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Expected Utility Risk Aversion Derivatives and Portfolio Choice 

Constant Portfolio Weights 

Consider a market with N assets. 

Gross asset returns, Rt
n , n = 1, 2, ..., N are IID over time. 

Consider self-financing portfolio rules with constant weights 

Portfolio Rule: ω = (ω1, ω2, ..., ωN ) 

Focus on constant weights is natural in an IID environment. 

Under rule ω, portfolio value Wt changes as 

N

Wt = Wt−1 ωnRt
n 

n=1 

Single out a particular rule ω�, such that 

N

ω� = arg max E ln ωnRt
n 

ω 
n=1 
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Expected Utility Risk Aversion Derivatives and Portfolio Choice 

Constant Portfolio Weights


Compare the long-run performance of the portfolio following the rule ω� to 
the one following any other constant rule ω� . 

Denote the corresponding portfolio values by W � and �W . Assume both start 
at 1 at t = 0. �T �N T

� 
N

� 
T

� 
N

� 
T t=1 n tln 

W � 

= ln �T �n
N 
=1 ω

�Rn 

= 
� 

ln 
� 

ω� 
nRt

n − 
� 

ln 
� 

ω� nRt
n � ωnRnWT t=1 n=1 � t t=1 n=1 t=1 n=1 

By LLN, � � � � ��
T N N1 � � � 

T 
ln ωnRt

n → E ln ωnRt
n ≡ G(ω) 

t=1 n=1 n=1 

By definition of ω� ,

G(ω�) − G(ω� ) > 0
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Expected Utility Risk Aversion Derivatives and Portfolio Choice 

Constant Portfolio Weights


We have established that 

1 W � 

ln T G(ω�) − G > 0
T WT 

→ 

Conclusion: in the long run, the portfolio rule ω� produces higher portfolio 
value than any other constant weight rule with probability one! 

Is the portfolio rule maximizing the expected log of return the best choice for 
any long-horizon investor? Is there role for individual preferences? 
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Expected Utility Risk Aversion Derivatives and Portfolio Choice 

20-20 Hindsight 

This discussion is based on the universal portfolio of Thomas Cover. 
Define the geometric rate of return on a portfolio between 0 and T as 

1 WTln
T W0 

Consider a market with N stocks paying no dividends. 
Suppose that, after observing returns on N stocks between 0 and T , we 
select the stock with the highest geometric rate of return. 
Is it possible for a portfolio to match performance of the best-performing 
stock? Yes, in the long run. 
Consider an equal-weighted, buy-and-hold portfolio. It has the same 
asymptotic geometric rate of return (as T ∞) as the best performing (ex →
post ) stock! 
Universal portfolio is an equal-weighted allocation to all possible portfolios 
with positive constant weights. It can beat the best performing stock and 
matches the best (ex post ) constant-weight rule asymptotically. 
Should we follow the equal-weight, buy-and-hold rule, or the universal 
portfolio? 
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Expected Utility Risk Aversion Derivatives and Portfolio Choice 

Where is the Catch


It is hard to have a meaningful discussion of which portfolio rules are

preferable without an explicitly specified objective.


Both of the portfolio rules described above may have nice asymptotic 
properties, but at any finite time point T they may produce return distributions 
with too much risk. 

Consistent decision making under uncertainty can be based on the concept 
of expected utility. 

Expected utility is not a dogma: it is based on behavioral assumptions. 

Expected utility assumes rational, consistent choices. 

Empirically, people often violate expected utility axioms. 

No surprise there, people often behave irrationally. 
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Expected Utility Risk Aversion Derivatives and Portfolio Choice 

The Framework 

Define preference over random payoffs (gambles, lotteries), e.g., 

[$1000(0.5), $0(0.5)] vs. [$2000(0.3), $200(0.7)] � �� � � �� � � �� � � �� � 
prob. prob. prob. prob. 

Preferences are over outcomes only, e.g., do not depend on the mechanism 
by which cash flows are generated. Can apply to portfolio choice. � y (prefer �x to y� ), x� ∼ �y (indifferent between x� and �y )x � �
Expected Utility Theory is a mathematical representation of preferences 

� y E[U(�x)] > E[U(y�)]x � � ⇔ 

When we evaluate a random payoff �x , we care only about the numerical

distribution of cash flows: E[U(�x)].

