,dZ,
0

where oy, is a stochastic process.

@ Important: o, can depend on the past history of Z,, but it cannot depend on
the future. o, is called adapted to the history of the Brownian motion.

@ Consider discrete-time approximations

N

t
Z oi—natldiat — Zii—at), At= N
i—1

and then take the limit of N — oo (the limit must be taken in the
mean-squared-error sense).

@ The limit is well defined, and is called the Ito integral.
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Properties of 1t6 Integral

@ [t6 integral is linear

t t

a, dz, + CJ' b, dZ,

t
J (a, +c¢ x by) dZu:J
0

0 0
t . . . .
e X; = J"O o, dZ,, is continuous as a function of time.

@ Increments of X; have conditional mean of zero (under some technical
restrictions on o,):
EidXe — X)) =0, t' >t

Note: a sufficient condition for E; {LT oy dZu} =0is Eg [IOT o2 du} < 00.

@ Increments of X; are uncorrelated over time.

@ If oy is a deterministic function of time and jé 02 du < oo, then X; is normally
distributed with mean zero, and variance

t
EolX?] :J o2 du
0
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[t0 Processes

An It6 process is a continuous-time stochastic process X;, or X(t), of the form

t t
J uudquJ o,dZ,
0 0

1, is called the instantaneous drift of X; at time u, and o, is called the
instantaneous volatility, or the diffusion coefficient.

L dt captures the expected change of X; between t and t + dft.

o dZ; captures the unexpected (stochastic) component of the change of X;
between t and t + df.

Conditional mean and variance:

Et(Xerat — X)) = wedt+o(dt), E¢[(Xewar — X)?] = 0% dt + o(dt)
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@ 1to's Lemma
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Quadratic Variation

@ Consider a time discretization

O=t<b<..<ty=T, ma>lfl1\tn+1—tn|<Z
n _

@ Quadratic variation of an It process X(t) between 0 and T is defined as

N—

Z tn+1 (tn)|2

@ For the Brownian motion, quadratic variation is deterministic:
Zlr=T

To see the intuition, consider the random-walk approximation to the Brownian
motion: each increment equals +/t,.1 — t, in absolute value.
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Quadratic Variation

@ Quadratic variation of an It6 process
t t
X :J uudU+J o, dZ,
0 0

is given by

T
[X]T ZJ 0'% dt
0

@ Heuristically, the quadratic variation formula states that
(dZ,)? = dt, dtdZ =o(dt), (dt)?=o(dt)
@ Random walk intuition:
dZ,| = Vdt, |dtdZ| = (dt)*? =o(dt), dZ?=dt

@ Conditional variance of the 1td process can be estimated by approximating its
quadratic variation with a discrete sum. This is the basis for variance
estimation using high-frequency data.
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[t6’s Lemma

@ |t6’s Lemma states that if X; is an It process,
t t
Xi :J uudu—s—J oy, dZ,
0 0

then so is f(t, X;), where f is a sufficiently smooth function, and

of(t,X) | 0f(t.X) ., 10%(1,X)
ot ax, M2 oxe

of(t, X;)

t

df(t, X;) = ( o?) dt + oy dZ,

@ It6’s Lemma is, heuristically, a second-order Taylor expansion in t and X;,
using the rule that

(dZ;)? = dt, dtdZ =o(dt), (dt)? = o(dt)
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[t6’s Lemma

@ Using the Taylor expansion,

of(t, X;) of(t, Xy) 10%(t, X;)
o1 at + X, er+§7at2

102F(,X,) , .,  02f(t, X,
2 AU gy bl V)
2 X2 (d”*'am&
COf(L X)) . Of(t, X)) f(t, X;)
=Tt M Tox MdtTox
1.0%1(1, X))
27 ox?

df(t, X;) ~ dt?

dt dX;

Ot dZ[
0% dt + o(dlt)

@ Short-hand notation

2
of(t, Xi) at + of(t, Xi) dXH_la f(t, X)

df(t, X;) =
(8. %) ot X 2 X2

(dX;)?
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[t0’s Lemma

Example
o Let X; = exp(at + bz;).
@ We can write X; = f(t, Z;), where
f(t, Z;) = exp(at + bz;)

@ Using

of(t, Z;) _ af(t.2) of(t, Z;) — bi(t. 2) 0%f(t, Z)

= b?f(t, Z,
ot ot dZ, et 0Z2 (t.2)

It6’'s Lemma implies
b?
aX; = a—‘rE X; dt + bX; dZ;
@ Expected growth rate of X; is a + b?/2.
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© Black-Scholes Model
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The Black-Scholes Model of the Market

Consider the market with a constant risk-free interest rate r and a single risky
asset, the stock.

