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@ The Delta Method
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The Delta Method

Vector Notation

@ Suppose 0 is a vector. We always think of 8 as a column:
04

0= , 9/:(61 GN)
On

@ Partial derivatives of a smooth scalar-valued function h(6):

ahn(e)
36
o0h(0) . 0h(6) _ (ah(e) ame])
00 - . ! 000 004 00N
3h(e)
368

@ If h(0) is a vector of functions, (hy(0), ..., hu(0))’,

om(8) . dhm(6)
onee) | o
;T : . .
00 dhu(8) ohu(0)
20, 0y
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Multi-Variate Normal Distribution

@ Linear combinations of normal random variables are normally distributed:
x ~N(0,Q) = Ax ~ N(0, AQA")

@ The distribution of the sum of squares of n independent N(0, 1) variables is
called x2 with n degrees of freedom:

e ~N(0,1) = ¢’e ~ x?(dim(e))
@ Distribution of a common quadratic function of a normal vector
x ~N(0,Q) = x'Q "x ~x3(dim(x))

@ Density function of x ~ N(u, Q):

o(x) = (2rMQ)) 2 e W e )
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The Delta Method

@ Given the estimator 0, want to derive the asymptotic distribution of the vector

of smooth functions h(0).
@ Locally, a smooth function is approximately linear:

(6 —89)

6o

@ Let® — 0y~ N(0,Q), Q = Var(0) is small (o< 1/T), then

h(8) — h(6y) ~ N (0, AQA')
_2n(e)
A= o

0o

o In estimation, replace A and Q with consistent estimates A = aggf,) 5 and Q:

h(8) — h(Bo) ~ N (o, 2\@7\’)
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Example: Sharpe Ratio Distribution by Delta Method

Estimate mean and standard deviation of excess returns (i, 0).

Asymptotic variance-covariance matrix of parameter estimates 0= (n,0) is
estimated to be Q.

@ Sharpe ratio is estimated to be SR = h(0) = 1i/o.
@ Compute
LU
00’ |5 o 02

@ Variance of the Sharpe ratio estimate is
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© GMM Standard Errors
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GMM Standard Errors

@ Under mild regularity conditions, GMM estimates are consistent:
asymptotically, as the sample size T approaches infinity, 8 — 8¢ (in
probability).

@ Define

. S =Elf(x,0)f(x;,0)

8
GMM estimates are asymptotically normal:

OE(f(x:,0))

d= 29

—~ o~ o~ N\ 1
VT(0—60) =N {o, (d’S*1 d) }
@ Standard errors are based on the asymptotic var-cov matrix of the estimates,

TVar[0] ~ (a@*‘ 8) B
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Example: Mean and Standard Deviation

@ Compute standard errors for estimates of mean and standard deviation

fi(X%,0) = x —p, fo(x:,0) = (X — w)? — o®

< _ OE(f(x,0)) _[ - o]_{q o]
N 00’ é_ —2(E(x)—n) —26| | 0 —20

(@© Leonid Kogan ( MIT, Sloan ) Confidence Intervals and Tests 15.450, Fall 2010 10/ 41



GMM Standard Errors

Mean and Standard Deviation, Gaussian Distribution

@ Recall that for Gaussian distribution, E[(x — 115)%] = 0, E[(x — po)*] = 303.

@ Using LLN,
—1 0
0 —20'0

2
. a o 0
plimr_, ., S=3S [ 0 20 ]

plimy_, . d=d

. 1.
9790~N(0,?V)
. o~ 4t o2
plim;_,., V= (d’S 'd) :{8

=
oqm o
| I
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GMM Standard Errors

Example: Mean and Standard Deviation, Gaussian
Distribution

MATLAB ® Code
= 100; mu = 0.1; sigma = 0.2;
mu + sigma*randn(1,T); % Simulated sample

L |
o

mu_hat = (1/T) * sum(x); % GMM parameter estimates
sigma_hat = sqrt((1/T) * sum((x - mu_hat)."2));

[x - mu_hat; (x - mu_hat)."2 - sigma_hat~2];
= [-1 0; 0 -2+sigma_hat];

= (1/T) * (£ *x £7);

inv(d’ * inv(S) * d);

