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Overview


When all state-contingent claims are redundant, i.e., can be replicated by 
trading in available assets (e.g., stocks and bonds), dynamic portfolio choice 
reduces to a static problem. 

There are many practical problems in which derivatives are not redundant, 
e.g., problems with constraints, transaction costs, unspanned risks 
(stochastic volatility). 

Such problems can be tackled using Dynamic Programming (DP). 

DP applies much more generally than the static approach, but it has practical 
limitations: when the closed-form solution is not available, one must use 
numerical methods which suffer from the curse of dimensionality. 
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IID Returns 
Formulation 

Consider the discrete-time market model. 

There is a risk-free bond, paying gross interest rate Rf = 1 + r . 

There is a risky asset, stock, paying no dividends, with gross return Rt , IID 
over time. 

The objective is to maximize the terminal expected utility 

max E0 [U(WT )] 

where portfolio value Wt results from a self-financing trading strategy 

Wt = Wt−1 [φt−1Rt + (1 − φt−1)Rf ] 

φt denotes the share of the stock in the portfolio. 
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Principle of Optimality


Suppose we have solved the problem, and found the optimal policy φ� 
t . 

Consider a tail subproblem of maximizing Es [U(WT )] starting at some point 
in time s with wealth Ws. 

· · · 

time s, 
Wealth Ws, 
policy (s)φ

� 
s 

Value f-n J(s, Ws) 

policy (s)φ
� · · · 

U(WT ) 

U(WT ) 

· · · 
U(WT ) 

U(WT ) 

s+1 

policy (s)φ
� 
s+1 

· · · 
· · · 

· · · 
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Principle of Optimality


Let 
(s)φ

� 
s , (s)φs

� 
+1, ..., (s)φ

� 
T −1 

denote the optimal policy of the subproblem. 

The Principle of Optimality states that the optimal policy of the tail 
subproblem coincides with the corresponding portion of the solution of the 
original problem. 

The reason is simple: if policy ((s)φ
� ) could outperform the original policy on ···

the tail subproblem, the original problem could be improved by replacing the 
corresponding portion with ((s)φ

� ). ···
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IID Returns 
DP 

Suppose that the time-t conditional expectation of terminal utility under the 
optimal policy depends only on the portfolio value Wt at time t , and nothing 
else. This conjecture needs to be verified later. 

Et U(WT )|(t)φ
� 
t,...,T −1 = J(t , Wt ) 

We call J(t , Wt ) the indirect utility of wealth. 

Then we can compute the optimal portfolio policy at t − 1 and the time-(t − 1) 
expected terminal utility as 

J(t − 1, Wt−1) = max Et−1 [J(t , Wt )] (Bellman equation) 
φt−1 

Wt = Wt−1 [φt−1Rt + (1 − φt−1)Rf ] 

J(t , Wt ) is called the value function of the dynamic program. 
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IID Returns 
DP 

DP is easy to apply. 

Compute the optimal policy one period at a time using backward induction. 

At each step, the optimal portfolio policy maximizes the conditional

expectation of the next-period value function.


The value function can be computed recursively. 

Optimal portfolio policy is dynamically consistent: the state-contingent policy 
optimal at time 0 remains optimal at any future date t . Principle of Optimality 
is a statement of dynamic consistency. 
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IID Returns 
Binomial tree 

Stock price 

St = St−1 × 
u, with probability p 
d , with probability 1 − p 

Start at time T − 1 and compute the value function


J(T − 1, WT −1) = max ET −1 [U(WT )|φT −1] =
⎧⎨ 

φT −1 

pU [WT −1 (φT −1u + (1 − φt−1)Rf )] + 
⎫⎬ 

max 
φT −1 ⎩ (1 − p)U [WT −1 (φT −1d + (1 − φT −1)Rf )]

⎭ 

Note that value function at T − 1 depends on WT −1 only, due to the IID return 
distribution. 
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IID Returns 
Binomial tree 

Backward induction. Suppose that at t , t + 1, ..., T − 1 the value function has 
been derived, and is of the form J(s, Ws). 

