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Overview


Approximate the problem with continuous state space using the one with 
finite state space. 

Finite state space DP problems are easy to implement numerically. 

Many ways to discretize a problem. 

We focus on a particular approach that is general and easy to implement. 

Develop and illustrate the method in the context of a particular application: 
portfolio optimization with return predictability and margin constraints. 
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Predictability and Margin Constraints 
Problem formulation 

Suppose we observe a price spread between two assets Xt following an 
AR(1) process 

IID
Xt+1 = ρXt + σεt+1, 0 < ρ < 1, εt+1 ∼ N(0, 1) 

We would like to design a trading strategy taking advantage of the predictable 
spread fluctuations. 
Assume that the interest rate is zero. 
A unit trade size generates P&L change of Xt+1 − Xt . 
θt is the notional position size at time t . 
The trader starts with W0 dollars. 
Assume that the margin constraints are such that for every dollar of the 
absolute trade size, m > 0 dollars must be invested in the risk-free asset. 
Thus, the trade size is constrained by 

1 
|θt | � Wt m 
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Predictability and Margin Constraints 
Problem formulation 

Portfolio value Wt changes according to 

Wt+1 = Wt + θt (Xt+1 − Xt ) 

Trader maximizes a multi-period objective 

E0 −e−αWT 

If the portfolio value ever becomes negative, the trader is locked out from the 
market, since the margin constraint 

1 
|θt | � Wt m 

excludes further trades. 

We formulate the problem as a dynamic program and solve it numerically. 
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Predictability and Margin Constraints 
DP formulation 

The state vector is 
Yt = (Wt , Xt ) 

Yt is a controlled Markov process with control θt : 

Wt+1 = Wt + θt (Xt+1 − Xt ) 
IID

Xt+1 = ρXt + σεt+1, εt+1 ∼ N(0, 1) 

The Bellman equation takes form


J(t , Wt , Xt ) = max Et [J(t + 1, Wt+1, Xt+1)]

θt :|θt |�m−1Wt 

We look for the value function J(t , Wt , Xt ) satisfying the terminal condition 

J(T , WT , XT ) = −e−αWT 
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Numerical Approximation 
Discretizing dynamics 

We want to replace the original problem with a discrete problem amenable to 
numerical analysis. 
Instead of the original process for the state vector, we introduce a

discrete-value controlled Markov chain.

Replace the spread process Xt with a discrete Markov chain X�t jumping 
between grid points 

X�(1), X�(2), ..., X�(NX ) 

Same for the portfolio value process: �Wt is a discrete process with values 

W (1), W (2), ..., W (NW ) 

Assume an equally spaced rectangular grid for X� and �W . 
Need to derive transition probabilities on the grid to approximate the

distribution of the original state vector.

Transition probabilities depend on the control θt : the discrete process is a 
controlled Markov chain. 
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Numerical Approximation 
Discretizing dynamics 

�Xt � �Xt+1 

W
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Numerical Approximation 
Discretizing dynamics 

Consider first the spread process Xt . We want to approximate it with a 
discrete Markov chain X�t with transition probabilities p(i, i �) between grid 
points i and i �: 

p(i, i �) = Prob(X�t+1 = X�(i �)|X�t = X�(i)) 
The transition density of the original process Xt is given by 

1 − 
(Xt+1−ρXt )

2 

f (Xt+1|Xt ) = e 2σ2√
2πσ2 

Let F (Xt+1|Xt ) denote the corresponding CDF. 
Let ΔX be the spacing of the X -grid. 
We first define the unnormalized transition probabilities for X�t as 

f X�(i �)|X�(i) ΔX , i � = 2, ..., NX − 1 

F X�(1) + ΔX /2 | X�(i) 
⎧⎪⎪⎪⎨ ⎪⎪⎪⎩ 

p(i, i �) = , i � = 1 

1 − F X�(NX ) − ΔX /2 | X�(i) , i � = NX 
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Numerical Approximation 
Discretizing dynamics 

The transition probabilities for X�t are defined as


p(i, i �) = �N

p
X 

(i, �pi (
�

i

) 

, k)k=1 

To define transition probabilities for �W , note that for a generic choice of θ, 

W = W (j) + θ(i � − i)ΔX 

would not be on the W -grid. 
We employ randomization to replace transition to �W with a transition to one 
of the two points, W�(k) or W�(k + 1), such that � W < �W (k) < � W (k + 1). 

Set the transition probability to �W (k + 1) equal to � W (k)W − �
p(i, i �) λ, λ = � W (k)W (k + 1) − �

Note that λ� W (k) = �W (k + 1) + (1 − λ)� W . 
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Numerical Approximation 
Discretizing dynamics 

We need to handle the possibility that

If it happens that

If W W N , we replace W with W N . This is equivalent to ( ) ( )> W W �extrapolating the value function to the right of 

�

W falls outside of the range of the 

W (NW ) as equal to its value at 
W (NW ). 

W < 0, we set the value function at (t + 1,W ,Xt+1) to 

W -grid. 

−e−αW 

The reason is that the trader is locked out of the market after reaching 
negative portfolio value levels, and we know the value function following such 
an event explicitly. 
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Numerical Approximation 
Discrete Bellman equation 

As a result of our discretization approach, we obtain transition probabilities 
on the grid which depend on the chosen control θ: 

P ((i, j), (i �, j �)|θ) 

Transition from (X�(i), W (j)) to (X�(i �), W (j �)). 
We discretize the possible values of the control (the trade size). Impose the 
margin constraint so that 

θ�t 
� � 1 1 

Wt 

∈ θ�(1), ..., θ�(Nθ) , θ�(1) = − 
m 
, θ�(Nθ) = 

m 

The Bellman equation for the discrete problem takes form 

� � � � � �J(t , Wt , Xt ) = max Et J(t + 1, Wt+1, Xt+1) 
θ�t 

where the conditional expectation is computed using the transition 
probabilities P (i, j), (i �, j �)|θ�t . 
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Numerical Approximation 
Parameters 

Assume the following parameters for numerical analysis


α 4

m 0.25 
ρ exp(−0.5Δt) 
σ 0.10

√
Δt 

Δt 1/12 
T 5 

Time period Δt corresponds to monthly rebalancing of the portfolio. 

Problem horizon T is five years. 
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Numerical Approximation 
Results 

Value function at t = 0 
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Numerical Approximation 
Results 

For a fixed W , plot the (smoothed) optimal portfolio policy as a function of the 
price spread X at 1, 12, 36, and 60 months left until T . 
Note how the optimal investment strategy depends on the horizon. 
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