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Overview

@ Simulation methods (Monte Carlo) can be used for option pricing, risk
management, econometrics, etc.

@ Naive Monte Carlo may be too slow in some practical situations. Many
special techniques for variance reduction: antithetic variables, control
variates, stratified sampling, importance sampling, etc.

@ Recent developments: Quasi-Monte Carlo (low discrepancy sequences).
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The Basic Problem
@ Consider the basic problem of computing an expectation
0 = E[f(X)], X~ pdf(X)
@ Monte Carlo simulation approach specifies generating N independent draws
from the distribution pdf(X), Xi, Xz, ..., Xy, and approximating
PO .
EIF(X)] ~ 0y = 5 ; f(X)

@ By Law of Large Numbers, the approximation §N converges to the true value
as N increases to infinity.
@ Monte Carlo estimate 0y is unbiased:

E[@N} =0

@ By Central Limit Theorem,

WGNG_ LN N(0,1), o2 = Var[f(X)]
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Generating Random Numbers

@ Pseudo random number generators produce deterministic sequences of
numbers that appear stochastic, and match closely the desired probability
distribution.

@ For some standard distributions, e.g., uniform and Normal, MATLAB®
provides built-in random number generators.

@ Sometimes it is necessary to simulate from other distributions, not covered by
the standard software. Then apply one of the basic methods for generating
random variables from a specified distribution.
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The Inverse Transform Method

@ Consider a random variable X with a continuous, strictly increasing CDF
function F(x).

@ We can simulate X according to
X =F'(U), U~ Unifl0,1]
@ This works, because
Prob(X < x) = Prob(F~1(U) < x) = Prob(U < F(x)) = F(x)
o If F(x) has jumps, or flat sections, generalize the above rule to

X =min(x: F(x) > U)
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The Inverse Transform Method

Example: Exponential Distribution

@ Consider an exponentially-distributed random variable, characterized by a
CDF
F(x)=1—¢e*/®
@ Exponential distributions often arise in credit models.
@ Compute F~'(u)

—x/0

u=1—e = X=-0In(1—-U)~—-06InU
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The Inverse Transform Method

Example: Discrete Distribution

@ Consider a discrete random variable X with values
C1<C<---<Cp Prob(X=cj)=p

@ Define cumulative probabilities
i
Flc) =q = ZP/
j=1

@ Can simulate X as follows:
@ Generate U ~ Unif[0, 1].
@ FindK c{1,...,n}such that gx_1 < U < gk.
° Set X = Ck.
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The Acceptance-Rejection Method

@ Generate samples with probability density f(x).
@ The acceptance-rejection (A-R) method can be used for multivariate
problems as well.

@ Suppose we know how to generate samples from the distribution with pdf
g(x), s.t.,
f(x) <cg(x), c>1
@ Follow the algorithm

@ Generate X from the distribution g(x);

@ Generate U from Unif[0, 1];

@ If U< f(X)/[eg(X)], return X;
otherwise go to Step 1.

@ Probability of acceptance on each attempt is 1/c. Want c close to 1.
@ See the Appendix for derivations.
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The Acceptance-Rejection Method

Example: Beta Distribution

@ The beta density is

f(x) = x*T1—x)P~1 o< x <1

B(x, B)

@ Assume «, > 1. Then f(x) has a maximum at («—1)/(ax+ p — 2).
@ Define
o f( o—1 )
x+p—-2
and choose g(x) = 1.
@ The A-R method becomes

@ Generate independent U; and U, from Unif[0, 1] until cUs < f(U;);
@ Return U;.
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The Acceptance-Rejection Method

Example: Beta Distribution

Sy

Accept Uy if U, in this range

0 U 1

lustration of the acceptance-rejection method using uniformly distributed candidates.

Image by MIT OpenCourseWare.

Source: Glasserman 2004, Figure 2.8
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Variance reduction

@ Suppose we have simulated N independent draws from the distribution f(x).
How accurate is our estimate of the expected value E[f(X)]?

