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Portfolio Choice: Static Approach

@ In models in which all options are redundant (e.g., Black-Scholes), dynamic
portfolio choice is relatively easy.
@ Solve a static problem:
e Find the best state contingent payoff (under given utility) which is

budget-feasible.
o Replicate the chosen payoff using dynamic trading in available assets.

@ Merton’s solution: CRRA utility with risk aversion vy, Black-Scholes model:

w—r
yo?

bf =

@ Myopic portfolio is optimal.
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Problem

@ Consider the Black-Scholes framework with parameters r, i, and o. Your
objective is to find an optimal investment strategy maximizing the expected
utility of terminal portfolio value

Eo | - (W]

subject to a lower bound on terminal wealth:

Wr>W

@ Using the static approach, express the optimal terminal wealth as a function of
the SPD.

@ Show that one can implement the optimal strategy using European options on
the stock.

@ (%) Implement the optimal strategy using dynamic trading.
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Dynamic Portfolio Choice

@ Dynamic programming principle.
@ Bellman equation.
@ Controlled Markov processes. Problem formulation.

@ Key examples: portfolio choice with time-varying moments of returns;
American option pricing.
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Financial Econometrics

Parameter Estimation
GMM

@ Estimate parameters using moment restrictions.
@ If the true distribution satisfies

E[f(xt,00)] =0, Elf(x;,0)] £0 if 0 # 09

estimate 6y using a sample analog of the population moments

T
Xv E Z X[,

@ Which moments to choose for estimation?
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Financial Econometrics

Parameter Estimation
MLE

@ MLE tells us that a particular choice of moments would work and would
produce the most precise estimates.

@ For IID observations, MLE prescribes estimating parameters as

0= arg mglx E [Inp(x;, 0)]

@ In moment form, this implies
i dlnp(x,0)

=0
00

t=1

@ MLE is a special case of GMM with a particular choice of moments, based on
the pdf.
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MLE for Dependent Observations

@ MLE approach works even if observations are dependent.

@ Consider a time series x;, x¢,1, ... and assume that the distribution of x; 4
depends only on L lags: X¢, ..., Xt+1—L.

@ Log likelihood conditional on the first L observations:

T—1
0 = arg meaxL(G) = arg meax {Z In p(Xpi11Xe, .oy Xe1—1; 6)}

t=L
@ AR(p) (AutoRegressive) time series model with [ID Gaussian errors:

1D 2
Xtr1 = @0 + @1 Xt + ...@Xt1—p + €441, €41 ~ N(0,0%)

@ Construct log likelihood:

T—1

2
X —dp — a1 Xt — ...apXt+1—
£(@) = —Invang? - Xt R a D k)
t=p
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Parameter Estimation

Iterated expectations

@ Another approach to forming moment conditions is to use iterated
expectations.

@ For example, consider a linear model
Vi =bo + bixt + &
@ Assume that
Eledlx] =0
@ Using iterated expectations, we can form two moments

El(y: — bo — bix;) x 1] =

0
El(yr —bo— bixt) x xs] =0
@ Recover standard OLS formulas.

@ ¢; could be heteroscedastic, our estimator is still valid since our moment
restrictions are valid.
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Financial Econometrics

Parameter Estimation
QMLE

QMLE helps formulate moment conditions when the exact form of the pdf is
not known.

@ Pretend that errors are Gaussian and use MLE to form moment restrictions.

@ Make sure that the moment restrictions we have derived are valid, based on
what we know about the model.

@ Intuition: we may only need limited information, e.g., a couple of moments, to
estimate the parameters. No need to know the entire distribution.

@ QMLE is a valid (consistent) approach, less precise than MLE but more
robust.
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Example: Interest Rate Model

Iterated expectations

@ Interest rate model:
1 =ao+ain+erp1, Eleraln) =0, E(e24ln) = bo + bin
e GMM with moment conditions derived using iterated expectations

Ellri1—a —airn) x1]=0
Ellry1 —a—ain) xnl =0
E{[(r1—a—ain)?—byp—bir] x1} =0
E{[(rw1—a—ain)?—by—bir] xr} =0

@ (ag, ar) can be estimated from the first pair of moment conditions. Equivalent
to OLS, ignore information about second moment.
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Financial Econometrics

Example: Interest Rate Model
QMLE

o Treat ¢; as Gaussian N(0, by + byri_1).
@ Construct log likelihood:
T—1
£(0) =) —Iny/2n(by + bir) —

t=1

(41— a0 — a l’t)z
2(bo + biry)

@ (ap, a1) can no longer be estimated separately from (bg, by ).
@ Optimality conditions for (ag, a1 ):

T—1

(1 —ao—air)
(1,r =0
; ) bt b

~

@ This is no longer OLS, but GLS. More precise estimates of (ag, a;).
@ Down-weight residuals with high variance.
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GMM Standard Errors

IID Observations

@ Under mild regularity conditions, GMM estimates are consistent:
asymptotically, as the sample size T approaches infinity, 6 — 8¢ (in
probability).

