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Small-Sample Inference

Overview

@ So far, our inference has been based on asymptotic results: LLN and
CLT.

@ Asymptotic inference is sometimes difficult to apply, too complicated
analytically.
@ In small samples, asymptotic inference may be unreliable:
o Estimators may be consistent but biased.
e Standard errors may be imprecise, leading to incorrect confidence
intervals and statistical test size.
@ We can use simulation methods to deal with some of these issues:

o Bootstrap can be used instead of asymptotic inference to deal with
analytically challenging problems.

@ Bootstrap can be used to adjust for bias.

e Monte Carlo simulation can be used to gain insight into the properties
of statistical procedures.
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Example: Autocorrelation

@ We want to estimate first-order autocorrelation of a time series x;
(e.g., inflation), corr(x;, x¢11).

@ Estimate by OLS (GMM)
Xt = ap + P1Xt—1 + &t
@ We know that this estimator is consistent:
plimr_, ., 1 = p1

@ We want to know if this estimator is biased, i.e., we want to estimate

E(Pp1) — p1
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Small-Sample Inference

Example: Autocorrelation, Monte Carlo

Perform a Monte Carlo study to gain insight into the phenomenon.
Simulate independently N random series of length T.

Each series follows an AR(1) process with persistence py and
Gaussian errors:

Xt = p1Xt—1 + &, € ~N(0,1)

Compute py(n), n=1, ..., N for each simulated sample.
Estimate the bias:

E(B1) —p1 = Zm — P

Standard error of our simulation-based estimate is

S B AP
5=\ ~v 2 (pr(m —EB1)

n=1
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Small-Sample Inference

Example: Autocorrelation, Monte Carlo

MATLAB ® Code

phi = 0.9; % AR(1) coefficient
T = 100; % Sample lengths
N = 100000; % Number of simulated samples

varss = 1/(1-phi~2); % STD of steady-state distribution
for n=1:N
x = zeros(T,1);

x(1) = sqrt(varss)*randn(1,1); % Draw initial value

noise = randn(T-1,1);
for t=2:T
x(t) = phi*x(t-1) + noise(t-1);

end

X = [ones(T-1,1) x(1:T-1)1;

b = (X?*X)\(X’*x(2:T)); rho(n) = b(2); % Run OLS
end
MeanBias = mean(rho) - phi
StdErrorBias = std(zrho)/sqrt(N)

Bootstrag
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Example: Autocorrelation, Monte Carlo

@ We use 100,000 simulations to estimate the average bias

P1 T Average Bias

0.9 50 —0.0826 4+ 0.0006
0.0 50 —0.0203 4 0.0009
0.9 100 —0.0402 4 0.0004
0.0 100 —0.0100 4 0.0006

@ Bias seems increasing in p1, and decreasing with sample size.

@ There is an analytical formula for the average bias due to Kendall:

1 4 3p1
T

L

E(P1) —p1~ —

@ When explicit formulas are not known, can use bootstrap to estimate
the bias.
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Example: Predictive Regression

@ Consider a predictive regression (e.g., forecasting stock returns using
dividend yield)

1 = o+ PBXt + Uttt
Xt+1 = 0+ pXt + €141
(ur, e1)" ~N(0, Z)

@ Stambaugh bias:

~ . COV(Ut, Et) ~

14+ 3p COV(Ut, Et)
E(B—B) = Var(ey) -

T Var(e¢)

—p) =

@ In case of dividend yield forecasting stock returns, the bias is positive,
and can be substantial compared to the standard error of f3.
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Predictive Regression: Monte Carlo

@ Predictive regression of monthly S&P 500 excess returns on log
dividend yield:

1 = &+ BXt + Upgq
Xt+1 =0 + pXt + €141

@ Data: CRSP, From 1/31/1934 to 12/31/2008.
@ Parameter estimates:

~

f =0.0089, p=0.9936,

@ S.E.(B) = 0.005.
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Small-Sample Inference

Predictive Regression: Monte Carlo

@ Generate 1,000 samples with parameters equal to empirical
estimates. Use 200 periods as burn-in, retain samples of the same
length as historical.

Tabulate 3 and standard errors for each sample. Use Newey-West
with 6 lags to compute standard errors.

