The Basics	MLE	AR and VAR	Model Selection	GMM	QMLE

Parameter Estimation

Leonid Kogan

MIT, Sloan

15.450, Fall 2010

The Basics	MLE	AR and VAR	Model Selection	GMM	QMLE
Outline					

The Basics	MLE	AR and VAR	Model Selection	GMM	QMLE
Outline					

The Basics

2 MLE

5 GMM

The Basics	MLE	AR and VAR	Model Selection	GMM	QMLE
Statistics	s Review	: Parameter	Estimation		

- Sample of observations $X = (x_1, ..., x_T)$ with joint distribution $p(X, \theta_0)$.
- Estimator $\widehat{\theta}$ is a function of the sample: $\widehat{\theta}(X)$.
- Estimator is *consistent* if

$$\text{plim}_{\mathcal{T} \rightarrow \infty} \, \widehat{\boldsymbol{\theta}} = \boldsymbol{\theta}_0$$

Estimator is unbiased if

$$\mathsf{E}[\widehat{\theta}] = \theta_0$$

An α confidence interval for the *i*'th coordinate of the parameter vector, θ_{0,i}, is a stochastic interval

$$(\widehat{\theta}_{i}^{L}, \widehat{\theta}_{i}^{R})$$
 such that Prob $\left[(\widehat{\theta}_{i}^{L}, \widehat{\theta}_{i}^{R}) \text{ covers } \theta_{0,i}\right] = \alpha$

Probability Review: LLN and CLT

 Law of Large Numbers (LLN) states that if x_t are IID random variables and E[x_t] = μ, then

$$\mathsf{plim}_{\mathcal{T} \to \infty} \, \frac{\sum_{t=1}^{\mathcal{T}} x_t}{\mathcal{T}} = \mu$$

- plim is limit in probability. plim_{$n\to\infty$} $x_n = y$ means that for any $\delta > 0$, Prob[$|x_n - y| > \delta$] $\rightarrow 0$.
- Central Limit Theorem (CLT) states that if x_t are IID random vectors with mean vector μ and var-cov matrix Ω, then

$$\frac{\sum_{t=1}^{T} (x_t - \mu)}{\sqrt{T}} \Rightarrow \mathcal{N}(\mathbf{0}, \Omega)$$

"⇒" denotes convergence in distribution. x_n ⇒ y means that the corresponding cumulative distribution functions F_{xn}(·) and F_y(·) have the property

$$F_{x_n}(z) o F_y(z) \quad \forall z \in \mathbb{R}, \text{ s.t., } F_y \text{ is continuous at } z$$

The Basics	MLE	AR and VAR	Model Selection	GMM	QMLE
Example					

- We observe a sample of IID observations x_t, t = 1, ..., T from a Normal distribution N(μ, 1).
- We want to estimate the mean μ.
- A commonly used estimator is the sample mean:

$$\widehat{\mu} = \widehat{\mathsf{E}}[x_t] \equiv \frac{1}{T} \sum_{t=1}^T x_t$$

- This estimator is consistent by the LLN: $\text{plim}_{T \to \infty} \widehat{\mu} = \mu$.
- How do we derive consistent estimators in more complex situations?

Approaches to Estimation

- If probability law p(X, θ₀) is fully known, can estimate θ₀ by Maximum Likelihood (MLE). This is the preferred method, it offers the best asymptotic precision.
- If the law p(X, θ₀) is not fully known, but we know some features of the distribution, e.g., the first two moments, we can still estimate the parameters by the quasi-MLE method.
- Alternatively, if we only know a few moments of the distribution, but not the entire pdf *p*(*X*, θ₀), we can estimate parameters by the Generalized Method of Moments (GMM).
- QMLE and GMM methods are less precise (efficient) than MLE, but they are more robust since they do not require the full knowledge of the distribution.

The Basics	MLE	AR and VAR	Model Selection	GMM	QMLE
Outline					

1 The Basics

5 GMM

Math Review: Jensen's Inequality

• Jensen's inequality states that if f(x) is a concave function, and $w_n \ge 0$, n = 1, ..., N, and $\sum_{n=1}^{N} w_n = 1$, then

$$\sum_{n=1}^{N} w_n f(x_n) \leqslant f\left(\sum_{n=1}^{N} w_n x_n\right)$$

for any x_n , n = 1, ..., N.