@ Define N

OE(f(x:, 6))

d= 3¢

[}
GMM estimates are asymptotically normal:

~ ~ o~ o~ 1
VT —00) =N {o, (d’S*‘ d) }
@ Standard errors are based on the asymptotic var-cov matrix of the estimates,

TVar[0] = (8’@‘1 a) -
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Problem

@ Suppose we observe a sequence of 1ID random variables X; > 0,
t=1,..., T, with probability density

pdf(X) =xe ™, X>0
@ Write down the log-likelihood function £(A).

@ Compute the maximum likelihood estimate A
@ Derive the standard error for A.
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Problem

@ Suppose you observe a series of observations X;, t =1, ..., T. You need to fit
a model
Xip1 = (X, Xp—1:0) + €444

where E[e;; 11X, X;—1, ..., Xi] = 0. Innovations ¢;, 1 have zero mean
conditionally on X;, X;_1,...,X;. You also know that innovations ¢;, 1 have
constant conditional variance:

EleZ, (1X, Xi—1, ... Xi] = 0°

The parameter o is not known. 0 is the scalar parameter affecting the shape
of the function f(X;, X;_1; 0).
@ Describe how to estimate the parameter 8 using the quasi maximum likelihood

approach. Derive the relevant equations.
@ Derive the standard error for 6 using GMM standard error formulas.
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GMM Standard Errors

Dependent observations

@ The relation
o= (o3 65°5)

is still valid. But need to modify the estimate S.
@ In an infinite sample,

S= Z E [f(xt, 00) f(Xt—j, 00)]
J=—0o0

@ Newey-West procedure for computing standard errors prescribes

.
S= Z | Z x,, f(Xt—j, )’ (Drop out-of-range terms)
j=—k t=1

@ Of special importance: OLS with Newey-West errors.
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Additional Results

@ Delta method: distribution of h(@) is approximately

N (h(6), V(h), V(h)—<a”(e)> w@(ahﬂe))

20

@ Hypothesis testing: construct a x? test of the hypothesis h(0) = 0

o Derive the var-cov of h(0), V(h).
e Construct the test statistic

& = h(8)'V(h)"h(8) ~ x?(dim h(8))

@ Model selection: pick an order of the AR(p) model using an AIC or BIC
criterion.
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Bootstrap: General Principle

@ Bootstrap is a re-sampling method which can be used to evaluate properties
of statistical estimators.

@ Bootstrap is effectively a Monte Carlo study which uses the empirical
distribution as if it were the true distribution.
@ Key applications of bootstrap methodology:
e Evaluate distributional properties of complicated estimators, perform bias
adjustment;
o Improve the precision of asymptotic approximations in small samples
(confidence intervals, test rejection regions, etc.)

@ Bootstrap bias correction (e.g., predictive regressions):

E [@—eo} ~En {6*—@}
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Boostrap Confidence Intervals

@ Basic bootstrap confidence interval. Nonparametric approach in 11D samples.
@ For non-1ID samples, use parametric bootstrap.
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Problem

@ Suppose you observe a series of observations X;, t =1, ..., T. You need to fit
a model
Xiv1 = (X, Xt—1;0) + €441

where E[e;; 11X, X;—1, ..., Xi] = 0. Innovations ¢;, 1 have zero mean
conditionally on X;, X;_1,...,X7. You also know that innovations ¢;, 1 have
constant conditional variance:

E[£?+1 |Xlr X[71, ey X1] = 0‘2
The parameter o is not known. 0 is the scalar parameter affecting the shape

of the function f(X;, X;_1; 0).

@ Describe in detail how to use parametric bootstrap to estimate a 95% confidence
interval for 6.

@ Describe how to estimate the bias in your estimate of 0 using parametric
bootstrap.
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