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Statistics Review: Parameter Estimation

@ Sample of observations X = (xq, ..., x7) with joint distribution
p(X, 6o).

e Estimator 0 is a function of the sample: §(X).

@ Estimator is consistent if

plim;_,.. 0 = 0o

@ Estimator is unbiased if

~

E[6] = 0o

@ An « confidence interval for the i'th coordinate of the parameter
vector, 0p j, is a stochastic interval

(6F,07) such that Prob [(@,-L, 67 covers 90,,-] =
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Probability Review: LLN and CLT

@ Law of Large Numbers (LLN) states that if x; are IID random variables
and E[x;] = u, then

.
plim7_, Zt7-1 i [
@ plim is limit in probability. plim,_, ., X, = y means that for any 6 > 0,
Prob[|x, — y| > 6] — 0.
@ Central Limit Theorem (CLT) states that if x; are 11D random vectors
with mean vector 1 and var-cov matrix Q, then

Zialu—w Q)
VT
@ “="denotes convergence in distribution. x, = y means that the
corresponding cumulative distribution functions Fy,(-) and F(-) have
the property

Fx,(z) = F,(z) Vz€R, st., F,is continuous at z
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Example

We observe a sample of IID observations x;, t =1, ..., T from a
Normal distribution N(u, 1).

We want to estimate the mean .

A commonly used estimator is the sample mean:

This estimator is consistent by the LLN: plimy_, ., it = .

How do we derive consistent estimators in more complex situations?
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The Basics AR and VAR Model Selection

Approaches to Estimation

If probability law p(X, 8p) is fully known, can estimate 8y by Maximum
Likelihood (MLE). This is the preferred method, it offers the best
asymptotic precision.

If the law p(X, Bg) is not fully known, but we know some features of
the distribution, e.g., the first two moments, we can still estimate the
parameters by the quasi-MLE method.

Alternatively, if we only know a few moments of the distribution, but
not the entire pdf p(X, 8y), we can estimate parameters by the
Generalized Method of Moments (GMM).

QMLE and GMM methods are less precise (efficient) than MLE, but
they are more robust since they do not require the full knowledge of
the distribution.
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MLE

Math Review: Jensen’s Inequality

@ Jensen’s inequality states that if f(x) is a concave function, and
Wo>0,n=1,.,N,and Y, w, =1, then

N N
Z Wnf(xn) < f <Z ann)
n=1 n=1

forany x,, n=1,...,N.
@ This result extends to the continuous case:

Jw(x)f(x) ax < f (J w(x)x dx> ,if Jw(x) ax=1, w(x)=0

@ Example: if x is a random variable (e.g., asset return), and f a
concave function (e.g., utility function), then

Elf(x)] < f(E[x]) (risk aversion)
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MLE

Maximum Likelihood Estimator (MLE)

o |ID observations x;, t = 1, ..., T with density p(x, 6¢).
@ Maximum likelihood estimation is based on the fact that for any
alternative distribution density p(x, 0),

E [m p(x, 5)] <Elnp(x.00)], EWl = J*p(x, 0o) dx

@ To see this, use Jensen’s inequality, and equality | p(x, 5) dx =1:

plx:, 6) p(x.0) | [ plx,0) B
: l'” p(xt,eo)] <€ [p(xt.eo)] = P 00 o =

In Jp(x, 5) dx =0
@ Estimate parameters using the sample analog of the above inequality

;
~ 1 1
0 =arg mglx T ; Inp(x;, 0) = arg mgx T Inp(X,0))
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MLE

Maximum Likelihood Estimator (MLE)

@ Define the Likelihood function
L(B) =Inp(X,0)

@ Likelihood function treats model parameters 0 variables. It treats
observations X as fixed.

@ We will work with the log of likelihood, £(6) = In L(6). We will often
drop the “log” and simply call £ likelihood.
@ For IID observations,

;
1
—L —In Hp Xz, © Tt;lnp(xt,e

and therefore 8 can be estlmated by maximizing (log-) likelihood

0= arg mgle(e)
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MLE

Example: MLE for Gaussian Distribution

@ 1ID Gaussian observations, mean u, variance 2.
@ The log likelihood for the sample x4, ..., xT is
T
(Xt — H)z

T T
1
L£(0) =In Hp(xt, 0) = t;lnp(xt,e) = t;ln Ve R

t=1

o MLE: 0 = arg maxg £(0)
@ Optimality conditions:

Siie—w) o T ELe—w? g
o2 o G GE B

@ These are identical to the GMM conditions we have derived above!

~

Ex—0)=0, E[x—n?-3*=0
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MLE

Example: Exponential Distribution

@ Suppose we have T independent observations from the exponential
distribution

p(xt, A) = Aexp(—Ax)
@ Likelihood function
;

@ First-order condition

implies
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MLE

MLE for Dependent Observations

@ MLE approach works even if observations are dependent.

Need dependence to die out quickly enough.