Compute the value function at t − 1 and verify that it still depends only on 
portfolio value: 

J(t − 1, Wt−1) = max Et−1 [J(t , Wt )|φt−1] = ⎧⎨ 

φt−1 

pJ [t , Wt−1 (φt−1u + (1 − φt−1)Rf )] + 
⎫⎬ 

max 
φt−1 ⎩ (1 − p)J [t , Wt−1 (φt−1d + (1 − φt−1)Rf )]

⎭ 

Optimal portfolio policy φ� 
t−1 depends on time and the current portfolio value: 

φ� = φ�(t − 1, Wt−1)t−1 
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IID Returns, CRRA Utility 
Binomial tree 

Simplify the portfolio policy under CRRA utility U(WT ) = 1−
1 
γ WT 

1−γ 

J(T − 1, WT −1) = max ET −1
1 

W 1−γ
|φT −1 = 

φT −1 1 − γ T ⎧ ⎪⎨ 
⎫ ⎪⎬1 W 1−γ 1−γ p 1−γ T −1 (φT −1u + (1 − φT −1)Rf ) + 

max 
φT −1 ⎪⎩ ⎪⎭1 W 1−γ 1−γ(1 − p) 1−γ T −1 (φT −1d + (1 − φT −1)Rf )

= A(T − 1) W 1−γ 
T −1 

where A(T − 1) is a constant given by ⎧⎨ p (φT −1u + (1 − φT −1)Rf )
1−γ + 

⎫⎬1
A(T − 1) = max 

φT −1 1 − γ ⎩
(1 − p) (φT −1d + (1 − φT −1)Rf )

1−γ ⎭ 
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IID Returns, CRRA Utility 
Binomial tree 

Backward induction 

J(t − 1, Wt−1) = max Et−1 A(t)Wt 
1−γ

|φt−1 = 
φt−1 ⎧⎨ 

⎫⎬pA(t)Wt
1
−
−
1 
γ (φt−1u + (1 − φt−1)Rf )

1−γ + 
max 
φt−1 ⎩ ⎭ 

(1 − p)A(t)W 1−γ (φt−1d + (1 − φt−1)Rf )
1−γ 

t−1 

= A(t − 1) W 1−γ 
t−1 

where A(t − 1) is a constant given by ⎧⎨ p (φt−1u + (1 − φt−1)Rf )
1−γ + 

⎫⎬ 
A(t − 1) = max A(t) 

φt−1 ⎩ 
(1 − p) (φt−1d + (1 − φt−1)Rf )

1−γ ⎭ 
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Black-Scholes Model, CRRA Utility 
Limit of binomial tree 

Parameterize the binomial tree so the stock price process converges to the 
Geometric Brownian motion with parameters µ and σ: p = 1/2, �� � � �� � � 

u = exp µ − 
σ2 

Δt + σ
√
Δt , d = exp µ − 

σ2 

Δt − σ
√
Δt

2 2 

Let Rf = exp(r Δt). Time step is now Δt instead of 1. 
Take a limit of the optimal portfolio policy as Δt 0:→⎧⎨ 

⎫⎬p (φt u + (1 − φt )Rf )
1−γ + 

φ� = arg max A(t + Δt)t 
φt ⎩ ⎭1−γ(1 − p) (φt d + (1 − φt )Rf )⎧⎨ 

⎫⎬1 + (1 − γ)(r + φt (µ − r )) Δt 
≈ arg max A(t + Δt) 

φt ⎩ ⎭
−(1/2)(1 − γ)γφ2 

t σ
2 Δt 

Optimal portfolio policy 

φ� µ − r 
= t γσ2 
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Black-Scholes Model, CRRA Utility 

Optimal portfolio policy 

φ� µ − r 
= t γσ2 

We have recovered the Merton’s solution using DP. Merton’s original

derivation was very similar, using DP in continuous time.


The optimal portfolio policy is myopic, does not depend on the problem 
horizon. 

The value function has the same functional form as the utility function: 
indirect utility of wealth is CRRA with the same coefficient of relative risk 
aversion as the original utility. That is why the optimal portfolio policy is 
myopic. 

If return distribution was not IID, the portfolio policy would be more complex. 
The value function would depend on additional variables, thus the optimal 
portfolio policy would not be myopic. 
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General Formulation 

Consider a discrete-time stochastic process Yt = (Yt 
1 , ..., Yt

N ). 

Assume that the time-t conditional distribution of Yt+1 depends on time, its 
own value and a control vector φt : 

pdft (Yt+1) = p(Yt+1, Yt , φt , t) 

For example, vector Yt could include the stock price and the portfolio value, 
Yt = (St , Wt ), and the transition density of Y would depend on the portfolio 
holdings φt . 