Sample Distribution of T-stat
T T

150

Average of E is 0.013.

100

Average bias in E is 0.004.

Average standard error is 0.005.

Average t-stat on {3 is 0.75.

0
- 1 2 3 4
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Testing the Mean: Non-Gaussian Errors

@ We estimate the mean p of a distribution by the sample mean. Tests
are based on the asymptotic distribution
H—p
G/VT

@ How good is the normal approximation in finite samples if the sample
comes from a Non-Gaussian distribution?

N(0,1)

@ Assume that the sample is generated by a lognormal distribution:

Xt = e’%“’, gt ~N(0,1)
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Small-Sample Inference

Lognormal Example: Monte Carlo

@ Monte Carlo experiment: N = 100,000,
T = 50. Document the distribution of the
t-statistic R

nw—1

G/VT

@ Asymptotic theory dictates that
Var(t) = 1. We estimate

?:

Var(t) = 1.25422

e Tails of the distribution of  are far from
the asymptotic values:

o~ ~

A histogram of t across
100,000 simulations
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Prob(t > 1.96) ~ 0.0042, Prob(t < —1.96) ~ 0.1053
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Bootstrap: General Principle

@ Bootstrap is a re-sampling method which can be used to evaluate
properties of statistical estimators.

@ Bootstrap is effectively a Monte Carlo study which uses the empirical
distribution as if it were the true distribution.
@ Key applications of bootstrap methodology:

o Evaluate distributional properties of complicated estimators, perform
bias adjustment;

o Improve the precision of asymptotic approximations in small samples
(confidence intervals, test rejection regions, etc.)
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Bootstrap

Bootstrap for IID Observations

@ Suppose we are given a sample of 1ID observations x;, t =1, ..., T.
@ We estimate the sample mean as 1 = E(x;). What is the 95%
confidence interval for this estimator?

@ Asymptotic theory suggests computing the confidence interval based
on the Normal approximation

VT /E\(Xt/)c}— Lo N(0, 1), 32— Z: 1 XtT Xt)]z

@ Under the empirical distribution, x is equally likely to take one of the
values x1, Xo, ..., XT.
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Bootstrap

Key Idea of Bootstrap

REAL WORLD BOOTSTRAP WORLD

Unknm.zv'n Estimated
probability probability
model Observed data - Bootstrap sample

A
P——  X=(x,%..%,) O P— p x*=(X],X} .. Xp)

:

Bootstrap
Parameter of Estimate of Estimated refplécate
interest parameter o

0=06(P) 8=s(x)

b=0p) 65
N KX J

X Ak A
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Image by MIT OpenCourseWare.

Source: Efron and Tibshirani, 1994, Figure 10.4.
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Bootstrap Confidence Intervals

@ Bootstrap confidence interval starts by drawing R samples from the
empirical distribution.

@ For each bootstrapped sample, compute [i*. “x” denotes statistics

computed using bootstrapped samples.
@ Compute 2.5% and 97.5% percentiles of the resulting distribution of
[T
Hos%  Ho7sy

@ Approximate the distribution of {1 — n with the simulated distribution of

~

i* — U. Estimate the confidence interval as

~ ~

(H— (%7_5% —W), n— (ﬁg_s% — )
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Example: Lognormal Distribution

@ Fix a sample of 50 observations from a lognormal distribution
Inx; ~ N(—1/2,1) and compute the estimates
n=1.1784, o =1.5340
@ Population mean
w=E(x) =E(e 2"¢) =1, ¢ ~N(0,1)

@ Asymptotic approximation produces a confidence interval

o o
— i+ 1.96—
Neals JT

@ Compare this to the bootstrapped distribution.

(i—1.96 ) = (0.7532, 1.6036)
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Small-Sample Inference

Lognormal Distribution

Use bootstrap instead of asymptotic inference.

MATLAB® Code
R = 10000;
muvec = zeros(R,1);
for r=1:R
y = x(ceil(T*rand(T,1))); ¥ Sample with replacement
muvec(r) = mean(y);
end
muvec = sort(muvec);
% 5 percent confidence interval
LeftEnd = muhat - (muvec(ceil(0.975%R)) - muhat)
RightEnd = muhat - (muvec(floor(0.025%R)) - muhat)

Bootstrap I

Bootstrap estimate of the confidence interval

(0.7280, 1.5615)
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Testing the Mean: Bootstrap

Lognormal Example
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@ Consistent with Monte Carlo results: small-sample distribution of

t-statistics exhibits left-skewness.