@ Using the CLT, construct the 100(1 — «)% confidence interval
~ o ~ o
{9/\/ - ﬁzpa/z, On + \/Nz1oc/2:| ,

@=L 3 (10— 0)°
NS

where z,_ /7 is the (1 — o/2) percentile of the standard Normal distribution.

@ For a fixed number of simulations N, the length of the interval is proportional
to ©.

@ The number of simulations required to achieve desired accuracy is
proportional to the standard deviation of f(X;), ©.

@ The idea of variance reduction: replace the original problem with another
simulation problem, with the same answer but smaller variance!
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Antithetic Variates

@ Attempt to reduce variance by introducing negative dependence between
pairs of replications.

@ Suppose want to estimate
0 = E[f(X)], pdf(X) = pdf(—X)
@ Note that
f(X) + f(—X)
2
@ Define Y; = [f(X;) + f(—X;)]/2 and compute

N
’e\AV:lZYi
Ni:1

@ Note that Y; are IID, and by CLT,

—X ~ pdf(X) = E [ ] = E[f(X)]

Y.
\FNG,\,GiE[f(X)] = N(0,1), oa = /VarlY]]
AV
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Antithetic Variates

When are they useful?

@ Assume that the computational cost of computing Y; is roughly twice that of
computing f( ;).

@ Antithetic variates are useful if

2N

o > fX)
i=1

using the IID property of Yj, as well as X;, the above condition is equivalent to

Var[04'] < Var

VarlY] <%Var[f(Xfﬂ

4VarlY;] =Var [f(X;) + f(—X))] =
Var(f(X;)] + Var[f(—X;)] 4 2Cov[f(X;), f(—=Xi)] =
2Var(f(X;)] + 2Cov[f(X;), f(—X;)]

@ Antithetic variates reduce variance if
Cov[f(X;), f(—=Xj)] <0
@© Leonid Kogan (MIT, Sloan ) 15.450, Fal 2010 16/35



Variance Reduction

Antithetic Variates
When do they work best?

@ Suppose that f is a monotonically increasing function. Then
Cov[f(X), f(—X)] <0

and the antithetic variates reduce simulation variance. By how much?

@ Define

0 = =10

@ fy(X) and f;(X) are uncorrelated:

Elf(X)A (X)) = JE[f*(X) — f(=X)] = 0 = Elf(X)IE[A (X)]

_1
4
@ Conclude that

Var[f(X)] = Var[fy(X)] + Var[fy (X)]
o If f(X) is linear, Var[fy(X)] = 0, and antithetic variates eliminate all variance!
@ Antithetics are more effective when f(X) is close to linear.
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Control Variates

@ The idea behind the control variates approach is to decompose the unknown
expectation E[Y] into the part known in closed form, and the part that needs
to be estimated by simulation.

@ There is no need to use simulation for the part known explicitly. The variance
of the remainder may be much smaller than the variance of Y.
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Control Variates

@ Suppose we want to estimate the expected value E[Y].

@ On each replication, generate another variable, X;. Thus, draw a sequence of
pairs (X, Y;).

@ Assume that E[X] is known. How can we use this information to reduce the
variance of our estimate of E[Y]?

@ Define
Yi(b) = Yi — b(X; — E[X])

@ Note that E[Y;(b)] = E[Y]], so %ZL Y;(b) is an unbiased estimator of E[Y].
@ Can choose b to minimize variance of Y;(b):

VarlY;(b)] = Var[Y] — 2bCov[X, Y] + b? Var[X]

@ Optimal choice b* is the OLS coefficient in regression of Y on X:
b — Covi(X, Y]
© Var[X]
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Control Variates

@ The higher the R? in the regression of Y on X, the larger the variance
reduction.

@ Denoting the correlation between X and Y by pxy, find

Var H SN, Y,-(b*)}
Var H pap Yi]
@ In practice, b* is not known, but is easy to estimate using OLS.