• This result extends to the continuous case:

$$\int w(x)f(x) \, dx \leqslant f\left(\int w(x)x \, dx\right), \quad \text{if} \quad \int w(x) \, dx = 1, \quad w(x) \geqslant 0$$

• Example: if x is a random variable (e.g., asset return), and f a concave function (e.g., utility function), then

 $\mathsf{E}[f(x)] \leqslant f(\mathsf{E}[x])$ (risk aversion)

Maximum Likelihood Estimator (MLE)

- IID observations x_t , t = 1, ..., T with density $p(x, \theta_0)$.
- Maximum likelihood estimation is based on the fact that for any alternative distribution density *p*(*x*, θ),

$$\mathsf{E}\left[\ln p(x,\widetilde{\theta})\right] \leqslant \mathsf{E}\left[\ln p(x,\theta_0)\right], \qquad \mathsf{E}[\star] = \int \star p(x,\theta_0) \, dx$$

• To see this, use Jensen's inequality, and equality $\int p(x, \tilde{\theta}) dx = 1$:

$$\mathsf{E}\left[\ln\frac{p(x_t,\widetilde{\theta})}{p(x_t,\theta_0)}\right] \leq \ln\mathsf{E}\left[\frac{p(x_t,\widetilde{\theta})}{p(x_t,\theta_0)}\right] = \ln\int\frac{p(x,\widetilde{\theta})}{p(x,\theta_0)}p(x,\theta_0)\,dx = \\ \ln\int p(x,\widetilde{\theta})\,dx = 0$$

Estimate parameters using the sample analog of the above inequality

$$\widehat{\theta} = \arg \max_{\theta} \frac{1}{T} \sum_{t=1}^{T} \ln p(x_t, \theta) = \arg \max_{\theta} \frac{1}{T} \ln p(X, \theta))$$

Maximum Likelihood Estimator (MLE)

• Define the Likelihood function

$$L(\theta) = \ln p(X, \theta)$$

- Likelihood function treats model parameters θ variables. It treats observations X as fixed.
- We will work with the log of likelihood, L(θ) = ln L(θ). We will often drop the "log" and simply call L likelihood.
- For IID observations,

$$\frac{1}{T}\mathcal{L}(\theta) = \frac{1}{T}\ln\prod_{t=1}^{T}p(x_t,\theta) = \frac{1}{T}\sum_{t=1}^{T}\ln p(x_t,\theta)$$

and therefore $\boldsymbol{\theta}$ can be estimated by maximizing (log-) likelihood

$$\widehat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta})$$

The Basics	MLE	AR and VAR	Model Selection	GMM	QMLE
Example	: MLE fo	or Gaussian	Distribution		

- IID Gaussian observations, mean μ , variance σ^2 .
- The log likelihood for the sample $x_1, ..., x_T$ is

$$\mathcal{L}(\theta) = \ln \prod_{t=1}^{T} p(x_t, \theta) = \sum_{t=1}^{T} \ln p(x_t, \theta) = \sum_{t=1}^{T} \ln \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{(x_t - \mu)^2}{2\sigma^2}$$

- MLE: $\widehat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta})$
- Optimality conditions:

$$\frac{\sum_{t=1}^{T} (x_t - \widehat{\mu})}{\widehat{\sigma}^2} = 0, \qquad -\frac{T}{\widehat{\sigma}} + \frac{\sum_{t=1}^{T} (x_t - \widehat{\mu})^2}{\widehat{\sigma}^3} = 0$$

• These are identical to the GMM conditions we have derived above!

$$\widehat{\mathsf{E}}(x_t - \widehat{\mu}) = \mathsf{0}, \qquad \widehat{\mathsf{E}}\left[(x_t - \widehat{\mu})^2\right] - \widehat{\sigma}^2 = \mathsf{0}$$

Example: Exponential Distribution

• Suppose we have *T* independent observations from the exponential distribution

$$p(x_t, \lambda) = \lambda \exp(-\lambda x_t)$$

Likelihood function

$$\mathcal{L}(\lambda) = \sum_{t=1}^{T} (-\lambda x_t + \ln \lambda)$$

First-order condition

$$\left(-\sum_{t=1}^{T} x_t\right) + \frac{T}{\widehat{\lambda}} = 0$$

implies

$$\widehat{\lambda} = \left(\frac{\sum_{t=1}^{T} x_t}{T}\right)^{-1}$$

The Basics	MLE	AR and VAR	Model Selection	GMM	QMLE
MLE for D)epend	lent Observa	tions		

- MLE approach works even if observations are dependent.
- Need dependence to die out quickly enough.