The objective is to maximize the expectation 

T −1

E0 u(t , Yt , φt ) + u(T , YT ) 
t=0 

For example, in the IID+CRRA case above, Yt = Wt , u(t , Yt , φt ) = 0, 
t = 0, ..., T − 1 and u(T , YT ) = (1 − γ)−1 (YT )

1−γ . 

We call Yt a controlled Markov process. 
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Formulation 
State augmentation 

Many dynamic optimization problems of practical interest can be stated in the 
above form, using controlled Markov processes. Sometimes one needs to be 
creative with definitions. 
State augmentation is a common trick used to state problems as above. 
Suppose, for example, that the terminal objective function depends on the 
average of portfolio value between 1 and T . 
Even in the IID case, the problem does not immediately fit the above 
framework: if the state vector is Yt = (Wt ), the terminal objective � �1−γT1 1 � 

Wt1 − γ T 
t=1 

cannot be expressed as 

T −1

u(t , Yt , φt ) + u(T , YT ) 
t=0 
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Formulation 
State augmentation 

Continue with the previous example. Define an additional state variable At : 

t1 � 
At = Wst 

s=1 

Now the state vector becomes 

Yt = (Wt , At ) 

Is this a controlled Markov process? 
The distribution of Wt+1 depends only on Wt and φt . 
Verify that the distribution of (Wt+1, At+1) depends only on (Wt , At ): 

t+11 � 1
At+1 = Ws = (tAt + Wt+1)t + 1 t + 1 

s=1 

Yt is indeed a controlled Markov process. 
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Formulation 
Optimal stopping 

Optimal stopping is a special case of dynamic optimization, and can be 
formulated using the above framework. 

Consider the problem of pricing an American option on a binomial tree. 
Interest rate is r and the option payoff at the exercise date τ is H(Sτ). 

The objective is to find the optimal exercise policy τ�, which solves 

max EQ 
0 (1 + r )−τH(Sτ)

τ 

The exercise decision at τ can depend only on information available at τ. 

Define the state vector 
(St , Xt ) 

where St is the stock price and Xt is the status of the option 

Xt ∈ {0, 1} 

If Xt = 1, the option has not been exercised yet. 
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Formulation 
Optimal stopping 

Let the control be of the form φt ∈ {0, 1}. If φt = 1, the option is exercised at 
time t , otherwise it is not. 

The stock price itself follows a Markov process: distribution of St+1 depends 
only on St . 

The option status Xt follows a controlled Markov process: 

Xt+1 = Xt (1 − φt ) 

Note that once Xt becomes zero, it stays zero forever. Status of the option 
can switch from Xt = 1 to Xt+1 = 0 provided φt = 1. 

The objective takes form 

T −1

max EQ 
0 (1 + r )−tH(St )Xt φt 

φt 
t=0 
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Bellman Equation


The value function and the optimal policy solve the Bellman equation 

J(t − 1, Yt−1) = max Et−1 [u(t − 1, Yt−1, φt−1) + J(t , Yt )|φt−1] 
φt−1 

J(T , YT ) = u(T , YT ) 
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American Option Pricing 

Consider the problem of pricing an American option on a binomial tree. 
Interest rate is r and the option payoff at the exercise date τ is H(Sτ). 

The objective is to find the optimal exercise policy τ�, which solves 

Q 
0 (1 + r )−τH(Sτ)max E

τ 

The exercise decision at τ can depend only on information available at τ. 

The objective takes form 

T −1
Q 
0 (1 + r )−tH(St )Xt φtmax E

φt ∈{0,1} 
t=0 

If Xt = 1, the option has not been exercised yet. 

Option price P(t , St , X = 0) = 0 and P(t , St , X = 1) satisfies 

P(t , St , X = 1) = max H(St ), (1 + r)−1EQ 
t [P(t + 1, St+1, X = 1)] 
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Asset Allocation with Return Predictability 
Formulation 

Suppose stock returns have a binomial distribution: p = 1/2, �� � � �� � � 

ut = exp µt − 
σ2 

Δt + σ
√
Δt , dt = exp µt − 

σ2 

Δt − σ
√
Δt

2 2 

where the conditional expected return µt is stochastic and follows a Markov 
process with transition density 

f (µt |µt−1) 

Conditionally on µt−1, µt is independent of Rt . 

Let Rf = exp(r Δt). 