@ Two-stage approach:

@ Simulate N pairs of (X;, Y;) and use them to estimate b
@ Simulate N more pairs and estimate E[Y] as

=1— oy

N
LY VB —EIX)
i=1
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Control Variates

Example: Pricing a European Call Option

@ Suppose we want to price a European call option using simulation.

@ Assume constant interest rate r. Under the risk-neutral probability Q, we
need to evaluate
ES [e~ max(0, St — K)]

@ The stock price itself is a natural control variate. Assuming no dividends,
ES [e77Sr] =S
@ Consider the Black-Scholes setting with
r=0.05 0=0.3, S =50, T=0.25

@ Evaluate correlation between the option payoff and the stock price for
different values of K. p? is the percentage of variance eliminated by the
control variate.
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Variance Reduction

Control Variates

Example: Pricing a European Call Option

K | 40 45 50 55 60 65 70
P2 1099 094 080 059 0.36 0.19 0.08

Source: Glasserman 2004, Table 4.1

@ For in-the-money call options, option payoff is highly correlated with the stock
price, and significant variance reduction is possible.

@ For out-of-the-money call options, correlation of option payoff with the stock
price is low, and variance reduction is very modest.
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Control Variates

Example: Pricing an Asian Call Option

Suppose we want to price an Asian call option with the payoff
_ 1Y
max(O,ST—K), STEJ;S“]), h<b<---<ty<T

@ A natural control variate is the discounted payoff of the European call option:

X =e ""max(0, St — K)

Expectation of the control variate under Q is given by the Black-Scholes
formula.

Note that we may use multiple controls, e.g., option payoffs at multiple dates.

When pricing look-back options, barrier options by simulation can use similar
ideas.
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Variance Reduction

Control Variates
Example: Stochastic Volatility

@ Suppose we want to price a European call option in a model with stochastic
volatility.
@ Consider a discrete-time setting, with the stock price following

Slt1) = S(t) exp ((r = 0(6)2/2) 1 — ) + 0(8) /b1 — 1e3,)
e2 TN(0,1)
@ o(t) follows its own stochastic process.

@ Along with S(t;), simulate another stock price process

~2

9 _
S(tiy1) = S(ti) exp ((f - 2) (tiv1 —t) + 0\/tips — ti£,’°+1>

@ Pick ¢ close to a typical value of o(t;).
@ Use the same sequence of Normal variables ¢@ for S(t;) as for S(t).

@ Can use the discounted payoff of the European call option on S as a control
variate: expectation given by the Black-Scholes formula.
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rerating Random Numbers Variance Reduction

Control Variates

Example: Hedges as Control Variates

@ Suppose, again, that we want to price the European call option on a stock
with stochastic volatility.

o Let C(t, S¢) denote the price of a European call option with some constant
volatility o, given by the Black-Scholes formula.

@ Construct the process for discounted gains from a discretely-rebalanced
delta-hedge.

e The delta is based on the Black-Scholes model with constant volatility .
@ The stock price follows the true stochastic-volatility dynamics.

1—1
v(T) = vi0)+ y_ 2 S0

i=1

[efr[HJ S(tisq) — e*’t"S(t,')] , =T

@ Under the risk-neutral probability Q,
E0°[V(T)] = V(0) (Check using iterated expectations)

@ Canuse V(T) as a control variate. The better the discrete-time delta-hedge,
the better the control variate that results.
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Hedges as Control Variates

Example

@ Consider a model of stock returns with stochastic volatility under the
risk-neutral probability measure

S((i+1)A) = S(iA)exp ((r — v(id)/2)A + VIAWVAED,, )
v((i+1)A) = v(iA) — k(v(iA) — V)A + v/ V(i) A2,
eQ PN, 1), u® ©N(0,1), corr(e,u®) =p

I

@ Price a European call option under the parameters
r=0.05 T=05 5 =50, K=55A=0.01

Vw=0.09 v=0.09 k=2 p=-05 v=0.1,020304,05

@ Perform 10,000 simulations to estimate the option price. Report the fraction
of variance eliminated by the control variate.