© Leonid Kogan (MIT, Sloan)

- Consider a time series x_t, x_{t+1}, ... and assume that the distribution of x_{t+1} depends only on L lags: x_t, ..., x_{t+1-L}.
- Log likelihood conditional on the first *L* observations:

$$\mathcal{L}(\boldsymbol{\theta}) = \sum_{t=L}^{T-1} \ln \boldsymbol{p}(\boldsymbol{x}_{t+1} | \boldsymbol{x}_t, ..., \boldsymbol{x}_{t+1-L}; \boldsymbol{\theta})$$

 θ maximizes conditional expectation of ln p(x_{t+1}|x_t, ..., x_{t-L+1}; θ) and thus maximizes the (conditional) likelihood if T is large and x_t is stationary.

$$\widehat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta})$$

Parameter Estimation

15.450, Fall 2010

14/40

The Basics	MLE	AR and VAR	Model Selection	GMM	QMLE
Outline					

1 The Basics

• AR(p) (AutoRegressive) time series model with IID Gaussian errors:

$$x_{t+1} = a_0 + a_1 x_t + ... a_p x_{t+1-p} + \varepsilon_{t+1}, \quad \varepsilon_{t+1} \sim \mathcal{N}(0, \sigma^2)$$

- Conditional on $(x_t, ..., x_{t+1-p})$, x_{t+1} is Gaussian with mean 0 and variance σ^2 .
- Construct likelihood:

$$\mathcal{L}(\theta) = \sum_{t=p}^{T-1} -\ln\sqrt{2\pi\sigma^2} - \frac{(x_{t+1} - a_0 - a_1x_t - \dots a_px_{t+1-p})^2}{2\sigma^2}$$

• MLE estimates of (*a*₀, *a*₁, ..., *a_p*) are the same as OLS:

$$\max_{\vec{a}} \mathcal{L}(\theta) \Leftrightarrow \min_{\vec{a}} \sum_{t=p}^{T-1} (x_{t+1} - a_0 - a_1 x_t - \dots a_p x_{t+1-p})^2$$

- MLE for VAR(p) Time Series
 - VAR(p) (Vector AutoRegressive) time series model with IID Gaussian errors:

$$x_{t+1} = a_0 + A_1 x_t + \dots A_p x_{t+1-p} + \varepsilon_{t+1}, \quad \varepsilon_{t+1} \sim \mathcal{N}(0, \Sigma)$$

where x_t and a_0 are *N*-dim vectors, A_n are $N \times N$ matrices, and ε_t are *N*-dim vectors of shocks.

- Conditional on (x_t, ..., x_{t+1-p}), x_{t+1} is Gaussian with mean 0 and var-cov matrix Σ.
- Construct likelihood:

$$\mathcal{L}(\boldsymbol{\theta}) = \sum_{t=p}^{T-1} - \ln \sqrt{(2\pi)^N |\boldsymbol{\Sigma}|} - \frac{1}{2} \varepsilon_{t+1}' \boldsymbol{\Sigma}^{-1} \varepsilon_{t+1}$$

MLE for VAR(p) Time Series

Parameter estimation:

$$\max_{a_0,A_1,\ldots,A_p,\Sigma} \mathcal{L}(\theta) \Leftrightarrow \min_{a_0,A_1,\ldots,A_p,\Sigma} \sum_{t=p}^{T-1} \ln \sqrt{(2\pi)^N |\Sigma|} + \frac{1}{2} \varepsilon_{t+1}' \Sigma^{-1} \varepsilon_{t+1}$$

Optimality conditions for a₀, A₁, ..., A_p:

$$\sum_{t} [x_{t-i}\varepsilon'_{t+1}] = 0, \ i = 0, 1, ..., p-1, \quad \sum_{t} \varepsilon_{t+1} = 0$$

where

$$\varepsilon_{t+1} = x_{t+1} - (a_0 + A_1 x_t + \dots A_p x_{t+1-p})$$

- VAR coefficients can be estimated by OLS, equation by equation.
- Standard errors can also be computed for each equation separately.

