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e
Overview

Approximate the problem with continuous state space using the one with
finite state space.

Finite state space DP problems are easy to implement numerically.

We focus on a particular approach that is general and easy to implement.

Develop and illustrate the method in the context of a particular application:
portfolio optimization with return predictability and margin constraints.

°
@ Many ways to discretize a problem.
o
o
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S
Predictability and Margin Constraints

Problem formulation

@ Suppose we observe a price spread between two assets X; following an
AR(1) process

11D
X1 = pXe +0er1, 0<p<1, gyq~N(0,1)

@ We would like to design a trading strategy taking advantage of the predictable
spread fluctuations.

Assume that the interest rate is zero.

A unit trade size generates P&L change of X;. 1 — X;.

0 is the notional position size at time t.

The trader starts with W, dollars.

Assume that the margin constraints are such that for every dollar of the
absolute trade size, m > 0 dollars must be invested in the risk-free asset.
Thus, the trade size is constrained by

1
18: < =W;
m
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S
Predictability and Margin Constraints

Problem formulation

@ Portfolio value W; changes according to
Wii1 = Wi+ 0¢(Xe1 — Xi)
@ Trader maximizes a multi-period objective
Eo [o7°1]

@ If the portfolio value ever becomes negative, the trader is locked out from the
market, since the margin constraint

1

8/ < =W;

excludes further trades.
@ We formulate the problem as a dynamic program and solve it numerically.
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S
Predictability and Margin Constraints

DP formulation
@ The state vector is
Yt = (th Xt)
@ Y;is a controlled Markov process with control 6;:
Wii1 = Wi+ 0:( X1 — Xb)
Xiv1 = pXi+ Oerp1, €1 ~ N(0,1)
@ The Bellman equation takes form

J(t, W[,X[) = max Et [J(t+1, WH—1:XH—1H
0::10:<m—'W;

@ We look for the value function J(t, W;, X;) satisfying the terminal condition

J(T, Wr, Xr) = —e~ "
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S
Numerical Approximation

Discretizing dynamics

@ We want to replace the original problem with a discrete problem amenable to
numerical analysis.

@ Instead of the original process for the state vector, we introduce a
discrete-value controlled Markov chain.

@ Replace the spread process X; with a discrete Markov chain X, jumping
between grid points

~

X(1), X(2), ..., X(Nx)

@ Same for the portfolio value process: W, is a discrete process with values

w(1), W(2), ..., W(Nw)
@ Assume an equally spaced rectangular grid for X and W.

@ Need to derive transition probabilities on the grid to approximate the
distribution of the original state vector.

@ Transition probabilities depend on the control 0;: the discrete process is a
controlled Markov chain.
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Numerical Approximation

Discretizing dynamics

Xi ~ Xy
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S
Numerical Approximation

Discretizing dynamics

@ Consider first the spread process X;. We want to approximate it with a
discrete Markov chain X; with transition probabilities p(/, i") between grid
points j and i’

pli,i") = Prob(Xy 1 = X(i')|X; = X(i))

@ The transition density of the original process X; is given by

1 _ Xepr—exp)?
f(Xir11X) = \/27'(76 202

@ Let F(X;1|X;) denote the corresponding CDF.
@ Let Ax be the spacing of the X-grid. R
@ We first define the unnormalized transition probabilities for X; as

f ()?(i')p?(i)) Ay, =2, . Ny—1
Bl i) = F(X(1)+AX/2|)?(/')), i’ = 1
1-F ()?(NX) —AX/Z\)A((i)) i = Ny
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S
Numerical Approximation

Discretizing dynamics
@ The transition probabilities for )A([ are defined as
_oplii") )
Zk 1 P,

@ To define transition probabilities for W, note that for a generic choice of 6,

pli,i") =

W =W(j) +0(i" — i)Ax

would not be on the W-grid.

@ We employ randomization to replace transition to | w with a transition to one
of the two points, W(k) or W(k + 1), such that W(k) < W< W(k+ 1).
@ Set the transition probability to W(k + 1) equal to

—~ o~

W — W(k)

P A = D — W)

o Note that AW/(k + 1) + (1 — A)W(k) = W.
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S
Numerical Approximation

Discretizing dynamics

@ We need to handle the possibility that W falls outside of the range of the
W-grid.

o If W> W(NW), we replace W with W(NW). This is equivalent to
extrapolating the value function to the right of W(Ny/) as equal to its value at

—

W(Nw).
e If it happens that W < 0, we set the value function at (t + 1, W, X;1) to

_e—ocW

The reason is that the trader is locked out of the market after reaching

negative portfolio value levels, and we know the value function following such
an event explicitly.
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S
Numerical Approximation

Discrete Bellman equation

@ As a result of our discretization approach, we obtain transition probabilities
on the grid which depend on the chosen control 6:

P (i), ("))

Transition from (X(i), W(j)) to (X(i"), W(j")).
@ We discretize the possible values of the control (the trade size). Impose the
margin constraint so that

ét ~ ~ ~ 1 ~ 1
Wte{em,...,ewe)}, 0(1) = ——, B(Ne) = —

@ The Bellman equation for the discrete problem takes form
Jt, Wi, X)) = max E; P(t+ 1, Wrpt, Xeyq )}
O¢
where the conditional expectation is computed using the transition
probabilities P ((i, R j’)|§,).
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Numerical Approximation

Parameters

@ Assume the following parameters for numerical analysis

ox 4

m 0.25

p  exp(—0.5At1)
o 0.10VAt

At 112

T 5

@ Time period At corresponds to monthly rebalancing of the portfolio.
@ Problem horizon T is five years.
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S
Numerical Approximation

Results

Value functionatt =0
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Numerical Approximation

Results

@ For a fixed W, plot the (smoothed) optimal portfolio policy as a function of the
price spread X at 1, 12, 36, and 60 months left until T.
@ Note how the optimal investment strategy depends on the horizon.

w=1
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