(@© Leonid Kogan ( MIT, Sloan ) Simulation Methods 15.450, Fall 2010 26/35



Hedges as Control Variates

Example

v 0.1 0.2 0.3 0.4 0.5
p? 0.9944 0.9896 0.9799 0.9618 0.9512
Naive Monte Carlo

C 2.7102 2.6836 2.5027 2.5505 2.4834

S.E.(a) 0.0559 0.0537 0.0506 0.0504 0.0483
Control variates

C 2.7508 2.6908 2.6278 2.5544 2.4794
S.E.(C) | 0.0042 0.0056 0.0071 0.0088 0.0107
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Quasi-Monte Carlo

Overview

@ Quasi-Monte Carlo, or low-discrepancy methods present an alternative to
Monte Carlo simulation.

Instead of probability theory, QMC is based on number theory and algebra.
Consider a problem of integrating a function, j; f(x) dx.

Monte Carlo approach prescribes simulating N draws of a random variable
X ~ Unif[0, 1] and approximating

1 N

J f(x) dx ~ %Z f(X)

0 i=1

QMC generates a deterministic sequence X;, and approximates

1 1 N
J f(x) dx ~ N ; (X))

0

@ Monte Carlo error declines with sample size as O(1/v/N). QMC error
declines almost as fast as O(1/N).
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Quasi-Monte Carlo

@ We focus on generating a d-dimensional sequence of low-discrepancy points
filling a d-dimensional hypercube, [0, 1)°.

@ QMC is a substitute for draws from d-dimensional uniform distribution.

@ As discussed, all distributions can be obtained from Unif[0, 1] using the
inverse transform method.

@ There are many algorithms for producing low-discrepancy sequences. In
financial applications, Sobol sequences have shown good performance.

@ In practice, due to the nature of Sobol sequences, it is recommended to use
N = 2 (integer k) points in the sequence.
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Quasi-Monte Carlo

lllustration

256 points from a 2-dimensional Sobol sequence

MATLAB ® Code

P = sobolset(2); X = net(P,256);
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Quasi-Monte Carlo

Randomization

@ Low-discrepancy sequence can be randomized to produce independent
draws.

@ Each independent draw of N points yields an unbiased estimate of J"; f(x) dx.

@ By using K independent draws, each containing N points, we can construct
confidence intervals.

@ Since randomizations are independent, standard Normal approximation can
be used for confidence intervals.
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Quasi-Monte Carlo

Quasi-Monte Carlo

Randomization

Two independent randomizations using 256 points from a 2-dimensional Sobol
sequence

MATLAB® Code

q = qrandstream(’sobol’,2); X = qrand(q,256);
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Quasi-Monte Carlo

Readings

@ Campbell, Lo, MacKinlay, 1997, Section 9.4.

@ Boyle, P, M. Broadie, P. Glasserman, 1997, “Monte Carlo methods for
security pricing,” Journal of Economic Dynamics and Control, 21, 1267-1321.

@ Glasserman, P, 2004, Monte Carlo Methods in Financial Engineering,
Springer, New York. Sections 2.2, 4.1,4.2,7.1,7.2.
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Appendix

Derivation of the Acceptance-Rejection Method

@ Suppose the A-R algorithm generates Y. Y has the same distribution as X,

conditional on
f(X)

U<
cg(X)
@ Derive the distribution of Y. For any event A,

1(X)
£X) ) ) Prob (X € AU < 1)

Prob(Y € A) = Prob <X e AU K<

~ag(X) Prob( < )g( )
@ Note that ) )
Prob (U 9(X) IX) = 9(X) and therefore
f(X)\ [ f(x) _1
Prob (U cg(X)) = J cg(x)g(x) dx = B

@ Conclude that

_ X))\ _ f(x) _
Prob(Y € A) = cProb <X €A U< cg(X)) = CJA cg(x)g(x) ax = L f(x) dx

@ Since Ais an arbitrary event, this verifies that Y has density f.
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