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Heteroscedasticity

Example: S&P GSCI Index

@ Model daily changes in S&P GSCI index.

@ The S&P GSCI index is a composite commodity index, maintained by S&P.
“The S&P GSCI® provides investors with a reliable and publicly
available benchmark for investment performance in the commodity
markets. The index is designed to be tradable, readily accessible to
market participants, and cost efficient to implement. The S&P GSCI
is widely recognized as the leading measure of general commodity
price movements and inflation in the world economy.”

Source:Standard & Poor’s.
@ Changes in daily spot index levels:

P
P

zt=1In
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Example: S&P GSCI Index

S&P GSCI Spot Index
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Example: S&P GSCI Index

Daily changes from 02-Jan-2004 to 23-Sep-2009.

First, fit an AR(p) model to the series z; to extract shocks.

De-mean the series: x; = z; — E[zt}. Setp =13.

BIC criterion shows that z; has no AR structure. AIC criterion is virtually flat.
AR coefficients are very small.

Treat x; as a serially uncorrelated shock series.
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Example: S&P GSCI Index

@ While x;’s may be uncorrelated, they may not be IID.
@ Look for evidence of heteroscedasticity: time-varying conditional variance.
@ Perform the Engle test, e.g., Tsay, 2005 (Section 3.3.1).
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Heteroscedasticity

Engle Test for Conditional Heteroscedasticity

@ The idea of the test is simple: fit the AR(p) model to squared shocks and test
the hypothesis that all coefficients are jointly zero.

XP=ao+arXt g+ ...+ apXf ,+ U

@ One way to derive the test statistic:
@ Estimate the coefficients of the AR(p) model, © = (3, a1, cer 8p).

@ Estimate the var-cov matrix of the coefficients Q. Don't worry about
autocorrelation, since under the null it is not there.
@ Form the test statistic

@ Rejection region: F > F. Size of the test based on the asymptotic distribution:
F~X2(p)-
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Heteroscedasticity

Engle Test

MATLAB® code

Lags = [1:1:5];
[H, pValue, ARCHstat, CriticalValue] = archtest(x, Lags, []);

MATLAB® output

pValue =
1.0e-006 *

0.1031 0.0000 0 0 0
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GARCH(p,q)

@ Consider a widely used model of time-varying variance: GARCH(p,q)
(generalized autoregressive conditional heteroskedasticity).

@ Consider a series of observations
X = 0s&t, € ~N(0,1), lID
@ Assume that the series of conditional variances o7 follows
P q
G=a+ ) axt,+y boi, a b0 (GARCH(p,q))
i=1 j=1

@ Focus on a popular special case GARCH(1,1).
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GARCH(1,1) Dynamics

Let E;(-) denote the conditional expectation given time-t information.

Ei [02,,] =E¢[ao+ aix? + bio7| = ao + (a1 + by)o?

E¢ [0%,2] = E¢ a0 + (@ + by)oZ,,]
= ao[1 + (a1 + b1)] + (a1 + b1)20'[2

Et[0%.5] =E¢[a0 + (a1 + b1) 0%, ]
=a[1+(ay+ b))+ (a; + b1)2] + (ay + b1)30'?

1—(81 +b1)n

a bn2
1—a, — b, + (a1 + by) Oy

E; [O'?Jrn] = ap
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GARCH(1,1) Dynamics

@ Stable dynamics requires
ai+b <1

@ Convergence of forecasts:

. ao
lim E; 0%, | = ————
n—oo t [ t+n:| 1 —as — b1

@ Average conditional variance:

E[x2,] =a+aE[x] +biE[o?] = E[x] = — 0
1—a *b1
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GARCH(1,1) Monte Carlo

@ Unconditional distribution of x; has heavier tails than the conditional
(Gaussian) distribution.