@ Consider a time series x;, X;+1, ... and assume that the distribution of
Xt+1 depends only on L lags: xi, ..., Xt+1—L-

@ Log likelihood conditional on the first L observations:

T—1
£(0) = Z In p(Xt+11X¢, ..., Xt1—1; 0)
=L

@ 0 maximizes conditional expectation of In p(x;1|x¢, ..., Xt—1+1;0) and
thus maximizes the (conditional) likelihood if T is large and x; is
stationary.

0= arg meaxﬁ(e)
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MLE for AR(p) Time Series

@ AR(p) (AutoRegressive) time series model with IID Gaussian errors:
Xt11= a0+ aiXe + ...apXt11—p + €41, €41 ~ N(O, 0?)

@ Conditional on (Xi, ..., Xt+1—p), Xt+1 is Gaussian with mean 0 and
variance o2.

@ Construct likelihood:

T—1 2
X — ap — a1 Xy — ...dpXt+1—
£(0)= Y —invano? - Xt TR0 T AN T k)
t=p

@ MLE estimates of (ao, a1, ..., @p) are the same as OLS:

T—1
max £(0) < min Z (Xpy1 —ag — a1 Xy — ...apxtﬂ,p)z
a a
t=p
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MLE for VAR(p) Time Series

@ VAR(p) (Vector AutoRegressive) time series model with 1ID Gaussian
errors:

Xtp1 = a0 + A1xt + ... ApXt11—p + €41, €41 ~N(0, Z)

where x; and ap are N-dim vectors, A, are N x N matrices, and ¢; are
N-dim vectors of shocks.

@ Conditional on (xi, ..., Xt+1—p), Xt+1 is Gaussian with mean 0 and
var-cov matrix X.

@ Construct likelihood:

T—1
1 _
£(0) = ;J —Iny/(2m)N|Z| — Es;Hz et
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MLE for VAR(p) Time Series

@ Parameter estimation:

T—1
1
max L(0) & min E In+/(2mN|Z| 4+ —¢!,  ¥1
ag,At,... Ap, T () ao, At ..., Ap, = — ( )||+25t+1 Et41

@ Optimality conditions for ag, A1, ..., Ap:

> [xigfiq] =0, i=01,,p=1, ) &41=0
t

where
€t41 = X1 — (@0 + Ar1xe + .. ApXt11-p)

@ VAR coefficients can be estimated by OLS, equation by equation.
@ Standard errors can also be computed for each equation separately.
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MLE and Model Selection

@ In practice, we often do not know the exact model.
@ In some situations, MLE can be adapted to perform model selection.

@ Suppose we are considering several alternative models, one of them
is the correct model.

@ If the sample is large enough, we can identify the correct model by
comparing maximized likelihoods and penalizing them for the number
of parameters they use.

@ Various forms of penalties have been proposed, defining various
information criteria.
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VAR(p) Model Selection

@ To build a VAR(p) model, we must decide on the order p.
@ Without theoretical guidance, use an information criterion.

@ Consider two most popular information criteria: Akaike (AIC) and
Bayesian.

@ Each criterion chooses p to maximize the log likelihood subject to a
penalty for model flexibility (free parameters). Various criteria differ in
the form of penalty.
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AlIC and BIC

@ Start by specifying the maximum possible order p.
@ Make sure that p grows with the sample size, but not too fast:
- . p
= I _—=
Tlinoop o Tinoo T 0

For example, can choose p = (In T)2.
@ Find the optimal VAR order p* as

2
*x . o
p* = arg Orggéﬁ —TL(G, p) — penalty(p)

where )
AIC: 2pN?

penalty(p) =
BIC: 2TpN2

@ In larger samples, BIC selects lower-order models than AIC.
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Example: AR(p) Model of Real GDP Growth

@ Model quarterly seasonally adjusted GDP growth (annualized rates).
@ Want to select and estimate an AR(p) model.
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Source: U.S. Department of Commerce, Bureau of Economic Analysis. National Income and Product Accounts.
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Example: AR(p) Model of GDP Growth
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@ AIC dictates p = 5.
@ AR coefficients ay, ..., as:

0.3185, 0.1409, —0.0759, —0.0600, —0.0904
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Example: AR(p) Model of GDP Growth

@ Setp=7.

BIC

LogLikelihood — penalty

@ BIC dictates p = 1.
@ AR coefficient a1 = 0.3611.
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[ID Observations

@ A sample of independent and identically distributed (1ID) observations
drawn from the distribution family with density ¢ (x; 8¢):

@ Want to estimate the N-dimensional parameter vector 0o, .
@ Consider a vector of functions f;(x, 0) (“moments”), dim(f) = N.
@ Suppose we know that for any j,

Elfi (X, 00)] = -+ = El[fy(xt, 00)] =0, if 0 =0y
> M (Elfi(x, 0)))% >0, if 0 05

e GMM estimator 0 of the unknown parameter 0 is defined by

(Identification)
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Example: Mean-Variance

@ Suppose we have a sample from a distribution with mean iy and
variance o3.