< N Q Fh

SE_mu = sqrt(1/T * V(1,1)); % Compute standard errors
SE_sigma = sqrt(1/T * V(2,2));
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GMM Standard Errors

Example: Mean and Standard Deviation, Gaussian
Distribution

MATLAB® Output

mu = 0.1000 sigma 0.2000
mu_hat = 0.1196 sigma_hat 0.1936
SE_mu = 0.0194 SE_sigma = 0.0142
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GMM Standard Errors

Example: Mean and Standard Deviation, Gaussian
Distribution

@ 95% Confidence intervals for parameter estimates can be constructed as
Cl(6;) = [6; — 1.96 x SE(6,),6; +1.96 x SE(6,)], i=1,2

Asymptotically, these should contain the true values with 95% probability.
@ How good are the CI's in a finite sample?

@ Perform a Monte Carlo experiment: simulate N independent artificial samples
and compute the coverage frequency.
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GMM Standard Errors

Example: Mean and Standard Deviation, Gaussian
Distribution

MATLAB® Code
coverage = zeros(2,N);

for n=1:N

X = mu + sigma*randn(1,T); % Simulated sample

[mu_hat, sigma_hat, SE_mu, SE_sigma] = GMMGaussian(x);

coverage(l,n) = (abs(mu_hat - mu) < 1.96*SE_mu);
coverage(2,n) (abs(sigma_hat - sigma) < 1.96*SE_sigma);
end
y = mean(coverage’);

100,000 simulations: coverage frequencies are (0.945, 0.929).
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GMM Standard Errors

Example: Sharpe Ratio Distribution by Delta Method

Gaussian distribution

@ Asymptotic variance-covariance matrix of the parameter estimates
0= ([ 0)is
~ 1[0 0
Q==
% i)
@ Asymptotic variance of the Sharpe ratio is

AN

-5 ( )

)=
—
A/~
—
_|_
N —
%)
ny)
n
~——

U
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e Regression as GMM
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Ordinary Least Squares (OLS) and GMM

@ Consider a linear model
/
Yt =X; B + u;

@ OLS is based on the assumption that the residuals have zero mean
conditionally on the explanatory variables and each other:

Elulxt, Xt—1, ..., Up—1, Ut—3,..] =0

@ If we define
f(xe, ¥ B) = x¢ (v — X/ B)
then 3 can be estimated using GMM:

Iterated Expectations

Elx; (y: — x/B)] = Elxuy] Elx; Elulx]] =0
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Regression as GMM

Ordinary Least Squares (OLS) and GMM

@ GMM estimate is based on

Ebe(yi—x/B)=0 = B =E(xx) "Elx)

which is the standard OLS estimate.
@ To find standard errors, compute

Then

(tht/)71

VS
Q)
w
Y

N—

|
|
\
m
X
Nx\
1
m
)
~N
X
L
™
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0 Correlated Observations

@© Leonid Kogan (MIT, Sloan ) 15.450, Fall 2010 20/41



Standard Errors: Correlated Observations

@ When f(x;, 0) are correlated over time, formulas for standard errors must be
adjusted to account for autocorrelation.

@ Correlated observations affect the effective sample size.
@ The relation

vl 3 (75(@) ) - (@5°7)

is still valid. But need to modify the estimate S.
@ In an infinite sample,

S= ) EIf(x.00)f(xj,00)"]

j=—o0
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Estimating S: Newey-West

@ Newey-West procedure for computing standard errors prescribes
aov k=it e, s 5
J— . / - -
S = E = T [2:1 (X, 0)f(xr—j, 0) (Drop out-of-range terms)

@ k is the band width parameter. The larger the sample size, the larger the k
one should use. Suggested growth rate is k oc T'/3.

@ In afinite sample, need k to be small compared to T, but large enough to
cover the intertemporal dependence range.