@ Monte Carlo experiment: simulate GARCH (1,1) process with parameters

3021, 3120.1, b1=0.8

o Initiate 01 =4/ 17:1707b1

@ Generate a sample of 100,000 observations using dynamics

0'? = a + a4 X1271 + b1 0'?71
Xt = O0t€y, E(NN(O,1), 11D

@ Drop the first 10% of the simulated sample (burn-in) and analyze the distribution
of the remaining sample.
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GARCH(1,1) Monte Carlo

MATLAB® Code

sigma(1l) = InitValue; % Initialize
for t = 1:1:T
x(t) = sigma(t)*randn(1,1);
sigma(t+l) = sqrt(ald + blxsigma(t)~2 + alxx(t)"2);

end
x(1:floor(T/10)) = [1; % Drop burn-in sample
x = x./std(x); % Normalize x
for k=1:1:4
A(1,k) = mean(x>k); % Estimate tails of x
A(2,k) = 1-normcdf(k); % Compare to Gaussian distribution
end
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GARCH(1,1) Monte Carlo

@ Compare the tails of the simulated sample to the Gaussian distribution:

Prob _X >k
E (xf)

k | 1 2 3 4
GARCH(1,1) [ 0.1540 0.0239 0.0025 0.0002
Gaussian | 0.1587 0.0228  0.0013  0.0000
S&P GSCI | 0.1351 0.0188 0.0077 0
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© GARCH Estimation: MLE
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MLE for GARCH(1,1)

Focus on GARCH(1,1) as a representative example.
Estimate parameters by maximizing conditional log-likelihood).
Form the log-likelihood function:

.
£(0) =) Inp(xilos0)
t=1

p(x;|oy; 0) is the normal density

X
1 4
t

X¢lo: 0) =
p(x:loy; 0) \/ﬂ
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MLE for GARCH(1,1)

Likelihood function for GARCH(1,1)

T X2
1
£(0)=) —Inv2n —' — ~In(0?)
t=1
07 = ao + arx;_4 + by ‘7?71

@ Need 07 to complete the definition of £(6).
e The exact value of 02 does not matter in large samples, since o2 converges to its
stationary distribution for large ¢.
e A reasonable guess for o2 improves accuracy in finite samples.
e Use unconditional sample variance: 02 = E[x2].
@ Impose constraints on the parameters to guarantee stationarity.

@ MLE-based estimates:

0= arg max £(0)

(a0,a1,b1)

subjecttoa; >0, by >0, a1+ by <1
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Example: S&P GSCI

@ Fit the GARCHY(1,1) model to the series of S&P GSCI spot price changes.

@ Use MATLAB® function garchfit. garchfit constructs the likelihood function
and optimizes it numerically.

@ Parameter estimates:
a; = 0.0453, by =0.9457

@ Shocks to conditional variance are persistent, giving rise to volatility
clustering.
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GARCH Estimation:

Example: S&P GSCI

@ Fitted time series of conditional volatility G; computed using

~2 2 ~2
07 =ap + ar1x;_y + bi1or_;

Conditional Volatility of S&P GSCI Spot Price Changes
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Example: S&P GSCI

@ Extract a series of fitted errors

Tail Probabilities (Prob[e; > k])

k | 1 2 3 4
Gaussian | 0.1587 0.0228 0.0013 0.0000
e 0.1595 0.0209  0.0014 0

@ Fitted errors conform much better to the Gaussian distribution than the
unconditional distribution of x; does.

@ In case of S&P GSCI spot price series, can attribute heavy tails in
unconditional distribution of daily changes to conditional heteroscedasticity.
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Standard Errors

@ We treat MLE as a special case of GMM with moment conditions

= [9Inp(xtlo; 0)
E _— | =
[ 20 0

@ Use general formulas for standard errors:

~ = 32Inp(x, 0) ~  ~|dInp(x,0)dInp(x,0)
d_E[ 0000’ , S=E 00 00’

TVar[0] = (dS d) -

@ How to compute derivatives, e.g., M?

o Use finite-difference approximations (garchfit).
o Compute derivatives analytically, recursively (discussed in recitations).
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© GARCH: QMLE
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GARCH: Non-Gaussian Errors

@ Standard GARCH formulation assumes that errors ¢; are Gaussian.
@ Assume that x; follow a different distribution, but still

Xt = oer, Eiled =0, Eile?] =1

@ Two approaches:

o QMLE estimation, treating errors as Gaussian.
o MLE with an alternative distribution for ¢, e.g. Student’s .
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GARCH: QMLE

@ Keep using the objective function

T 2

X 1
£0)=) —Inv2n— 5 — —In(c?
N ; 202 2 (07)
@ Because the function x — —In x — a/x is maximized at x = a, conditional
expectation
g -2 1 (e2(0)
“| 202(0) 2 V!

is maximized at the true value of 0. This means that 6, maximizes the
unconditional expectation as well, and hence we can estimate it by
maximizing £(0).
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GARCH: MLE with Student’s t Shocks

@ One prominent example of GARCH with non-Gaussian errors is the GARCH
model with Student’s t error distribution.