Properties of preferences are captured by the shape of the utility function 
U(x). 
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Expected Utility Risk Aversion Derivatives and Portfolio Choice 

Risk Aversion


We commonly assume that people prefer more to less: 

� x x , ε � 0x + ε � � for all �
This means that the utility U(x) is non-decreasing: 

U �(x) � 0 

We also assume aversion to risk: prefer x = E[�x ] to x�, i.e., 

U(x) � E[U(�x)] 
This means that U(x) is concave


U ��(x) � 0


c� Leonid Kogan ( MIT, Sloan ) Dynamic Portfolio Choice I 15.450, Fall 2010 11 / 35 



Expected Utility Risk Aversion Derivatives and Portfolio Choice 

Risk Aversion 
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Expected Utility Risk Aversion Derivatives and Portfolio Choice 

Coefficient of Relative Risk Aversion γ(W ) 

Start with initial wealth W . Compare two gambles, with payoffs


W (1 + x) and W (1 + xCE ), xCE is a constant


What value of xCE makes the agent indifferent? 

Small gamble x . Use Taylor expansion around W (1 + x): 

U(W (1 + x)) ≈ U(W (1 + x)) + U �(W (1 + x))W (x − x)+ 

1 
U ��(W (1 + x))W 2(x − x)2 +

2 
· · · 

U(W (1 + xCE )) ≈ U(W (1 + x)) + U �(W (1 + x))W (xCE − x) 

Indifference implies 

E [U(W (1 + x))] = U(W (1 + xCE )) 

1
U �(W (1 + x))Wx + U ��(W (1 + x))W 2Var(x) ≈ U �(W (1 + x))WxCE2 
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Expected Utility Risk Aversion Derivatives and Portfolio Choice 

Coefficient of Relative Risk Aversion γ(W )


Certainty-Equivalent Return 

xCE ≈ x − 
1 
2 
γ(W (1 + x)) Var(x), where γ(W ) = − 

U ��(W )W 
U �(W ) 
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Expected Utility Risk Aversion Derivatives and Portfolio Choice 

Examples of Utility Functions 

Linear utility 
U(W ) = a + bW , b > 0 

implies that γ(W ) = 0. 
Payoffs are compared by their expected value, linear utility implies risk 
neutrality. 
Exponential utility 

U(W ) = − exp(−aW ), a > 0 

Assume W ∼ N(µ, σ2). Then � �2σ2a
E [U(W )] = − exp −aµ + 

2 

Payoffs are compared by 
σ2 

µ − a 
2 

Increasing relative risk aversion 

γ(W ) = aW 
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Expected Utility Risk Aversion Derivatives and Portfolio Choice 

Examples of Utility Functions


Constant relative risk aversion (CRRA) utility exhibits 

γ(W ) = γ 

Using the definition γ(W ) = −U ��(W )W /U �(W ), recover the utility function 

1 W 1−γ , γ = 11−γU(W ) = 
�

ln W , γ = 1 

CRRA utility is a very popular choice because of its implications for portfolio 
strategies. 
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Expected Utility Risk Aversion Derivatives and Portfolio Choice 

Binomial Setting


Consider a market with constant interest rate r and a stock paying no 
dividends, with price following a binomial tree: 

u, with probability p
St = St−1 × d , with probability 1 − p 

Recall that the state-price density in this market is given by 

πt+1(u) 1 1 + r − d 
= 

πt p(1 + r) u − d 
πt+1(d) 1 u − (1 + r) 

= 
πt (1 − p)(1 + r) u − d 

We want to find the portfolio maximizing expected utility 

E0 [U(WT )] 
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Expected Utility Risk Aversion Derivatives and Portfolio Choice 

Main Idea


t = 0 t = 1 t = 2 

��
����

s1 

�
���� ���� s2 

s3 
��

��������

s4 

Imagine that any possible state-contingent claim with payoff at T = 2 can be 
traded. Then portfolio choice is a simple static optimization problem: choose 
the claim WT 

�(s) producing the highest expected utility subject to the budget 
constraint. 
Any state-contingent claim can be replicated by trading dynamically in the 
stock and the bond, therefore our optimal choice for WT 

�(s) can be generated 
by dynamic trading. 
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Expected Utility Risk Aversion Derivatives and Portfolio Choice 

CRRA Utility 
Formulation 

Suppose our objective is to maximize 

E0 1 − 
1 
γ 

WT 
1−γ 

starting with W0. 

We look for the best state-contingent wealth allocation WT (s) that costs W0 

at t = 0. 

Recall that the time-0 value of any cash flow can be computed using the SPD 
as � 

W0 = Prob0(s)πT (s)WT (s) 
s 

Solve the static problem 

max 
� 

Prob0(s) 
1 

1 − γ 
WT (s)1−γ s.t. 