Assume the stock does not pay dividends and the price process of the stock

is given by
1
S = Spexp ((p.— 202> t+ GZ,)

Because Brownian motion is normally distributed, using
Eolexp(Z;)] = exp(t/2), find

EolSi] = Sy exp(ut)
Using Ité’s Lemma (check)

@ = udt-i-GdZt
St

w is the expected continuously compounded stock return, o is the volatility of
stock returns.

Stock returns have constant volatility.
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Dynamic Trading

Consider a trading strategy with continuous rebalancing.
At each point in time, hold ©; shares of stocks in the portfolio.

Let the portfolio value be W;. Then W; — 6;S; dollars are invested in the
short-term risk-free bond.

Portfolio is self-financing: no exogenous incoming or outgoing cash flows.

Portfolio value changes according to

dW; = 6; dSt + (W[ — GtSt)rdt

Discrete-time analogy

B
Wirat — Wi = 04(Strar — St) + (W, — 0:S;) ( tgtm — 1)
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Option Replication

@ Consider a European option with the payoff H(Sr).
@ We will construct a self-financing portfolio replicating the payoff of the option.
@ Look for the portfolio such that

W[ == f(t, Sz)

for some function f(t, S;).

@ By Law of One Price, f(t, S;) must be the price of the option at time t, being
the cost of a trading strategy with an identical payoff.

@ Note that the self-financing condition is important for the above argument: we
do not want the portfolio to produce intermediate cash flows.
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Option Replication

@ Apply It&’s Lemma to portfolio value, W; = f(t, S;):

of of 1 0%f
dW; =0:dS; + (W; — 0;Sy)rdt = — dt + — dS; + 2682

ot 0S; (dS1)?

where (dS;)? = 0282 dt
@ The above equality holds at all times if
of(t,Sy)  of(t,S;)  10%f(t, Sy)
0; = , + = 5
ot 2 0§

of
35S, 0'2812—r<f(t, S[)—S[> =0

@ If we can find the solution f(t, S) to the PDE

of(t, S) of(t,S) 1 ,0%(t,S)
with the boundary condition f(T, S) = H(S), then the portfolio with
of(t, Sy)
Wo=f 0; =
b =1(0,S), 6 35,

replicates the option!
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Black-Scholes Option Price

@ We conclude that the option price can be computed as a solution of the

Black-Scholes PDE
of 1 02f
—rf >z o 2 2_
r*at+8as+2asz S 0

@ If the option is a European call with strike K, the PDE can be solved in closed
form, yielding the Black-Scholes formula:

C(t, St) = StN(z1) —exp(—r(T — 1))KN(z2),

where N(.) is the cumulative distribution function of the standard normal

distribution, <
. log () + (r+ 30%) (T — t)'
oVT —t
and
Z=zi—oVT —t

@ Note that u does not enter the PDE or the B-S formula. This is intuitive from
the perspective of risk-neutral pricing. Discuss later.
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Black-Scholes Option Replication

@ The replicating strategy requires holding

o _ Ot S)
Y-

stock shares in the portfolio. 6; is called the option’s delta.

@ ltis possible to replicate any option in the Black-Scholes setting because

@ Price of the stock S; is driven by a Brownian motion;

@ Rebalancing of the replicating portfolio is continuous;

@ There is a single Brownian motion affecting the payoff of the option and the price
of the stock. More on this later, when we cover multivariate 1té processes.
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Single-Factor Term Structure Model

@ Consider a model of the term structure of default-free bond yields.
@ Assume that the short-term interest rate follows

dft = (X(f[) at+ B(f}) dZt

@ Let P(t, T) denote the time-t price of a discount bond with unit face value
maturing at time .

@ We want to construct an arbitrage-free model capturing, simultaneously, the
dynamics of bond prices of many different maturities.
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Single-Factor Term Structure Model

@ Assume that bond prices can be expressed as a function of the short rate
only (single-factor structure)

P(t,t) = f(t, r, T)

@ It6 formula implies that

of of 1 9%f 2 of
dP(t,T)— (m+ma(rt)+zaﬂﬁ (r[)> dt+ aﬁ(r[) dZ[
~——
e or

@ Consider a self-financing portfolio which invests P(t, t)/o7 dollars in the
bond maturing at T, and —P(t,t’)/oF dollars in the bond maturing at .