The Basics	MLE	AR and VAR	Model Selection	GMM	QMLE
Outline					

1 The Basics

2 MLE

3 AR and VAR

5 GMM

MLE and Model Selection

- In practice, we often do not know the exact model.
- In some situations, MLE can be adapted to perform model selection.
- Suppose we are considering several alternative models, one of them is the correct model.
- If the sample is large enough, we can identify the correct model by comparing maximized likelihoods and penalizing them for the number of parameters they use.
- Various forms of penalties have been proposed, defining various *information criteria*.

VAR(p) Model Selection

- To build a VAR(p) model, we must decide on the order *p*.
- Without theoretical guidance, use an information criterion.
- Consider two most popular information criteria: Akaike (AIC) and Bayesian.
- Each criterion chooses *p* to maximize the log likelihood subject to a penalty for model flexibility (free parameters). Various criteria differ in the form of penalty.

The Basics	MLE	AR and VAR	Model Selection	GMM	QMLE
AIC and	BIC				

- Start by specifying the maximum possible order \overline{p} .
- Make sure that \overline{p} grows with the sample size, but not too fast:

$$\lim_{T\to\infty}\overline{p}=\infty,\quad \lim_{T\to\infty}\frac{p}{T}=0$$

For example, can choose $\overline{p} = \frac{1}{4} (\ln T)^2$.

Find the optimal VAR order p^{*} as

$$\boldsymbol{\rho}^{\star} = \arg \max_{\boldsymbol{0} \leqslant \boldsymbol{\rho} \leqslant \overline{\boldsymbol{\rho}}} \frac{2}{T} \mathcal{L}(\boldsymbol{\theta}; \boldsymbol{\rho}) - \text{penalty}(\boldsymbol{\rho})$$

where

penalty(
$$p$$
) =

$$\begin{cases}
AIC: \frac{2}{T}pN^{2} \\
BIC: \frac{\ln T}{T}pN^{2}
\end{cases}$$

• In larger samples, BIC selects lower-order models than AIC.

The Basics	MLE	AR and VAR	Model Selection	GMM	QMLE
Example	$ \Delta \mathbf{R}(\mathbf{n}) $	Model of Re	al GDP Grow	th	

- Model quarterly seasonally adjusted GDP growth (annualized rates).
- Want to select and estimate an AR(p) model.

Source: U.S. Department of Commerce, Bureau of Economic Analysis. National Income and Product Accounts.

© Leonid Kogan (MIT, Sloan)

Parameter Estimation

The Basics	MLE	AR and VAR	Model Selection	GMM	QMLE
Example	e: AR(p)	Model of GE	OP Growth		

• Set $\overline{p} = 7$.

- AIC dictates p = 5.
- AR coefficients *a*₁, ..., *a*₅:

 $0.3185, \ 0.1409, \ -0.0759, \ -0.0600, \ -0.0904$

The Basics	MLE	AR and VAR	Model Selection	GMM	QMLE
Example:	AB(p)	Model of GE)P Growth		

• Set $\overline{p} = 7$.

- BIC dictates p = 1.
- AR coefficient $a_1 = 0.3611$.

The Basics	MLE	AR and VAR	Model Selection	GMM	QMLE

Outline

2 MLE

Model Selection

The Basics	MLE	AR and VAR	Model Selection	GMM	QMLE

IID Observations

 A sample of independent and identically distributed (IID) observations drawn from the distribution family with density φ(x; θ₀):

$$X = (x_1, \ldots, x_t, \ldots, x_T)$$

- Want to estimate the N-dimensional parameter vector θ_0 , .
- Consider a vector of functions $f_i(x, \theta)$ ("moments"), $\dim(f) = N$.
- Suppose we know that for any j,

$$\begin{split} \mathsf{E}[f_1(x_t,\theta_0)] &= \cdots = \mathsf{E}[f_N(x_t,\theta_0)] = 0, \quad \text{if } \theta = \theta_0 \\ \sum_{j=1}^N \left(\mathsf{E}[f_j(x_t,\theta)]\right)^2 > 0, \qquad \qquad \text{if } \theta \neq \theta_0 \end{split} \tag{Identification}$$