The objective is to maximize expected CRRA utility of terminal portfolio value 

max E0 
1 

W 1−γ 

1 − γ T 
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Asset Allocation with Return Predictability 
Bellman equation 

We conjecture that the value function is of the form 

J(t , Wt , µt ) = A(t , µt )Wt 
1−γ 

The Bellman equation takes form 

A(t − 1, µt−1)Wt
1
−
−
1 
γ = max Et−1 A(t , µt ) (Wt−1(φt−1(Rt − Rf ) + Rf ))

1−γ 

φt−1 

The initial condition for the Bellman equation implies 

1
A(T , µT ) = 

1 − γ 

We verify that the conjectured value function satisfies the Bellman equation if 

A(t − 1, µt−1) = max Et−1 A(t , µt ) (φt−1(Rt − Rf ) + Rf )
1−γ 

φt−1 

Note that the RHS depends only on µt−1. 
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Asset Allocation with Return Predictability 
Optimal portfolio policy 

The optimal portfolio policy satisfies 

φt−1 = arg max Et−1 A(t , µt ) (φt−1(Rt − Rf ) + Rf )
1−γ 

φt−1 

= arg max Et−1 [A(t , µt )] Et−1 (φt−1(Rt − Rf ) + Rf )
1−γ 

φt−1 

because, conditionally on µt−1, µt is independent of Rt . 

Optimal portfolio policy is myopic, does not depend on the problem horizon. 
This is due to the independence assumption. 

Can find φt numerically. 

In the continuous-time limit of Δt 0,→ 

φ
µt − r 

= t γσ2 
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Asset Allocation with Return Predictability 
Hedging demand 

Assume now that the dynamics of conditional expected returns is correlated 
with stock returns, i.e., the distribution of µt given µt−1 is no longer 
independent of Rt . 

The value function has the same functional form as before, 

J(t , Wt , µt ) = A(t , µt )Wt 
1−γ 

The optimal portfolio policy satisfies 

φ� 
t−1 = arg max Et−1 A(t , µt ) (φt−1(Rt − Rf ) + Rf )

1−γ 

φt−1 

Optimal portfolio policy is no longer myopic: dependence between µt and Rt 

affects the optimal policy. 

The deviation from the myopic policy is called hedging demand. It is non-zero 
due to the fact that the investment opportunities (µt ) change stochastically, 
and the stock can be used to hedge that risk. 
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Optimal Control of Execution Costs 
Formulation 

Suppose we need to buy b shares of the stock in no more than T periods. 

Our objective is to minimize the expected cost of acquiring the b shares. 

Let bt denote the number of shares bought at time t . 

Suppose the price of the stock is St . 

The objective is � �
T

min E0 Stbt 
b0,...,T −1 

t=0 

What makes this problem interesting is the assumption that trading affects 
the price of the stock. This is called price impact. 
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Optimal Control of Execution Costs 
Formulation 

Assume that the stock price follows 

St = St−1 + θbt + εt , θ > 0 

Assume that εt has zero mean conditional on St−1 and bt :


E[εt |bt , St−1] = 0


Define an additional state variable Wt denoting the number of shares left to 
purchase: 

Wt = Wt−1 − bt−1, W0 = b 

The constraint that b shares must be bought at the end of period T can be 
formalized as 

bT = WT 
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Optimal Control of Execution Costs 
Solution 

We can capture the dynamics of the problem using a state vector 

Yt = (St−1, Wt ) 

which clearly is a controlled Markov process. 
Start with period T and compute the value function 

J(T , ST −1, WT ) = ET [ST WT ] = (ST −1 + θWT ) WT 

Apply the Bellman equation once to compute


J(T − 1, ST −2, WT −1) = min ET −1 [ST −1bT −1 + J(T , ST −1, WT )]

bT −1 

(ST −2 + θbT −1 + εT −1)bT −1+ 
= min ET −1 

bT −1 J(T , ST −2 + θbT −1 + εT −1, WT −1 − bT −1) 

Find 
WT −1b� = T −1 2 

3
J(T − 1, ST −2, WT −1) = WT −1 ST −2 + θWT −14 
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Optimal Control of Execution Costs 
Solution 

Continue with backward induction to find 

WT −kb = T −k k + 1 
k + 2

J(T − k , ST −k−1, WT −k ) = WT −k ST −k−1 + θWT −k2(k + 1) 

Conclude that the optimal policy is deterministic 

b
b0 = b� 

1 = = b = T· · · 
T + 1 
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Key Points


Principle of Optimality for Dynamic Programming. 

Bellman equation. 

Formulate dynamic portfolio choice using controlled Markov processes. 

Merton’s solution. 

Myopic policy and hedging demand. 
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