@ Self-financing requires that the investment in the risk-free short-term bond is

P(t,T) Pt T)
of o7’

W; —
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Black-Scholes Model

Single-Factor Term Structure Model

@ Portfolio value evolves according to

[ P(t,t P(t T’ T 4
dw; = (W,— (T)+ (T, ))rt+”;—”;,}dt+
L Oy 0y Oy O
of o}
— | dz
of of } ’
i P P(t, T’ T
= (Wt (t'TT) + (t;zt))l’tJrutT H,tt/} dt
O Oy 0y O

@ Portfolio value changes are instantaneously risk-free.
@ To avoid arbitrage, the portfolio value must grow at the risk-free rate:

P(t P(t, T’ oy
(Wt— o, ('T))rﬂri’—”’ = Wi,
t t

of of T o
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Single-Factor Term Structure Model

@ We conclude that

T nP(t, v Pt T
Ht [T ( T) _ H[ IT/( T )' fOI’ any T and T,
¥ ¥

@ Assume that, for some 1/,

TPt
B IPTD it
Oy
@ Then, for all bonds, must have
HtT - rfP(tr T) = n(tv rt)o-;c
@ Recall the definition of 17, of to derive the pricing PDE on P(t,t) = f(t, r;, T)

y+g (”_}.1@ 2
ot " or T 252

@ The solution, indeed, has the form f(t, r, 7).
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Single-Factor Term Structure Model

@ What if

wi — Pt )
of

#n(t. n)

for any function 1, i.e., the LHS depends on something other than r; and t?
Then the term structure will not have a single-factor form.

@ We have seen that, for each choice of 1(t, r;), absence of arbitrage implies
that bond prices must satisfy the pricing PDE.

@ The reverse is true: if bond prices satisfy the pricing PDE (with well-behaved
n(t, r;)), there is no arbitrage (show later, using risk-neutral pricing).

@ The choice of nj(t, r;) determines the joint arbitrage-free dynamics of bond
prices (yields).
@ 1 (t, ry) is the price of interest rate risk.
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© Muttivariate 1to Processes
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Multiple Brownian motions

@ Consider two independent Brownian motions Z! and Z?. Construct a third

process
Xi =pZ! +/1—p2Zf

@ X;is also a Brownian motion:

@ X; has IID normal increments;

@ X; is continuous.
@ X; and Z! are correlated:

Eo [X:Z'] = ot
@ Correlated Brownian motions can be constructed from uncorrelated ones,
just like with normal random variables.
@ Cross-variation
N—1
20,2817 = Jim > (Z'(ta11) — Z" (1)) x (ZP(tns1) — Z%(ta)) = O

A—0
n=1

@ Short-hand rule
dz dZ? =0 = dZ! dX; = p dt
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Multivariate 1t6 Processes

@ A multivariate It6 process is a vector process with each coordinate driven by
an It6 process.

@ Consider a pair of processes
dX; =py dt + of dz%,
dY: =u) dt + o) dz/,
dzX dzY =p; dt

@ It6’s formula can be extended to multiple process as follows:

of of of

(X, Yy) = — dt + —— dX; + —— dY,

of(t, X Vi) = 5 At + 55 OXi+ 3 Vi
1 02f , 1 0% , O
Ea—xtz(dx,) +§aT,2(de) + 3xay, Y
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Example of Ité’s formula

@ Consider two asset price processes, X; and Y;, both given by Ité processes

dX; = uf dt + of dZ}*
dY; = dt+ o) dz)
dzX¥dzy =0

@ Using Itd’s formula, we can derive the process for the ratio f; = X;/ Y; (use
f(X,Y)=X/Y):

dfi _dX; dY, dX aY (dY,>2
t

X % Y)2 oY
Ht Mt ( ) t Y
=|———+-— ) dt dZ dz,
(xt v, Y? ) + Loyt

@© Leonid Kogan (MIT, Sloan ) 15.450, Fall 2010 30/74



Example of Ité’s formula

@ We find that the expected growth rate of the ratio X;/Y; is
2
W, (o)
Xi Y: Y?

