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Generating Random Numbers Variance Reduction Quasi-Monte Carlo 

Overview


Simulation methods (Monte Carlo) can be used for option pricing, risk 
management, econometrics, etc. 

Naive Monte Carlo may be too slow in some practical situations. Many 
special techniques for variance reduction: antithetic variables, control 
variates, stratified sampling, importance sampling, etc. 

Recent developments: Quasi-Monte Carlo (low discrepancy sequences). 
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Generating Random Numbers Variance Reduction Quasi-Monte Carlo 

The Basic Problem 

Consider the basic problem of computing an expectation


θ = E[f (X )], X ∼ pdf (X )


Monte Carlo simulation approach specifies generating N independent draws 
from the distribution pdf (X ), X1, X2, ..., XN , and approximating 

1 N

E[f (X )] ≈ θ�N ≡ 
N

f (Xi ) 
i=1 

By Law of Large Numbers, the approximation θ�N converges to the true value 
as N increases to infinity. 
Monte Carlo estimate θ�N is unbiased: 

E θ�N = θ 

By Central Limit Theorem, 

√
N 
θ�N − θ 

N(0, 1), σ2 = Var[f (X )]
σ 

⇒ 

� Leonid Kogan ( MIT, Sloan ) Simulation Methods 15.450, Fall 2010 4 / 35 c



Generating Random Numbers Variance Reduction Quasi-Monte Carlo 

Outline


1 

2 

3 

Generating Random Numbers 

Variance Reduction 

Quasi-Monte Carlo 

c� Leonid Kogan ( MIT, Sloan ) Simulation Methods 15.450, Fall 2010 5 / 35 



Generating Random Numbers Variance Reduction Quasi-Monte Carlo 

Generating Random Numbers


Pseudo random number generators produce deterministic sequences of 
numbers that appear stochastic, and match closely the desired probability 
distribution. 

For some standard distributions, e.g., uniform and Normal, MATLAB®

provides built-in random number generators .


Sometimes it is necessary to simulate from other distributions, not covered by 
the standard software. Then apply one of the basic methods for generating 
random variables from a specified distribution. 
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Generating Random Numbers Variance Reduction Quasi-Monte Carlo 

The Inverse Transform Method


Consider a random variable X with a continuous, strictly increasing CDF 
function F (x). 

We can simulate X according to


X = F −1(U), U ∼ Unif [0, 1]


This works, because


Prob(X � x) = Prob(F −1(U) � x) = Prob(U � F (x)) = F (x)


If F (x) has jumps, or flat sections, generalize the above rule to


X = min (x : F (x) � U)
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Generating Random Numbers Variance Reduction Quasi-Monte Carlo 

The Inverse Transform Method 
Example: Exponential Distribution 

Consider an exponentially-distributed random variable, characterized by a 
CDF 

F (x) = 1 − e−x/θ 

Exponential distributions often arise in credit models. 

Compute F −1(u) 

u = 1 − e−x/θ X = −θ ln(1 − U) ∼ −θ ln U⇒ 
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Generating Random Numbers Variance Reduction Quasi-Monte Carlo 

The Inverse Transform Method 
Example: Discrete Distribution 

Consider a discrete random variable X with values 

c1 < c2 < < cn, Prob(X = ci ) = pi· · · 

Define cumulative probabilities 

i

F (ci ) = qi = pj 

j=1 

Can simulate X as follows:

Generate U ∼ Unif [0, 1].

Find K ∈ {1, ..., n} such that qK −1 � U � qK . 
Set X = cK . 
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Generating Random Numbers Variance Reduction Quasi-Monte Carlo 

The Acceptance-Rejection Method


Generate samples with probability density f (x). 

The acceptance-rejection (A-R) method can be used for multivariate

problems as well.


Suppose we know how to generate samples from the distribution with pdf 
g(x), s.t.,


f (x) � cg(x), c > 1


Follow the algorithm

Generate X from the distribution g(x);

Generate U from Unif [0, 1];

If U � f (X )/[cg(X )], return X ;

otherwise go to Step 1.