@ Assume that

oy Tlv+1)/2) & )”“Vz
P = T2 /a2 (155 v

v/ v/(v — 2)¢; have the Student’s t distribution with v degrees of freedom. I
is the Gamma function, I'(x) = [* z*~'e~? dz.

@ Likelihood function for GARCH(1,1):

T F(v+1)/2] VA1 x? )
£@)=) I (r(v/z) e 2)) 5 In (1 g0

—In(0%)/2
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GARCH: Non-Gaussian Errors

@ Student’s t distribution has heavier tails than the Gaussian distribution.

@ The number of degrees of freedom can be estimated together with other
parameters, or it can be fixed.

@ GARCH models generate heavy tails in the unconditional distribution,
Student’s t adds heavy tails to the conditional distribution.

@ Daily S&P 500 returns: capture unconditional distribution of shocks as
Student’s t with v = 3; GARCH(1,1) captures conditional distribution of
shocks as Student’s t with v ~ 6.
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QMLE vs. MLE: Monte Carlo Experiments

@ How effective is the QMLE approach when dealing with non-normal shocks?
@ We can gain intuition using Monte Carlo experiments.

@ Beyond this particular context, our Monte Carlo design illustrates a typical
simulation experiment.
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Monte Carlo Design

@ Data Generating Process:

0'% =&+ & Xt271 + by 0'?71
a; =0.05 by =0.9

¢¢ are |ID, Student’s t distribution with v = 6.

@ Simulate N = 1,000 samples of length T = 1,000 or 3, 000.

@ Ineach case, start with 04 =, /s—2- and use a burn-in sample of 500
periods.

@ Perform MLE and QMLE estimations for each simulated sample and save
point estimates 3y, b;, and their standard errors.
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Summary Statistics

Compute the following statistics:
@ Root-mean-squared-error (RMSE) of each parameter estimate

N
RMSE(8) = 1N > (65— 05)2

n=1

@ Average value of each parameter estimate

@ Estimated coverage probability of the confidence interval for each parameter
estimate

1 N
N Z 116,—00/<1.96 S.€.(8)]
n=1
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GARCH: QMLE

T Method RMSE(0) Mean(0) C.1.(6) Coverage

3 b a by a by

1,000 QMLE | 0.0286 0.1951 | 0.0551 0.8335 | 0.9240 0.8930
1,000 MLE 0.0228 0.1396 | 0.0538 0.8613 | 0.9170 0.8920

3,000 QMLE 0.0149 0.0356 | 0.0513 0.8920 | 0.9380 0.9200
3,000 MLE 0.0115 0.0289 | 0.0503 0.8940 | 0.9370 0.9390

@ Both QMLE and MLE produce consistent parameter estimates.

@ At T = 1,000 there is a bias, which disappears at T = 3, 000.

@ MLE estimates are more efficient: smaller RMSE.

@ QMLE estimates do not rely on the exact distribution, more robust.
@ QMLE confidence intervals are reliable, GMM formulas work.
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Outline

© Alternative Models
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Other GARCH-Type Models: EGARCH

@ Empirically, conditional volatility of asset returns often reacts asymmetrically
to the past realized return shocks.

@ Leverage effect. conditional stock market volatility increases following a stock
market decline.

@ EGARCH(p,q) model captures the asymmetric volatility response:

P
Ino; =ag + Z aig <
i=1

g9(z) =lz| —cz

q

Xt—i

0* > + 21 biino, (EGARCH(p,q))
Jj=

t—i
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Mixed Data Sampling (MIDAS)

Motivation

@ Suppose we want to predict realized variance over a single holding period of
the portfolio, which is a month.
@ GARCH approach:
e Use monthly historical data, ignore the available higher-frequency (daily) data; or
o Model daily volatility and extend the forecast to a one-month period. Sensitive to
specification errors.
@ Mixed Data Sampling approach forecasts monthly variance directly using
daily data.
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Mixed Data Sampling

Formulation

@ We are interested in forecasting an H-period volatility measure, V{1, ; e.g.,
sum of squared daily returns over a month (H = 22).