@ Assume that u¥ = u). Then,

E(M);(df

Y[Z

dt

@ Repeating the same calculation for the inverse ratio, h; = Y;/X;, we find

E(wv:(ﬁf

dt
hy X2

@ ltis possible for both the ratio X;/Y; and its inverse Y;/X; to be expected to
grow at the same time. Application to FX.
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© sDEs
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SDEs

Stochastic Differential Equations

@ Example: Heston'’s stochastic volatility model
as;

E)
th = — K(Vt —V) at —l—y\/thZt"

dz® dz/ =p dt

=wdt 4 /v; dZ°

Conditional variance v; is described by a Stochastic Differential Equation.
Definition (SDE)

The It6 process X; satisfies a stochastic differential equation

dXt = }l(t, Xt) at + O'(t, Xt) dZt
with an initial condition Xy if it satisfies
t

Xi = Xo +J u(s, Xs) ds + o(s, Xs) dZs.
0
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Existence of Solutions of SDEs

@ Assume that for some C,D > 0
lu(t, X)+ lo(t, X)| < C(1 +1X])

and
lu(t, X) —u(t, Y)+lo(t, X) —oft, Y)| < DIX — Y]

for any X and Y (Lipschitz property).
@ Then, the SDE

dXt = },L(t, Xt) at + O'(t, Xt) dZt, XO = X,

has a unique continuous solution X;.
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Common SDEs

Arithmetic Brownian Motion

@ The solution of the SDE
dX[ = Ll.dt‘l’ GdZt

is given by
Xi=Xo+ ut+ oz;.
The process X; is called an arithmetic Brownian motion, or Brownian motion
with a drift.
@ Guess and verify.
@ We typically reduce an SDE to a few common cases with explicit solutions.
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Common SDEs

Geometric Brownian Motion

@ Consider the SDE
dXt = HX[ at + (TX[ dZ[
@ Define the process
Y = |n(X[)
By Itd’s Lemma,
1

O'X[ dZ[ + = (

1 1
aYi= —uXidt + —
t X +Xt >

1
X )02 X2 dt = (u— 0%/2) dt + ¢ dZ,.
t

X2

@ Y;is an arithmetic Brownian motion, given in the previous example, and
Y, =Yy + (u— 0?/2)t + 0Z.

@ Then

X, =e" = Xpexp ((n— 0?/2)t + 0Z)

@© Leonid Kogan (MIT, Sloan ) 15.450, Fall 2010 36/74



Common SDEs

Ornstein-Uhlenbeck process

@ The mean-reverting Ornstein-Uhlenbeck process is the solution X; to the
stochastic differential equation

dX[ = (Y— X[) at + GdZt

@ We solve this equation using e' as an integrating factor.
@ Setting Y; = e! and using Ité’s lemma for the function f(X, Y) = X Y, we find

d(etXt) = et(Ydt + O'dZt).

Integrating this between 0 and t, we find

t t

eXds + J e‘cdZs,

e[Xt — Xo = J
0

0

t
Xi=e'Xo+(1—e )X+ GJ eStaz,.
0
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Option Replication in the Heston Model

@ Assume the Heston stochastic-volatility model for the stock.

@ Attempt to replicate the option payoff with the stock and the risk-free bond.

@ Can we find a trading strategy that would guarantee perfect replication?

@ lItis possible to replicate an option using a bond, a stock, and another option.
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e e I e e e O A e Tl e Dt e
Recap of APT

@ Recall the logic of APT.
@ Suppose we have N assets with two-factor structure in their returns:

R = aj+ b} F] + bZF?

Interest rate is r.

While not stated explicitly, all factor loadings may be stochastic.

Unlike the general version of the APT, we assume that returns have no
idiosyncratic component.

@ Attime t, consider any portfolio with fraction 6, in each asset i that has zero
exposure to both factors:

b0 + b30, + ... + bYOy =0
b;91 + b§92 + ...+ bQ’GN =0

This portfolio must have zero expected excess return to avoid arbitrage
01 (B[R] —r) + 02 (Ef[RZ) —r) + ... + On (B[R] — 1) =0
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Recap of APT

@ To avoid arbitrage, any portfolio satisfying

bj0y + b0, + ... + bYoy =0
b1 + b50, + ... + bYOy =0

must satisfy
01 (Ed[R!]—r) + 02 (B[R] —r) + ...+ On (B[R — 1) =0
@ Restating this in vector form, any vector orthogonal to
(b}, b2, ..., bY) and (b}, b2, ..., bY)

must be orthogonal to (E;[R}] — r, E¢{[R?] —r, ..., E{[RN] — r).