Probability of acceptance on each attempt is 1/c. Want c close to 1. 

See the Appendix for derivations. 
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Generating Random Numbers Variance Reduction Quasi-Monte Carlo 

The Acceptance-Rejection Method 
Example: Beta Distribution 

The beta density is 

f (x) = 
B(α

1 
, β) 

xα−1(1 − x)β−1 , 0 � x � 1 

Assume α, β � 1. Then f (x) has a maximum at (α − 1)/(α + β − 2). 

Define � �

α − 1


c = f 
α + β − 2 

and choose g(x) = 1. 
The A-R method becomes


Generate independent U1 and U2 from Unif [0, 1] until cU2 � f (U1);

Return U1. 
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Generating Random Numbers Variance Reduction Quasi-Monte Carlo 

The Acceptance-Rejection Method 
Example: Beta Distribution 

Source: Glasserman 2004, Figure 2.8 
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Accept U1 if cU2 in this range

f (U1)

Illustration of the acceptance-rejection method using uniformly distributed candidates.
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Generating Random Numbers Variance Reduction Quasi-Monte Carlo 

Variance reduction


Suppose we have simulated N independent draws from the distribution f (x).

How accurate is our estimate of the expected value E[f (X )]?

Using the CLT, construct the 100(1 − α)% confidence interval
� � �θN − 

�σ 
z1−α/2, �θN + 

�σ 
z1−α/2 ,√

N 
√

N 

� �2 
σ�2 = 

1 N � 
f (Xi ) − θ�NN 

i=1 

where z1−α/2 is the (1 − α/2) percentile of the standard Normal distribution. 
For a fixed number of simulations N, the length of the interval is proportional

to σ�.

The number of simulations required to achieve desired accuracy is

proportional to the standard deviation of f (Xi ), σ�.

The idea of variance reduction: replace the original problem with another

simulation problem, with the same answer but smaller variance!
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Generating Random Numbers Variance Reduction Quasi-Monte Carlo 

Antithetic Variates


Attempt to reduce variance by introducing negative dependence between 
pairs of replications. 
Suppose want to estimate 

θ = E[f (X )], pdf (X ) = pdf (−X ) 

Note that � � 
f (X ) + f (−X )

−X ∼ pdf (X ) E = E[f (X )]⇒ 
2 

Define Yi = [f (Xi ) + f (−Xi )]/2 and compute 

N

θ�AV 
N 

1 � 
Yi= 

N 
i=1 

Note that Yi are IID, and by CLT, 

N
√

N 
θ�AV − E[f (X )] 

N(0, 1), σAV = 
� 

Var[Yi ]
σAV 

⇒ 
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Generating Random Numbers Variance Reduction Quasi-Monte Carlo 

Antithetic Variates 
When are they useful? 

Assume that the computational cost of computing Yi is roughly twice that of 
computing f (Xi ). 
Antithetic variates are useful if 

Var[θ�AV 
N ] < Var 

2
1 
N 

2N

f (Xi ) 
i=1 

using the IID property of Yi , as well as Xi , the above condition is equivalent to 

1
Var[Yi ] < Var[f (Xi )]2 

4Var[Yi ] =Var [f (Xi ) + f (−Xi )] = 

Var[f (Xi )] + Var[f (−Xi )] + 2Cov[f (Xi ), f (−Xi )] = 

2Var[f (Xi )] + 2Cov[f (Xi ), f (−Xi )] 

Antithetic variates reduce variance if 

Cov[f (Xi ), f (−Xi )] < 0 
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Generating Random Numbers Variance Reduction Quasi-Monte Carlo 

Antithetic Variates 
When do they work best? 