• GMM estimator $\widehat{\theta}$ of the unknown parameter θ_0 is defined by

GMM

$$\widehat{\mathsf{E}}[f(x_t,\widehat{\theta})] \equiv \frac{1}{T} \sum_{t=1}^T f(x_t,\widehat{\theta}) = 0$$

Example: Mean-Variance

- Suppose we have a sample from a distribution with mean μ₀ and variance σ₀².
- To estimate the parameter vector θ₀ = (μ₀, σ₀)', σ₀ ≥ 0, choose the functions f_j(x, θ), j = 1, 2:

$$f_1(x_t, \theta) = x_t - \mu$$

$$f_2(x_t, \theta) = (x_t - \mu)^2 - \sigma^2$$

- Easy to see that $E[f(x, \theta_0)] = 0$.
- If $\theta \neq \theta_0$, then $\mathsf{E}[f(x, \theta)] \neq 0$ (verify).
- Parameter estimates:

$$\begin{split} \widehat{\mathsf{E}}(x_t) - \widehat{\mu} &= \mathbf{0} \Rightarrow \widehat{\mu} = \widehat{\mathsf{E}}(x_t) \\ \widehat{\mathsf{E}}\left[(x_t - \widehat{\mu})^2 \right] - \widehat{\sigma}^2 &= \mathbf{0} \Rightarrow \widehat{\sigma}^2 = \widehat{\mathsf{E}}\left[(x_t - \widehat{\mu})^2 \right] \end{split}$$

The Basics	MLE	AR and VAR	Model Selection	GMM	QMLE

- GMM and MLE
 - First-order conditions for MLE can be used as moments in GMM estimation.
 - Optimality conditions for maximizing $\mathcal{L}(\theta) = \sum_{t=1}^{T} \ln p(x_t, \theta)$ are

$$\sum_{t=1}^{T} \frac{\partial \ln p(x_t, \theta)}{\partial \theta} = 0$$

• If we set $f = \partial \ln p(x, \theta) / \partial \theta$ (the *score vector*), then MLE reduces to GMM with the moment vector *f*.

The Basics	MLE	AR and VAR	Model Selection	GMM	QMLE

Example: Interest Rate Model

Interest rate model:

 $r_{t+1} = a_0 + a_1 r_t + \varepsilon_{t+1}$, $E(\varepsilon_{t+1} | r_t) = 0$, $E(\varepsilon_{t+1}^2 | r_t) = b_0 + b_1 r_t$

- Derive moment conditions for GMM.
- Note that for any function $g(r_t)$,

 $\mathsf{E}[g(r_t)\varepsilon_{t+1}] = \mathsf{E}\left[\mathsf{E}[g(r_t)\varepsilon_{t+1}|r_t]\right] = \mathsf{E}\left[g(r_t)\mathsf{E}[\varepsilon_{t+1}|r_t]\right] = \mathsf{0}$

• Using $g(r_t) = 1$ and $g(r_t) = r_t$,

$$E\left[(1, r_t)'(r_{t+1} - a_0 - a_1 r_t)\right] = 0 E\left\{(1, r_t)'\left[(r_{t+1} - a_0 - a_1 r_t)^2 - b_0 - b_1 r_t\right]\right\} = 0$$

Example: Interest Rate Model

GMM using the moment conditions

$$E\left[(1, r_t)'(r_{t+1} - a_0 - a_1 r_t)\right] = 0$$

$$E\left\{(1, r_t)'\left[(r_{t+1} - a_0 - a_1 r_t)^2 - b_0 - b_1 r_t\right]\right\} = 0$$

• (*a*₀, *a*₁) can be estimated from the first pair of moment conditions. Equivalent to OLS, ignore information about second moment.

The Basics	MLE	AR and VAR	Model Selection	GMM	QMLE

Outline

1 The Basics

2 MLE

5 GMM

The Basics	MLE	AR and VAR	Model Selection	GMM	QMLE
MLE and	d QMLE				

- Maximum likelihood estimates are optimal: they have the smallest asymptotic variance.
- When we know the distribution function p(X, θ) precisely, MLE is the most *efficient* approach.
- MLE is often a convenient way to figure out which moment conditions to impose.
- Even if the model $p(X, \theta)$ is misspecified, MLE approach may still be valid as long as the implied moment conditions are valid.
- With an incorrect model q(X, θ), MLE is a special case of GMM.
 GMM results apply.
- The approach of using an incorrect (typically Gaussian) likelihood function for estimation is called quasi-MLE (QMLE).