@ Consider several values of k and compare the results.
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OLS Standard Errors With Correlated Residuals

@ Linear model
= X[/B + U

@ Assume that
Elutdxt, xt—1,..] =0

but allow u; to be autocorrelated.
@ Since f(x;, 0) = x;u;, Newey-West estimate of Sis

k . T
Z ‘ Z UpXeX{, ]u,, (Drop out-of-range terms)

@ Asymptotic var-cov matrix of the regression coefficients:

o~

1 ~
Var[f] = TE(XTX,’)*1 SE(xx/)!
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Example: Estimating Average Interest Rate

@ We want to estimate the average 3-months TBill rate using historical data.
@ 3-Month Treasury Bill secondary market rate, monthly observations.

3-months T-Bill Rate

18
16 §
-
£
[
£ 10
(-4
o 8
[
§ 6
e 4 A
2,
0 ‘ : : :
~ - < o] N Te} (2]
oN < w0 © @ (=2 o
(o)) [} [} (o)) [} [} o
- - - - - - N

Date

Source: Federal Reserve Bank of St. Louis.
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Example: Long-Horizon Return Predictability

@ Predict S&P 500 returns using the log of the dividend-price ratio (1934/01 —
2008/12)

D
fiostvn = o+ PBIn P + Ut+h
t—1

@ Returns are cumulative over 6 or 12 months. Sum of monthly returns.

h B Standard Error
k=0 k=5 k=12 k=24 k=36

6 0.0530 0.0089 0.0185 0.0215 0.0233 0.0232
12 0.1067 0.0129 0.0297 0.0378 0.0428 0.0431
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Correlated Observations

Discussion

@ Classical OLS is based on very restrictive assumptions.

@ In practice, the RHS variables are stochastic, and not uncorrelated with
lagged residuals.

@ GMM provides a powerful framework for dealing with regressions: OLS is
valid as long as the moment conditions are valid.

@ Important to treat standard errors correctly. GMM offers a general recipe.
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© MLE and QMLE
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MLE and GMM

@ MLE or QMLE can be related to GMM.
@ Optimality conditions for maximizing £(0) = Z; In p(x|past x; 0) are

i 0In p(x¢past x; 0)

20 =0

t=1
o If we set f(x;, 0) = dIn p(x:past x; 0)/00 (the score vector), then MLE is
“GMM” with the moment vector f.

@ Scores are uncorrelated over time because E;[f(x;1,0)] = 0 (Campbell, Lo,
MacKinlay, 1997, Appendix A.4). Standard errors using GMM formulas:

Q)

_E 92In p(x|past x; 6)}

~ [a In p(x¢|past x; 0) 0 In p(x|past x; 0)
0000

S=E — s
20 20/
~ o~ o~ .\ —1
TVar(f)] = (d’s—‘d)
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Nonlinear Least Squares (NLS)

@ Consider a nonlinear model
ye = h(x, B) + u, Elulx] =0

@ We use QMLE to estimate this model. Pretend that errors u; are 11D N(0, 62).
@ Minimize log-likelihood

T

L(B)=Z—|n\/2n7_w

202
t=1

@ First-order conditions can be viewed as moment conditions in GMM:

B =argminE [(ye — hlx,,B)?] = E [a”(xf'ﬁ)

op
@ Nonlinear Least Squares. Can use GMM formulas for standard errors.

@ Why not choose other moments, e.g., f = g(x;)(y: — h(x;, B)) with pretty
much arbitrary g(x;), e.g., g(x:) = x;?

@ We could. But this may result in less precise estimates of B or invalid
moment conditions. In fact, if u; are Gaussian, NLS is optimal (see MLE).
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© Hypothesis Testing
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Hypothesis Tests

@ Sample of independent observations xi, ..., x7 with distribution p(x, 6y).

@ Want to test the null hypothesis Hp, which is a set of restrictions on the
parameter vector 6, e.g., b'0y = 0.

@ Statistical test is a decision rule, rejecting the null if some conditions are
satisfied by the sample, i.e.,

Rejectif (xi,...,x7) € A

@ Test size is the upper bound on the probability of rejecting the null hypothesis
over all cases in which the null hypothesis is correct.