Suppose that f is a monotonically increasing function. Then 

Cov[f (X ), f (−X )] < 0 

and the antithetic variates reduce simulation variance. By how much? 
Define 

f0(X ) = 
f (X ) + f (−X ) 

2 
, f1(X ) = 

f (X ) − f (−X ) 
2 

f0(X ) and f1(X ) are uncorrelated: 

1
E[f0(X )f1(X )] = E[f 2(X ) − f 2(−X )] = 0 = E[f0(X )]E[f1(X )]

4 

Conclude that 
Var[f (X )] = Var[f0(X )] + Var[f1(X )] 

If f (X ) is linear, Var[f0(X )] = 0, and antithetic variates eliminate all variance! 
Antithetics are more effective when f (X ) is close to linear. 
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Generating Random Numbers Variance Reduction Quasi-Monte Carlo 

Control Variates


The idea behind the control variates approach is to decompose the unknown 
expectation E[Y ] into the part known in closed form, and the part that needs 
to be estimated by simulation. 

There is no need to use simulation for the part known explicitly. The variance 
of the remainder may be much smaller than the variance of Y . 
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Generating Random Numbers Variance Reduction Quasi-Monte Carlo 

Control Variates 

Suppose we want to estimate the expected value E[Y ]. 

On each replication, generate another variable, Xi . Thus, draw a sequence of 
pairs (Xi , Yi ). 

Assume that E[X ] is known. How can we use this information to reduce the 
variance of our estimate of E[Y ]? 

Define

Yi (b) = Yi − b(Xi − E[X ])


Note that E[Yi (b)] = E[Yi ], so N 
1 �

i
N 
=1 Yi (b) is an unbiased estimator of E[Y ]. 

Can choose b to minimize variance of Yi (b): 

Var[Yi (b)] = Var[Y ] − 2b Cov[X , Y ] + b2 Var[X ] 

Optimal choice b� is the OLS coefficient in regression of Y on X : 

b� Cov[X , Y ] 
= 

Var[X ] 
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Generating Random Numbers Variance Reduction Quasi-Monte Carlo 

Control Variates


The higher the R2 in the regression of Y on X , the larger the variance 
reduction. 

Denoting the correlation between X and Y by ρXY , find
� �N 
�


Var N 
1 

i=1 Yi (b�) � �N 
� = 1 − ρ2 

XY 
Var N 

1 
i=1 Yi 

In practice, b� is not known, but is easy to estimate using OLS. 
Two-stage approach: 

Simulate N0 pairs of (Xi , Yi ) and use them to estimate �b� . 
Simulate N more pairs and estimate E[Y ] as 

1 N

Yi − �b�(Xi − E[X ])
N 

i=1 
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Generating Random Numbers Variance Reduction Quasi-Monte Carlo 

Control Variates 
Example: Pricing a European Call Option 

Suppose we want to price a European call option using simulation. 

Assume constant interest rate r . Under the risk-neutral probability Q, we 
need to evaluate � �


EQ 
0 e−rT max(0, ST − K )


The stock price itself is a natural control variate. Assuming no dividends, 

EQ 
0 e−rT ST = S0 

Consider the Black-Scholes setting with 

r = 0.05, σ = 0.3, S0 = 50, T = 0.25 

Evaluate correlation between the option payoff and the stock price for 
different values of K . ρ�2 is the percentage of variance eliminated by the 
control variate. 
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Generating Random Numbers Variance Reduction Quasi-Monte Carlo 

Control Variates 
Example: Pricing a European Call Option 

K 40 45 50 55 60 65 70 
ρ�2 0.99 0.94 0.80 0.59 0.36 0.19 0.08 

Source: Glasserman 2004, Table 4.1 

For in-the-money call options, option payoff is highly correlated with the stock 
price, and significant variance reduction is possible. 

For out-of-the-money call options, correlation of option payoff with the stock 
price is low, and variance reduction is very modest. 
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Generating Random Numbers Variance Reduction Quasi-Monte Carlo 

Control Variates 
Example: Pricing an Asian Call Option 

Suppose we want to price an Asian call option with the payoff 

J1 � 
max(0, ST − K ), ST ≡ 

J
S(tj ), t1 < t2 < · · · < tJ � T 

j=1 

A natural control variate is the discounted payoff of the European call option: 

X = e−rT max(0, ST − K ) 

Expectation of the control variate under Q is given by the Black-Scholes

formula.