@ Conclude that the third vector is spanned by the first two: there exist
constants (prices of risk) (A}, A?) such that

EdR] —r=Ab, +A2b), i=1,.,N
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Option Pricing in the Heston Model

@ Suppose there are N derivatives with prices given by
fi(tv va V[)

where the first option is the stock itself: (¢, S;, vi) = S;.
@ Using Ito’s lemma, their prices satisfy

afi(t, S[, Vt) ds[ I af’(t, St, V[) dV[

afi(t, S = gldt
(8.8t vi) = gdt+ —7¢ v,

@ Compare the above to our APT argument

@ Conclude that there exist Ay and A} such that

of'(t, St, vr)
0S;

of'(t, S, vt)

E [df'(t, St vi) — rf (£, S, vi) ] = 5y
t

AP dt + A/ dt

@ We work with price changes instead of returns, as we did in the APT,
because some of the derivatives may have zero price.
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Option Pricing in the Heston Model

@ The APT pricing equation, applied to the stock, implies that
E[dS; —rS;df]l = (1—r)Sidt =AY dt

@ A/ is the price of volatility risk, which determines the risk premium on any
investment with exposure to dv;.

@ Writing out the pricing equation explicitly, with the Ito’s lemma providing an
expression for E [df'(t, S, vi)],

of of of _
102f1 , 192f ,  0f . off of
206" T39.2Y V5, YOV T = ggk TS+ N

@ As long as we assume that the price of volatility risk is of the form
A =A(t, S v)

the assumed functional form for option prices is justified and we obtain an
arbitrage-free option pricing model.
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Numerical Solution of SDEs

@ Except for a few special cases, SDEs do not have explicit solutions.

@ The most basic and common method of approximating solutions of SDEs
numerically is using the first-order Euler scheme.

@ Use the grid t; = iA.
5\(i+1 X+},L(t,, )A—I—O‘(t,, /) \/ZE/IV

where ¢; are 11D N(0, 1) random variables.

@ Using a binomial distribution for €;, with equal probabilities of +1, is also a
valid procedure for approximating the distribution of X;
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© sDEs and PDEs

@© Leonid Kogan (MIT, Sloan ) 15.450, Fall 2010 44/74



SDEs and PDEs

Moments of Diffusion Processes

@ Often need to compute conditional moments of diffusion processes:

e Expected returns and variances of returns on financial assets over finite time
intervals;
@ Use the method of moments to estimate a diffusion process from discretely
sampled data;
o Compute prices of derivatives.
@ One approach is to reduce the problem to a PDE, which can sometimes be
solved analytically.
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SDEs and PDEs

Kolmogorov Backward Equation

@ Diffusion process X; with coefficients u(t, X) and o(t, X).
@ Objective: compute a conditional expectation

f(t, X) = Elg(X7)IX; = X]
@ Suppose f(t, X) is a smooth function of t and X. By the law of iterated
expectations,
f(t, Xy) = Elf(t+dt, Xerar)] = Eldf(t, X))] =0
@ Using Ito’s Lemma,
of(t, X) of(t, X) 1 5 02f(t, X) B
o1 + u(t, X) OX +20(t,X) X2 at=0
@ Kolmogorov backward equation
of(t, X) of(t, X) 1 » 02f(t, X)
— X))
ot ax 20X 55
with boundary condition

Elldf(t, X,)] = (

+ u(t, X) =0,

(T, X) = 9(X)
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Example: Square-Root Diffusion

@ Consider a popular diffusion process used to model interest rates and
stochastic volatility

dXt = —K(Xt —7) at + [ORV Xt dZ[

@ We want to compute the conditional moments of this process, to be used as
a part of GMM estimation.

@ Compute the second non-central moment
f(t, X) = E(X31X = X)
@ Using Kolmogorov backward equation,

of(t, X) —Of(t, X) 2f(t, X)
51 — k(X —=X) % 702)( e =0,

with boundary condition
f(T, X) = X?
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Example: Square-Root Diffusion

@ Look for the solution in the the form

f(t,%) = aolt) + an(x + 20

@ Substitute f(t, X) into the PDE

(1)
2

2
ah(t) +al(HX + 22 X2 — (X — X)(a (1) + a()X) + %Xag(t) ~0

@ Collect terms with different powers of X, zero, one and two, to get
ay(t) +xXai(t) =0
o>
aj(t) —kay (t) + (2 + KX) a(t) =0
ay(t) —2kax(t) =0
with initial conditions
a(T)=a(T)=0, a(T)=2
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Example: Square-Root Diffusion