@ Type | error is false rejection of the null Hy. Test size is the maximum
probability of false rejection.
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x? Test

@ Want to test the Null Hypothesis regarding model parameters:
h(@) =0

@ Construct a x? test:

e Estimate the var-cov of h(9), V.
o Construct the test statistic

£ = h(8)'V~"h(8) ~ x*(dim h(6))

@ Reject the Null if the test statistic & is sufficiently large. Rejection threshold is
determined by the desired test size and the distribution of & under the Null.
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Example: OLS

Suppose we run a predictive regression of y; on a vector of predictors x;:
Vi =PBo+Xx/B+u

Compute parameter estimates E by OLS. Use Newey-West to obtain var-cov
matrix for 3, Var(f).

Test the Null of no predictability: f = 0.
Test statistic is

£ =p'[Var(B)] "B ~x2(dim(B))

Test of size «: reject the Null if & > &, where

CDsz(dim(B)](E) =1—«
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Testing the Sharpe Ratio

@ Suppose we are given a time series of excess returns.
@ We want to test whether the Sharpe ratio of returns is equal to SRj.
@ Two steps:
@ Using the gglta method, derive the asymptotic variance of the Sharpe ratio
estimate, SR = 1/0G.

@ Test statistic .
(SR — SRy)?

—— ~x*(1
Var(SR) )
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Example: Sharpe Ratio Comparison

@ Suppose we observe two series of excess returns, generated over the same
period of time by two trading strategies:

1,1 1 2 2 2
(X{, X, ..., x7) and (X7, x5, ..., X7)

@ We do not know the exact distribution behind each strategy, but we do know
that these returns are IID over time.

@ Contemporaneously, x; and x? may be correlated.

@ We want to test the null hypothesis that these two strategies have the same
Sharpe ratio.
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Example: Sharpe Ratio Comparison

@ Stack together the two return series to create a new observation vector
Xt = (X[1 ' th)/

@ The parameter vector is

60 = (1}, 0%, 13, 03)

0 0
My Mo
Hy: {———==0
o {655 -0)

@ The null hypothesis is

@ To construct the rejection region for Hy, estimate the asymptotic distribution

oo pe
of?y1 5
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Hypothesis Testing

Example: Sharpe Ratio Comparison

@ Using standard GMM formulas, estimate the asymptotic variance-covariance
matrix of the parameter estimates 6, Q.

@ Define
he) == k2
04 02
@ Compute
20’ |5 o4 (04)? o2 (02)?

@ Asymptotically, variance of h(@) is

- _9)‘4

y |

"~ Q)
~

&)
L
r
>
=

D)
=
—_
Il
N
_9)‘_‘

[
e
=

|
3)‘_‘
e
N—

| — |
el
|

e
-

Q)
N
e
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Example: Sharpe Ratio Comparison

@ Under the null hypothesis, h(8y) = 0, and therefore

h(®)  _ h(8) — h(8y)
\/\Er h(®)] \/\Er[h(é)}

@ Define the rejection region for the test of the null h(6y) = 0 as

~N(0,1)

-~

h(©)
Var [h(@)}

@ A 5% test is obtained by setting z = 1.96 = ®~'(0.975), where @ is the
Standard Normal CDF.
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Key Points

Delta method.

GMM standard errors, MLE and QMLE standard errors.

OLS standard errors with correlated observations.

X2 test.

Testing restrictions on OLS coefficients, nonlinear restrictions.
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Readings

@ Cochrane, 2005, Sections 11.1, 11.3-4, 11.7, 20.1.
@ Campbell, Lo, MacKinlay, 1997, Sections A.2-4.
@ Cochrane, “New facts in finance.”:

http://faculty.chicagobooth.edu/john.cochrane/
research/Papers/ep3Q99_3.pdf
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Appendix: Intuition for GMM Standard Errors

@ Consider IID observations xq, ..., XT.

e Delta method computes the var-cov of E[f(x;, 0)], given the variance of 0. By
going in reverse direction, we compute the var-cov of 0 starting from the
var-cov of E[f(x;, 0)].

@ The latter is estimated as

Var(E(f(x,, 8))] 2 fVar[f(x,ﬁn @ 1

(1) IID observations, so Var()_-) = Y Var(-); (2) Use E[f(x,,
@ Using the delta method on the LHS, with A = d = 9E[f(x;, 0)

S~
QO
@)

15 4 I
73 ~ dVar[0] d
and therefore
Varlf) ~ & (a8 (a") ) = 1 (a57")
T T
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