Note that we may use multiple controls, e.g., option payoffs at multiple dates. 

When pricing look-back options, barrier options by simulation can use similar 
ideas. 
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Generating Random Numbers Variance Reduction Quasi-Monte Carlo 

Control Variates 
Example: Stochastic Volatility 

Suppose we want to price a European call option in a model with stochastic 
volatility. 
Consider a discrete-time setting, with the stock price following 

S(ti+1) = S(ti ) exp (r − σ(ti )2/2)(ti+1 − ti ) + σ(ti ) Qti+1 − ti εi+1 

εQ 
i 

IID 
∼ N(0, 1) 

σ(ti ) follows its own stochastic process. 
Along with S(ti ), simulate another stock price process 

σ�2 
Q 
i+1S(ti+1) = S(ti ) exp r − (ti+1 − ti ) + σ� ti+1 − ti ε2 

Pick σ� close to a typical value of σ(ti ). 
Use the same sequence of Normal variables εQ 

i for S�(ti ) as for S(ti ). 

Can use the discounted payoff of the European call option on S� as a control 
variate: expectation given by the Black-Scholes formula. 
c Simulation Methods 24 / 35 � Leonid Kogan ( MIT, Sloan ) 15.450, Fall 2010 



Generating Random Numbers Variance Reduction Quasi-Monte Carlo 

Control Variates 
Example: Hedges as Control Variates 

Suppose, again, that we want to price the European call option on a stock 
with stochastic volatility. 
Let C(t , St ) denote the price of a European call option with some constant 
volatility σ�, given by the Black-Scholes formula. 
Construct the process for discounted gains from a discretely-rebalanced 
delta-hedge. 

The delta is based on the Black-Scholes model with constant volatility σ�. 
The stock price follows the true stochastic-volatility dynamics. 

I−1

V (T ) = V (0) + 
� ∂C(ti , S(ti )) � e−rti+1 S(ti+1) − e−rti S(ti ) 

� 
, tI = T 

∂S(ti )i=1 

Under the risk-neutral probability Q,


EQ 
0 [V (T )] = V (0) (Check using iterated expectations)


Can use V (T ) as a control variate. The better the discrete-time delta-hedge, 
the better the control variate that results. 
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Hedges as Control Variates 
Example 

Consider a model of stock returns with stochastic volatility under the 
risk-neutral probability measure 

v(iΔ)
√
ΔεQS((i + 1)Δ) = S(iΔ) exp (r − v(iΔ)/2)Δ + i+1 

v((i + 1)Δ) = v(iΔ) − κ(v(iΔ) − v)Δ + γ v(iΔ)ΔuQ 
i+1 

εQ 
i 

IID 
∼ N(0, 1), uQ 

i 
IID 
∼ N(0, 1), corr(εQ 

i , u
Q 
i ) = ρ 

Price a European call option under the parameters 

r = 0.05, T = 0.5, S0 = 50, K = 55, Δ = 0.01 

v0 = 0.09, v = 0.09, κ = 2, ρ = −0.5, γ = 0.1, 0.2, 0.3, 0.4, 0.5 

Perform 10,000 simulations to estimate the option price. Report the fraction 
of variance eliminated by the control variate. 
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Generating Random Numbers Variance Reduction Quasi-Monte Carlo 

Hedges as Control Variates 
Example 

γ 0.1 0.2 0.3 0.4 0.5 �ρ2 0.9944 0.9896 0.9799 0.9618 0.9512 
Naive Monte Carlo 

C�


S.E .(C�)

C�


S.E .(C�)


2.7102 2.6836 2.5027 2.5505 2.4834 
0.0559 0.0537 0.0506 0.0504 0.0483 

Control variates 
2.7508 2.6908 2.6278 2.5544 2.4794 
0.0042 0.0056 0.0071 0.0088 0.0107 
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Generating Random Numbers Variance Reduction Quasi-Monte Carlo 

Quasi-Monte Carlo 
Overview 

Quasi-Monte Carlo, or low-discrepancy methods present an alternative to

Monte Carlo simulation.