@ We solve the system of equations starting from the third one and working up
to the first:

() XA (; 2|<t T eK(fT)+1>

2
a(t) = A (eK(pT) . eZK(f*T))
ap(t) = 26T
02 + 2k X
K

A:

@ Compare the exact expression above to an approximate expression, obtained
by assuming that T — t = At is small.
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Example: Square-Root Diffusion

@ Assume T —t = At is small. Using Taylor expansion,

ap(t) = o(At), ai(t) = AkAt + o(At)
as(t) = 2(1 — 2kAt) + o(At)

Then
Ee( X2 adXe = X) = X2 + At ((0® + 2k X)X — 2k X?)

@ Alternatively,
XH_At%Xt*K(X[*Y) At+(f\/XtVAt€t, £t~N(0,1)
Therefore

Et(XZaddXe = X) & X2 + At (0°X — 2k X(X — X))
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@ Risk-Neutral Probability
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Risk-Neutral Probability Measure

@ Under the risk-neutral probability measure Q, expected conditional asset
returns must equal the risk-free rate.

@ Alternatively, using the discounted cash flow formula, the price P; of an asset
with payoff Hr at time T is given by

;
P, =EQ [exp (—J Is ds> HT}
t

where rs is the instantaneous risk-free interest rate at time s.

@ The DCF formula under the risk-neutral probability can be used to compute
asset prices by Monte Carlo simulation (e.g., using an Euler scheme to
approximate the solutions of SDEs).

@ Alternatively, one can derive a PDE characterizing asset prices using the
connection between PDEs and SDEs.
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Change of Measure

@ We often want to consider a probability measure Q different from P, but the
one that agrees with P on which events have zero probability (equivalent to
P) (e.g., Q could be a risk-neutral measure).

Different probability measures assign different relative likelihoods to the
trajectories of the Brownian motion.

It is easy to express a new probability measure Q using its density

aQ
o= (),

EQ[Xr] = Ef[ErXr], E®X7]=EF Efxr] , & =EF[ET]

For any random variable Xr,

@ Qis equivalent to P if &7 is positive (with probability one).

(@© Leonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 53/74



ochastic Integra 6’s Lemm Black-Scholes Model  Multivariate Ité Pro e SD. SDEs and PDEs  Risk-Neutral Probability ~ Risk-Neutral Pricing

Change of Measure

@ If we consider a probability measure Q different from P, but the one that
agrees with P on which events have zero probability, then the P-Brownian
motion ZF becomes an Ito process under Q:

dzf = dz® —n,dt

for some 1;. Z2 is a Brownian motion under Q.

When we change probability measures this way, only the drift of the Brownian
motion changes, not the variance.

Intuition: a probability measure assigns relative likelihood to different
trajectories of the Brownian motion. Variance of the Ito process can be
recovered from the shape of a single trajectory (quadratic variation), so it
does not depend on the relative likelihood of the trajectories, hence, does not
depend on the choice of the probability measure.
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Risk-Neutral Probability Measure

@ Under the risk-neutral probability measure, expected conditional asset
returns must equal the risk-free rate.
@ Start with the stock price process under P:

dS; = WS dt + ;S dzf
@ Under the risk-neutral measure Q,
dS; = nS; dt + 1Sy dZ2
Thus, if dZP = —m; dt + dZ2,
Wt —ome = It

n; is the price of risk.
@ The risk-neutral measure Q is such that the process Z,c' defined by

-
dZFz%dH—dth
t

is a Brownian motion under Q.
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Risk-Neutral Probability Measure

@ Under the risk-neutral probability measure, expected conditional asset
returns must equal the risk-free rate.

@ We conclude that for any asset (paying no dividends), the conditional risk
premium is given by

2[5]-ra-e[2] e [2]

@ Thus, mathematically, the risk premium is the difference between expected
returns under the P and Q probabilities.
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Risk-Neutral Probability Measure

@ If we want to connect Q to P explicitly, how can we compute the density,
dQ/dP?

@ In discrete time, the density was conditionally lognormal.