@ To estimate the parameter vector 6p = (ug, 09)’, 09 > 0, choose the
functions f;(x,0),j =1,2:

fi(x,0) =xt—

fo(xt,0) = (xf — )2 — 0%

@ Easy to see that E[f(x, 6)] = 0.
@ If 0 £ 09, then E[f(x, 0)] # 0 (verify).
@ Parameter estimates:

~

E(x) —fi=0=f=E(x)
Elx—1)?]-3*=0=0"=E[(x—1)
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GMM and MLE

@ First-order conditions for MLE can be used as moments in GMM
estimation.
@ Optimality conditions for maximizing £(0) = ZtT:1 Inp(x¢, 0) are

T

Z o0lnp(x¢, 0) 0
p— 00 N

o Ifwesetf=20Inp(x,0)/00 (the score vector), then MLE reduces to
GMM with the moment vector f.
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Example: Interest Rate Model

@ Interest rate model:
ev1 =ao+ain+er1, E(eraln) =0, E(e241n) = bo + bin

@ Derive moment conditions for GMM.
@ Note that for any function g(r;),

Elg(r)et1] = E[Elg(r)et1lnll = Elg(r)Elet1lnll =0
@ Using g(rr) =1and g(r) = ry,

E [(1,I’t)/(ft+1 — ap —am)] =0
E{(1.r) [(r+1—a —ain)®> —bo—bir]} =0

®© Leonid Kogan ( MIT, Sloan ) 15.450, Fall 2010 30/40



Example: Interest Rate Model

@ GMM using the moment conditions

E[(1,r) (r41 —a —ain)] =0
E{(1.r) [(rrs1—a —ain)®>—bo—bir]} =0

@ (ag, ay) can be estimated from the first pair of moment conditions.
Equivalent to OLS, ignore information about second moment.
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MLE and QMLE

@ Maximum likelihood estimates are optimal: they have the smallest
asymptotic variance.

@ When we know the distribution function p(X, 8) precisely, MLE is the
most efficient approach.

@ MLE is often a convenient way to figure out which moment conditions
to impose.

@ Even if the model p(X, 0) is misspecified, MLE approach may still be
valid as long as the implied moment conditions are valid.

@ With an incorrect model g(X, 0), MLE is a special case of GMM.
GMM results apply.

The approach of using an incorrect (typically Gaussian) likelihood
function for estimation is called quasi-MLE (QMLE).
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Example: QMLE for AR(p) Time Series

@ AR(p) time series model with 11D non-Gaussian errors:
Xt11 = a0+ a1 Xt +...apXt11—p + €41, Eleralxt, ., Xep1-pl =0

@ Pretend errors are Gaussian to construct £(0):

T—1
(Xt41 — @0 — @1 Xt — ...8pXt41—p)?
£9:§ —InV2no? — P P
( ) — o 20-2

@ Optimality conditions:

Z(Xt—f£t+1) :01 i:Ov"'vp_1v Z£t+1 =0
t

t

@ Valid moment conditions (verify). GMM justifies QMLE.
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Example: Interest Rate Model

@ Interest rate model:
re1 =ao+ain+er1, E(eraln) =0, E(e241n) = bo + bin
@ GMM using the moment conditions

E [(1,I’t)/(ft+1 — ap —311})] =0
E{(1,r) [(rg1— a0 —ain)®> — by — bir;] } =0

@ (ap, ay) can be estimated from the first pair of moment conditions.
Equivalent to OLS, ignore information about second moment.
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Example: Interest Rate Model

@ QMLE: treat ¢; as Gaussian N(0, bg + byri—1).
@ Construct £(0):

(rt41 —ao — ay ft)2

L£(0) = —In+/27t(bg + byri) — 2(bo + bir7)

@ (ag, a;) can no longer be estimated separately from (b, b1).
@ Optimality conditions for (ag, a1 ):

T—1

(1 —ao—ain)
(1,r, =0
; ) b+ bin

~

@ This is no longer OLS, but GLS. More precise estimates of (ag, a1).
@ Down-weight residuals with high variance.
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Example: Interest Rate Model

@ 3-Month Treasury Bill: secondary market rate, monthly.
@ Scatter plot of interest rate changes vs lagged interest rate values.
@ Higher volatility of rate changes at higher rate levels.
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Source: Federal Reserve Bank of St. Louis.
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QMLE

Discussion

@ QMLE approach helps specify moments in GMM.
@ Do not use blindly, verify that the moment conditions are valid.
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Key Points

@ Parameter estimators, consistency.
@ Likelihood function, maximum likelihood parameter estimation.
@ Identification of parameters by GMM.

@ QMLE. Verify the validity of QMLE by interpreting the resulting
moments in GMM framework.
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Readings

@ Tsay, 2005, Sections 1.2.4, 2.4.2, 8.2.4.
@ Cochrane, 2005, Sections 11.1, 14.1, 14.2.
@ Campbell, Lo, MacKinlay, 1997, Section A.2, A.4.
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