Instead of probability theory, QMC is based on number theory and algebra.
�1Consider a problem of integrating a function, 0 f (x) dx . 
Monte Carlo approach prescribes simulating N draws of a random variable 
X ∼ Unif [0, 1] and approximating �1 N1 � 

f (x) dx ≈ f (Xi )N0 i=1 

QMC generates a deterministic sequence Xi , and approximates
�1 N
1 � 

0 
f (x) dx ≈ 

N
i=1 

f (Xi ) 

Monte Carlo error declines with sample size as O(1/
√

N). QMC error 
declines almost as fast as O(1/N). 
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Generating Random Numbers Variance Reduction Quasi-Monte Carlo 

Quasi-Monte Carlo


We focus on generating a d-dimensional sequence of low-discrepancy points 
filling a d-dimensional hypercube, [0, 1)d . 

QMC is a substitute for draws from d-dimensional uniform distribution. 

As discussed, all distributions can be obtained from Unif [0, 1] using the

inverse transform method.


There are many algorithms for producing low-discrepancy sequences. In 
financial applications, Sobol sequences have shown good performance. 

In practice, due to the nature of Sobol sequences, it is recommended to use 
N = 2k (integer k ) points in the sequence. 
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Generating Random Numbers Variance Reduction Quasi-Monte Carlo 

Quasi-Monte Carlo 
Illustration 

256 points from a 2-dimensional Sobol sequence 

MATLAB Code 
� � ������������ � � ����������� 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

® 
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Generating Random Numbers Variance Reduction Quasi-Monte Carlo 

Quasi-Monte Carlo 
Randomization 

Low-discrepancy sequence can be randomized to produce independent

draws.
 �1Each independent draw of N points yields an unbiased estimate of 0 f (x) dx . 

By using K independent draws, each containing N points, we can construct 
confidence intervals. 

Since randomizations are independent, standard Normal approximation can 
be used for confidence intervals. 
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Quasi-Monte Carlo 
Randomization 

Two independent randomizations using 256 points from a 2-dimensional Sobol 
sequence 

MATLAB Code 
� � ����������������������� � � ������������� 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

® 

c� Leonid Kogan ( MIT, Sloan ) Simulation Methods 15.450, Fall 2010 33 / 35 



Generating Random Numbers Variance Reduction Quasi-Monte Carlo 

Readings


Campbell, Lo, MacKinlay, 1997, Section 9.4. 

Boyle, P., M. Broadie, P. Glasserman, 1997, “Monte Carlo methods for 
security pricing,” Journal of Economic Dynamics and Control, 21, 1267-1321. 

Glasserman, P., 2004, Monte Carlo Methods in Financial Engineering,

Springer, New York. Sections 2.2, 4.1, 4.2, 7.1, 7.2.
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Generating Random Numbers Variance Reduction Quasi-Monte Carlo 

Appendix 
Derivation of the Acceptance-Rejection Method 

Suppose the A-R algorithm generates Y . Y has the same distribution as X ,

conditional on


f (X )
U � 

cg(X ) 

Derive the distribution of Y . For any event A, 

� � Prob f (X )
f (X ) X ∈ A, U � cg(X )

Prob(Y ∈ A) = Prob X ∈ A|U � 
cg(X )

= 
Prob 

� 
U � f (X ) 

� 

cg(X ) 

Note that � � 

Prob U � 
f (X ) 

|X = 
f (X ) 

and therefore 
cg(X ) cg(X ) 

Prob U � 
f (X )

= 
f (x) 

g(x) dx = 
1 

cg(X ) cg(x) c 

Conclude that 

Prob(Y ∈ A) = c Prob 
f (X )

= c
f (x) 

g(x) dx = f (x) dxX ∈ A, U � 
cg(X ) A cg(x) A 

Since A is an arbitrary event, this verifies that Y has density f . 
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