@ The density &7 = (dQ/dP) 7 is given by

t 1 t
5,—exp<—J nudZE—ZJnlzjdu>, o<t T
0 0

@ The state-price density is given by

t
T = exp (J —ry, du) &t
0

@ The reverse is true: if we define & as above, for any process n; satisfying
certain regularity conditions (e.g., n; is bounded, or satisfies the Novikov’s
condition as in Back 2005, Appendix B.1), then measure Q is equivalent to P

and .

zR :Z,P+J Ny au
0
is a Brownian motion under Q.

(@© Leonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 57/74



Risk-Neutral Probability and Arbitrage

@ If there exists a risk-neutral probability measure, then the model is
arbitrage-free.

@ If there exists a unique risk-neutral probability measure in a model, then all
options are redundant and can be replicated by trading in the underlying
assets and the risk-free bond.

@ A convenient way to build arbitrage-free models is to describe them directly
under the risk-neutral probability.

@ One does not need to describe the P measure explicitly to specify an
arbitrage-free model.

@ However, to estimate models using historical data, particularly, to estimate
risk premia, one must specify the price of risk, i.e., the link between Q and P.
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@ Risk-Neutral Pricing
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Black-Scholes Model

@ Assume that the stock pays no dividends and the stock price follows

s _ wdt+odzf
St

@ Assume that the interest rate is constant, r.
@ Under the risk-neutral probability Q, the stock price process is

s _ rdt+ o dz2
St

Terminal stock price St is lognormally distributed:
InST_InSO+<r>T+G\F£ 2~ N(0,1)
@ Price of any European option with payoff H(S7) can be computed as
P =EP [T OH(Sy)
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Term Structure of Interest Rates

Consider the Vasicek model of bond prices.
A single-factor arbitrage-free model.

To guarantee that the model is arbitrage-free, build it under the risk-neutral
probability measure.

@ Assume the short-term risk-free rate process under Q

drt = —K(rt —?) at + O'dZto

Price of a pure discount bond maturing at T is given by

.
P(t, T) = E® [exp (—J rs ds)}
t

Characterize P(t, T) as a solution of a PDE.
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Risk-Neutral Pricing

Term Structure of Interest Rates

@ Look for P(t, T) = f(t, r).
@ Using Ito’s lemma,

of(t, r) _of(t,ry) 1 ,0%f(t,r)
5 K(re—T7) on +202 or? dt

EO(d(t, )] = (
@ Risk-neutral pricing requires that
EQ[df(t, )] = rif(t, r,) ot
and therefore f(t, r;) must satisfy the PDE

df(t,r) () 1 L 0%f(tr)

o1 —xk(r—r) or 20 32 =rf(t,r)

with the boundary condition
f(T,r)=A1

@© Leonid Kogan (MIT, Sloan ) 15.450, Fall 2010 62/74



Term Structure of Interest Rates

@ Look for the solution in the form
f(t,r;) =exp(—a(T—t) —b(T —Hr)
@ Derive a system of ODEs on a(t) and b(t) to find
aT—t) =HT—1)— (1—e=T0)
K

2
i 3(2.<(T - e 20 4 <70 _3)

= (1=e)
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Term Structure of Interest Rates

@ Assume a constant price of risk . What does this imply for the interest rate
process under the physical measure P and for the bond risk premia?

@ Use the relation
dZf = —madt+ dz?

to derive

dr = —x(r, — F)dt + on ot + 0 dZP = —« (r,— (7+ %)) dt + o dzP

@ Expected bond returns satisfy

dP(t, T)
P _ P
t (P(t’T)>_(rf+0-[n)dt
where
of = 1 oA rt)O'——b(T—f)O'
£ f(t, r[) art B

@ |b(T — t)o] is the volatility of bond returns.
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Equity Options with Stochastic Volatility

Consider again the Heston’s model. Assume that under the risk-neutral
probability Q, stock price is given by

1
din S = (r—Zw)at+ Vvidz®ds

dvi = — k(vi — V) dt + Yo/ idZ>® + v /1 — 02\ /022"
dz2Saz =0

Z2" models volatility shocks uncorrelated with stock returns.
Constant interest rate r.