� 
Prob0(s)πT (s)WT (s) = W0 

s s 

c� Leonid Kogan ( MIT, Sloan ) Dynamic Portfolio Choice I 15.450, Fall 2010 20 / 35 



� � 

� 

Expected Utility Risk Aversion Derivatives and Portfolio Choice 

CRRA Utility 
Solution of the Static Problem 

Solve the static problem 

max 
� 

Prob0(s) 
1 

WT (s)1−γ s.t. 
� 

Prob0(s)πT (s)WT (s) = W0 
{WT (s)} 1 − γ 

s s 

Relax the constraint with a Lagrange multiplier λ 

� 1 � 
max Prob0(s) WT (s)1−γ − λ Prob0(s)πT (s)WT (s) − W0 

{WT (s)} 1 − γ 
s s 

First-order optimality conditions 

WT 
�(s)−γ = λπT (s) WT 

�(s) = (λπT (s))
−1/γ ⇒ 

Find the multiplier from 

Prob0(s) (λπT (s))
−1/γ 

πT (s) = W0 
s 

c� Leonid Kogan ( MIT, Sloan ) Dynamic Portfolio Choice I 15.450, Fall 2010 21 / 35 



Expected Utility Risk Aversion Derivatives and Portfolio Choice 

CRRA Utility 
Solution of the Static Problem 

We conclude that the optimal choice of time-T state-contingent cash flow is 

WT 
�(s) = � 

W0 
πT (s)−1/γ 

Prob0(s)πT (s)1−1/γ 
s 

The recombining binomial tree model has a special property that the SPD is 
a function of the terminal stock price. 

If the terminal stock price equals 

ST = S0u(# Up moves)d(T −# Up moves) 

then the SPD in the same state equals 

πT = π1(u)(# Up moves)π1(d)(T −# Up moves) 

1 1 + r − d 1 u − (1 + r)
π1(u) = , π1(d) = 

p(1 + r) u − d (1 − p)(1 + r) u − d 
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Expected Utility Risk Aversion Derivatives and Portfolio Choice 

CRRA Utility 
Dynamic Trading Strategy 

We were able to express the optimal state-contingent portfolio value at the 
terminal date, WT 

�(s), as a function of the terminal stock price, denoted as 

WT 
�(s) = H(ST (s)) 

The optimal portfolio must replicate the European derivative security with 
terminal payoff H(ST ). 

We know how to construct the optimal trading strategy in the stock and the 
bond: it is the replicating strategy for the above derivative. Can compute it by 
backward induction. 
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Expected Utility Risk Aversion Derivatives and Portfolio Choice 

CRRA Utility 
State-Contingent Allocation 

Qualitatively, want to achieve higher wealth in states with lower SPD (higher 
stock price). 

Illustrate by plotting the analytical solution from B-S framework (below). 

S
T

W
* T

γ = 1

S
T

W
* T

γ = 4
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Expected Utility Risk Aversion Derivatives and Portfolio Choice 

Discussion


In the binomial setting, finding an optimal dynamic portfolio strategy reduces 
to figuring out which derivative security we would like to buy with initial wealth 
W0. 

The static problem is easy to solve using a Lagrange multiplier. 

Since any derivative can be replicated by dynamic trading in the stock and 
the bond, we know how to construct the optimal dynamic strategy for any 
utility function (e.g., proceeding backwards on the tree). 
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Expected Utility Risk Aversion Derivatives and Portfolio Choice 

Black-Scholes Framework


Black-Scholes framework is a continuous-time limit of a recombining binomial 
tree, and dynamic portfolio choice is equally simple. 

The advantage of continuous time is that we can obtain transparent

closed-form solution.


We use the B-S framework to recover the famous Merton’s solution to the 
dynamic portfolio choice problem. 

Assume interest rate r and the stock price process 

dSt 
= µ dt + σ dZtSt 

We are performing calculations under the physical probability measure, so 
Zt = Zt 

P . 
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Expected Utility Risk Aversion Derivatives and Portfolio Choice 

CRRA Utility 
Static Problem 

In analogy with the binomial-tree setting, we replace the dynamic problem 
with a static problem 

max E0 
1 

WT 
1−γ subject to E0 [πT WT ] = W0 

{WT } 1 − γ 

Keep in mind that WT and πT are both functions of the state, which is the 
entire trajectory of the Brownian motion between 0 and T . 

Relax the constraint using a Lagrange multiplier λ: 

max E0 
1 

WT 
1−γ − λ (πT WT − W0) 

{WT } 1 − γ 

First-order optimality conditions 

(WT 
�)−γ = λπT WT 

� = (λπT )
−1/γ ⇒ 
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Expected Utility Risk Aversion Derivatives and Portfolio Choice 

CRRA Utility 
Static Problem 

We find the multiplier from the static budget constraint: 

E0 [πT WT 
�] = W0 E0 πT (λπT )

−1/γ = W0⇒ 

Find 
λ−1/γ = � W0 � 

E0 πT 
1−1/γ 

We need to derive the dynamic strategy replicating the optimal

state-contingent claim WT 

� .