@ Variance of the bootstrapped t-statistic is 1.18522. Normal

approximation: Var(t) = 1. Monte Carlo estimate: Var(t) = 1.25422.

A histogram of t statistic

Bootstrap (10,000 samples)
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Boostrap Confidence Intervals

@ The basic bootstrap confidence interval is valid, and can be used in
situations when asymptotic inference is too difficult to perform.

@ Bootstrap confidence interval is as accurate asymptotically as the
interval based on the normal approximation.

@ For t-statistic, bootstrapped distribution is more accurate than the
large-sample normal approximation.

@ Many generalizations of basic bootstrap have been developed for
wider applicability and better inference quality.
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Parametric Bootstrap

@ Parametric bootstrap can handle non-lID samples.
@ Example: a sample from an AR(1) process: x;, t =1, ..., T:

Xt = ap + a1 Xi—1 + &

@ Want to estimate a confidence interval for a;.
@ Estimate the parameters @, a; and the residuals &;.
@ Generate R bootstrap samples for x;.
@ For each sample: generate a long series according to the AR(1)
dynamics with @, @;, drawing shocks with replacement from the sample
/8\1 - ET;
@ Retain only the last T observations (drop the burn-in sample).
@ Compute the confidence interval as we would with basic nonparametric
bootstrap using R samples.
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Bootstrap

Bootstrap Bias Adjustment

@ Want to estimate small-sample bias of a statistic 0:

~
E [ 6]
REAL WORLD BOOTSTRAP WORLD
Unknowp Estimated
probability probability
model Observed data . Bootstrap sample
A

P——  Xx=(X|,Xp, ... Xn) q P— X*=(x},X}, ... X})

l Bootstrap
Parameter of Estimate of 6 Estimated wepfleate
interest parameter of ®

_ A
6=6(P) 'e;s(x) 5-a) 0= s(x*)

\ A \ Bias/‘(é* 6) /
Biasp(6, 6) 2 9
Source: Efron and Tibshirani, 1994, Figure 10.4.

Image by MIT OpenCourseWare.
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Bootstrap

Bootstrap Bias Adjustment

@ Bootstrap provides an intuitive approach:
£ [6— 00| ~ En [6* — 8]

where Eg denotes the average across the R bootstrapped samples.

@ Intuition: treat the empirical distribution as exact, compute the
average bias across bootstrapped samples.

@ Caution: by estimating the bias, we may be adding sampling error.
Correct for the bias if it is large compared to the standard error of 0.
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Small-Sample Inference

Example: Predictive Regression

Bootstrap

Use parametric bootstrap: 1,000 samples, 200 periods as burn-in,

retain samples of same length as historical.

© Leonid Kogan ( MIT, Sloan )

Average bias in B is 0.0036.

Average t-stat on f3 is 0.67.

150

Average of E is 0.0125.

Average standard error is 0.005.

50

Tabulate B and standard errors for each sample. Use Newey-West
with 6 lags to compute standard errors.

Sample Distribution of T-stat




Discussion

@ Asymptotic theory is very convenient when available, but in small
samples results may be inaccurate.

@ Use Monte Carlo simulations to gain intuition.
@ Bootstrap is a powerful tool. Use it when asymptotic theory is
unavailable or suspect.

@ Bootstrap is not a silver bullet:

e Does not work well if rare events are missing from the empirical
sample;

o Does not account for more subtle biases, e.g., survivorship, or sample
selection.

@ Does not cure model misspecification.

@ No substitute for common sense!
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Readings

@ Campbell, Lo, MacKinlay, 1997, Section 7.2, pp. 273-274.

@ B. Efron and R.J. Tibshirani, An Introduction to the Bootstrap,
Sections 4.2-4.3, 10.1-10.2, 12.1-12.5.

@ A. C. Davison and D. V. Hinkley, Bootstrap Methods and Their
Application, Ch. 2. Cambridge University Press, 1997.

@ R. Stambaugh, 1999, “Predictive Regressions,” Journal of Financial
Economics 54, 375-421.
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