The price of a European option with a payoff H(St) can be computed as
Py = Ef [exp (—r(T — 1)) H(S7)]

@ We haven'’t said anything about the physical process for stochastic volatility.
In particular, how is volatility risk priced?
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Equity Options with Stochastic Volatility

@ In the Heston’s model, assume that the price of volatility risk is constant, ",
and the price of stock price risk is constant, n°.
@ Then, under P, stock returns follow

1
dinS; = (r +n5Vv — 2vt) dt + /v dz>®

dv; = <—K(Vt —V)+ vV (pns + M”V» at+
YoV vz S +y V1 — p2 vz
dzP®dzPv =0
We have used
dzp® = —ndt+dz®®
azpv = —n"dt+dz>’

@ Conditional expected excess stock return is

EP {dst—rdt} —EP [dlnSﬁ—ﬂdt—rdt} = (%vw) dt
S 2
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Equity Options with Stochastic Volatility

@ Our assumptions regarding the market prices of risk translate directly into
implications for return predictability.

@ For stock returns, our assumption of constant price of risk predicts a
nonlinear pattern in excess returns: expected excess stock returns
proportional to conditional volatility.

@ Suppose we construct a position in options with the exposure A; to stochastic
volatility shocks and no exposure to the stock price:

dW; = [..] dt + A 02
Then the conditional expected gain on such a position is

(Wir +Am") dt
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Heston’s Model of Stochastic Volatility

Assume that under the risk-neutral probability Q, stock price is given by

1
din S = (r—Zvi)di+ Vvidz®ds

dve = — k(vi — V) dt + ypy/VidZ2S +y\/1 — p2\/v,dZ2"
dz2Saz =0

Z2" models volatility shocks uncorrelated with stock returns.
Constant interest rate r.

The price of a European option with a payoff H(St) can be computed as
Py =EQ [exp (—r(T — 1)) H(Sr)]

@ Assume that the price of volatility risk is constant, n", and the price of stock
price risk is constant, n°.
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Variance Swap in Heston’s Model

@ Consider a variance swap, paying

.
L (dInS,)? — K?

at time T. What should be the strike price of the swap, K;, to make sure that
the market value of the swap at time t is zero?

@ Using the result on quadratic variation,
(dln S{)z = v; dt

the strike price must be such that

T
efr(Tft)E? [(J v, du — Kt2>] -0
t

;
K? = E® U Vy du}
t

@ Need to compute
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Variance Swap in Heston’s Model

@ Since

u
vu:v,—J K(Vs —V ds+pr VVs 0Z85 £y /1 — J Vs dZ8Y

t

we find that

u u

K(Vs — V) ds} = v,—J |<(EfJ vs] — V) ds
t

E9[v,] = v, — EO U

t

@ Solving the above equation for E®[v,], we find
E9v, ) =v+e <0y -V

@ We obtain the strike price

.

1

K? = E@ U Vu du] =V(T—t+ (v fV)f(1 - e*K(T*”>
[ K
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Expected Profit/Loss on a Variance Swap

@ To compute expected profit/loss on a variance swap, we need to evaluate
T
E} U (dInS,)2 — Kﬁ]
t

@ Instantaneous expected gain on a long position in the swap is easy to
compute in closed form.

@ The market value of a swap starts at 0 at time ¢, and at s > t becomes

s T
Ps=EQ {e’”s) (J vy du + J v, du — Kfﬂ
t s

S
=g (779 (J' v, du+ KZ — Kf)
t

@ We conclude that the instantaneous gain on the long swap position at time s
equals

’
[.]ds+ Ee"(T_S) (1 - e_K(T_S)) avs

(@© Leonid Kogan ( MIT, Sloan ) Stochastic Calculus 15.450, Fall 2010 71174



Expected Profit/Loss on a Variance Swap

@ We conclude that the instantaneous gain on the long swap position at time s
equals

]
[..]ds+ Ee*’(T*SJ (1 — e*"(T*S)) ave

@ Given our assumed market prices of risk, n° and i, the time-s expected
instantaneous gain on the swap opened at time t is

]
Psrds +yy/vs—e "7~ (1 - e’“”’s)) (pns +y/1 - pzn”) ds
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Risk-Neutral Pricing

Summary

@ Risk-neutral pricing is a convenient framework for developing arbitrage-free
pricing models.

@ Connection to classical results: risk-neutral expectation can be characterized
by a PDE.

@ Risk premium on an asset is the difference between expected return under P
and under Q probability measures.
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Readings

@ Back 2005, Sections 2.1-2.6, 2.8-2.9, 2.11, 13.2, 13.3, Appendix B.1.

@© Leonid Kogan (MIT, Sloan ) 15.450, Fall 2010 74/74



MIT OpenCourseWare
hitp//ocw mit.edy

15.450 Analytics of Finance
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .


http://ocw.mit.edu
http://ocw.mit.edu