We first derive the process for the optimal portfolio value, Wt 
�, and then figure 

out how to delta-hedge it using the stock. 
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Expected Utility Risk Aversion Derivatives and Portfolio Choice 

CRRA Utility 
Dynamic Strategy 

If the optimal portfolio value at T is given by Wt 
�, by DCF formula, portfolio 

value at earlier times must be equal to 

Wt 
� = Et	

πT WT 
� , WT 

� = (λπT )
−1/γ 

πt 

Recall that in the Black-Scholes model, the price of risk is constant, 
η = (µ − r)/σ, and the SPD is given by 

πt = e−rt e−(η2 /2) t−η Zt 

We can compute Wt 
�: � � � � �1−1/γ 

� 

W � λ−1/γπ
−1/γ πT 

λ−1/γ πT 
π
−1/γ 

t = Et T = Et	 tπt	 πt 

= F (t)π−
t 

1/γ 

for some function of time F (t), which we could compute explicitly. 
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Expected Utility Risk Aversion Derivatives and Portfolio Choice 

Dynamic Strategy


To figure out the dynamic trading strategy, we relate the SPD to the stock 
price, just like we did for binomial tree. 

The SPD is given by 
πt = e−rt e−(η2 /2) t−η Zt 

The stock price equals 
St = S0e(µ−σ2/2) t+σ Zt 

We conclude that 
πt = G(t)St 

−η/σ 

for some function G(t). We can compute G(t) explicitly but do not need to. 

The optimal portfolio follows 

W � = F (t)G(t)−1/γSη/(γσ) 
t t 
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Expected Utility Risk Aversion Derivatives and Portfolio Choice 

Dynamic Strategy


Let θt denote the optimal number of stock shares in the dynamic portfolio. 

tDefine φ to be the weight of the stock in the optimal portfolio: 

θt St 

W
φ = t 

t 

Delta-hedging rule tells us how many stock shares to include in the 
replicating portfolio 

Using 

∂Wtθ = t ∂St 

= F (t)G(t)−1/γSη/(γσ) 
tWt 

we conclude that 
φ

η µ − r 
= = t γσ γσ2 
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Expected Utility Risk Aversion Derivatives and Portfolio Choice 

Dynamic Strategy


Merton’s Solution 
In the Black-Scholes setting with CRRA utility function, the weight of the stock in 
the optimal portfolio is 

φ� 
t = 

µ − r 
γσ2 

Merton’s solution says that the optimal portfolio weights are constant,

independent of the problem horizon T .

We call such solution myopic. It is optimal to behave as if the horizon of the 
problem is very short. 
The optimal weight of the stock is increasing in the risk premium, and

decreasing in relative risk aversion and stock return volatility.

For a general utility function, U(WT ), we would not obtain the same solution, 
optimal portfolio strategy would not be myopic. 
CRRA utility is special: constant relative risk aversion. This, combined with 
the fact that returns on all assets in the B-S model are IID, leads to a myopic 
optimal portfolio. 
c Dynamic Portfolio Choice I 32 / 35 � Leonid Kogan ( MIT, Sloan ) 15.450, Fall 2010 



Expected Utility Risk Aversion Derivatives and Portfolio Choice 

Merton’s Solution 

Merton’s solution easily generalizes to a multi-variate case. 
If an investor has a CRRA utility function, interest rate is constant, r , and 
returns on N risky assets follow 

NdSt
i 

= µi dt + 
� 

Σij dZt
j ,

Si

t j=1


then the vector of optimal portfolio weights on the N stocks is given by 

φ� = 
1 
(ΣΣ �)

−1 
(µ − r1)t γ 

where µ = (µ1, ..., µN )
�, 1 = (1, 1, ..., 1) �, and ⎤⎡ ⎢⎢⎣ 

Σ11 Σ12 . . . Σ1N 

Σ21 Σ22 . . . Σ2N ⎥⎥⎦Σ = 
. . . 

ΣN1 ΣN2 . . . ΣNN 
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Expected Utility Risk Aversion Derivatives and Portfolio Choice 

Summary


Need a coherent objective to formulate an optimal dynamic trading strategy: 
Expected Utility Theory. 

In a setting in which all state-contingent claims can be replicated by dynamic 
trading (e.g., binomial tree, Black-Scholes model) can connect optimal 
portfolio choice to option pricing. 

In the Black-Scholes setting with CRRA preferences, the optimal portfolio 
strategy is myopic, given by the Merton’s solution. 
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