The Basics	MLE	AR and VAR	Model Selection	GMM	QMLE
Example	: QMLE	for AR(p) Ti	me Series		

• AR(p) time series model with IID non-Gaussian errors:

$$x_{t+1} = a_0 + a_1 x_t + \dots a_p x_{t+1-p} + \varepsilon_{t+1}, \quad \mathsf{E}[\varepsilon_{t+1} | x_t, \dots, x_{t+1-p}] = 0$$

• Pretend errors are Gaussian to construct $\mathcal{L}(\theta)$:

$$\mathcal{L}(\theta) = \sum_{t=\rho}^{T-1} -\ln\sqrt{2\pi\sigma^2} - \frac{(x_{t+1} - a_0 - a_1x_t - \dots - a_px_{t+1-\rho})^2}{2\sigma^2}$$

• Optimality conditions:

$$\sum_{t} (x_{t-i}\varepsilon_{t+1}) = 0, \ i = 0, ..., p-1, \quad \sum_{t} \varepsilon_{t+1} = 0$$

• Valid moment conditions (verify). GMM justifies QMLE.

Example: Interest Rate Model

Interest rate model:

 $r_{t+1} = a_0 + a_1 r_t + \varepsilon_{t+1}$, $\mathsf{E}(\varepsilon_{t+1} | r_t) = 0$, $\mathsf{E}(\varepsilon_{t+1}^2 | r_t) = b_0 + b_1 r_t$

• GMM using the moment conditions

$$E\left[(1, r_t)'(r_{t+1} - a_0 - a_1 r_t)\right] = 0$$

$$E\left\{(1, r_t)'\left[(r_{t+1} - a_0 - a_1 r_t)^2 - b_0 - b_1 r_t\right]\right\} = 0$$

• (*a*₀, *a*₁) can be estimated from the first pair of moment conditions. Equivalent to OLS, ignore information about second moment.

Example: Interest Rate Model

- QMLE: treat ε_t as Gaussian $\mathcal{N}(\mathbf{0}, \mathbf{b}_0 + \mathbf{b}_1 \mathbf{r}_{t-1})$.
- Construct $\mathcal{L}(\theta)$:

$$\mathcal{L}(\theta) = \sum_{t=1}^{T-1} -\ln\sqrt{2\pi(b_0 + b_1 r_t)} - \frac{(r_{t+1} - a_0 - a_1 r_t)^2}{2(b_0 + b_1 r_t)}$$

- (a_0, a_1) can no longer be estimated separately from (b_0, b_1) .
- Optimality conditions for (*a*₀, *a*₁):

$$\sum_{t=1}^{T-1} (1, r_t)' \frac{(r_{t+1} - a_0 - a_1 r_t)}{b_0 + b_1 r_t} = 0$$

- This is no longer OLS, but GLS. More precise estimates of (a_0, a_1) .
- Down-weight residuals with high variance.

Example: Interest Rate Model

- 3-Month Treasury Bill: secondary market rate, monthly.
- Scatter plot of interest rate changes vs lagged interest rate values.
- Higher volatility of rate changes at higher rate levels.

Source: Federal Reserve Bank of St. Louis.

The Basics	MLE	AR and VAR	Model Selection	GMM	QMLE
Discussi	on				

- QMLE approach helps specify moments in GMM.
- Do not use blindly, verify that the moment conditions are valid.

The Basics	MLE	AR and VAR	Model Selection	GMM	QMLE
Kev Poin	ts				

- Parameter estimators, consistency.
- Likelihood function, maximum likelihood parameter estimation.
- Identification of parameters by GMM.
- QMLE. Verify the validity of QMLE by interpreting the resulting moments in GMM framework.

The Basics	MLE	AR and VAR	Model Selection	QMLE
Readings				

- Tsay, 2005, Sections 1.2.4, 2.4.2, 8.2.4.
- Cochrane, 2005, Sections 11.1, 14.1, 14.2.
- Campbell, Lo, MacKinlay, 1997, Section A.2, A.4.

15.450 Analytics of Finance Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.