@ Model expected monthly volatility measure as a weighted average of lagged
daily observations (e.g., use squared daily returns)

K

Vil =an+bn ) bulk 0)Xi ki k1 +en
k=0

@ Significant flexibility:
@ X can contain squared return, absolute value of returns, intra-day high-low
range, etc.
o Weights by(k, 0) can be flexibly specified.
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Mixed Data Sampling

Estimation

@ The model
K

Vi = an+ dn Z by (K, 0) Xi—k,t—k—1 + €t
k=0

Estimate using nonlinear least squares (NLS).
@ Alternative specification:

K
levHi~N (H, an+dun ) bulk, G)th,tk1>

k=0

Estimate the parameters using QMLE.
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Mixed Data Sampling

Example

@ Beta-function specification of the weights by(k, 0):

(5 )
Zj’(:of(ikvo"ﬁ)'

by(k, 0) = f(x, o B) = x*(1—x)P

Weights by(k, 0) have
flexible shape. Boos

0 01 02 03 04 05 06 07 08 09 1
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© Multivariate Models
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Multivariate Volatility Models

Overview

@ Model the dynamics of conditional variance-covariance matrix of the time
series o
Xt = Q:/zﬁt, & ~ N(O, /)
@ Many multivariate generalizations of GARCH framework. Main challenge is
parameter proliferation.
@ Use factor structures to treat high-dimensional cases.

@ Averaging of realized covariances (exponentially weighted moving average,
MIDAS framework).
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MGARCH

Example

@ Multivariate GARCH analog
Qi =CHalx_1x_4) + bQy 4

@ Estimate using QMLE, analogous to GARCH(1,1).
@ Limitation: all covariances have the same persistence.
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Constant Conditional Correlations (CCC)

@ Model
Qt - D[FD[
I" is the constant matrix of conditional correlations;
Dy is the diagonal matrix of conditional standard deviations.
@ Two-step estimation method:
@ Fit a scalar GARCH(1,1) to each component of x to estimate D;;

@ Estimate the unconditional correlation matrix of G, Uy = D; ' x;

1 T
T _ o~y
= 7;u,u,
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Dynamic Conditional Correlations (DCC)

@ Model
Qt = DtrtDt
I is the time-varying conditional correlation matrix;
Dy is the diagonal matrix of conditional standard deviations.
@ Two-step estimation method:
@ Fit a scalar GARCH(1,1) to each component of x to estimate D;;

@ Model T} as
= (Q)j T
M)i=—————, Q=01—a—bl'+alu_1u,_;)+ bQ_4
T V@@ -
EstimAate the parameters T, a, b by QMLE on the U; series. As before,
ﬁt = D;1X1.
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Summary

@ Volatility models are important for risk management, asset allocation,
derivative pricing.

@ GARCH models are convenient for extracting time-varying volatility and for
frecasting.

@ GARCH models can be estimated using QMLE or MLE.

@ Mixed-frequency data can be used in forecasting. MIDAS. Straightforward
using NLS or QMLE.

@ Multiple extensions of GARCH, multivariate models.
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Readings

@ Campbell, Lo, MacKinlay, 1997, Sections 12.2 (Introduction), 12.2.1.

Note: there are typos in eq. (12.2.19).

@ Tsay, 2005, Sections 3.3-3.5, 3.8.

@ T. Andersen, T. Bollerslev, P. Christoffersen, F. Diebold, 2006, “Volatility and
Correlation Forecasting,” in G. Elliott, C. Granger, and A. Timmermann (eds.),
Handbook of Economic Forecasting. Amsterdam: North-Holland, 778-878.

@ E. Ghysels, P. Santa-Clara, R. Valkanov, 2006, “Predicting volatility: getting
the most out of return data sampled at different frequencies,” Journal of
Econometrics 131, 59-95.
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