Value Chain Strategy: Clockspeed & 3-D Concurrent Engineering

Massachusetts Institute of Technology Sloan School of Management

Value Chain Strategy: Clockspeed & 3-D Concurrent Engineering

- 1. Introduction
- 2. Fruit Flies & Value Chain Evolution
- 3. Value Chain Design & 3-DCE
- 4. Value Chain Roadmapping & Strategy Making

3-D Concurrent Engineering & the imperative of concurrency

SC Principles to Understand

Supply Chair		
Focus Decision	Fulfillment Supply Chain	Technology Supply Chain
Scope Tactical	Costs, Cycle Times, Inventories	Collaborative Prod Devel
Strategic	Bullwhip Revenue Management IT System Design Order Fulfill. Process Logistics System Design Supply-Demand balance Relationship Design Flexibility	Clockspeed Double Helix Supply Chain Architecture Value Migration 3-DCE

Supply Chain Business Issues

Operational Objectives/ Customer Requirements -cost -quality -speed (flexibility, responsiveness) -improvement (learning/knowledge) -serviceability

Continuous Improvement

Outcome/

Solution Approaches and Procedures Fulfillment -postponement/pooling -quick response -strategic buffers (inv/cap) -demand mgmt -outsource capacity

-information quality

Capabilities/Technology

- -common parts/platforms
- -process standardization
- -collaborative design
- -engineering & economic contracts

Performance Metrics -benchmark comparison -cost savings analysis -service level

Strategic Objectives System Design/Capabilities

ProductFulfillmentProcessArchitectureSupply ChainTechnology

Fulfillment Objectives -logistics efficiency -supply/demand risk mitigation

Technology/Design Objectives -design for mfg -design risk mitigation -align sourcing strategy -strategic capabilities

External Influences

more new products/short life cycles product risk bullwhip competition/customers Value Chain Strategy: Clockspeed & 3-D Concurrent Engineering

6

- 1. Introduction
- 2. Fruit Flies & Value Chain Evolution
- 3. Value Chain Design & 3-DCE
- 4. Value Chain Roadmapping & Strategy Making

Supply Chain Design in a Fast-Clockspeed World: Study the Industry Fruitflies

Evolution in the natural world:

FRUITFLIES evolve faster than MAMMALS evolve faster than REPTILES

THE KEY TOOL:

Cross-SPECIES Benchmarking of Dynamic Forces **Evolution** in the industrial world: **INFOTAINMENT** is faster than **MICROCHIPS** is faster than **AUTOS** evolve faster than **AIRCRAFT** evolve faster than MINERAL EXTRACTION THE KEY TOOL: Cross-INDUSTRY Benchmarking of Dynamic Forces

Cisco's End-to-End Integration for its Fulfillment Supply Chain

Basic Design Principle: Arm's length Relationship with Fulfillment Chain Partners

Cisco's Strategy for Technology Supply Chain Design

- 1. Integrate technology around the router to be a communications network provider.
- 2. Leverage acquired technology with
 - sales muscle and reach
 - end-to-end IT
 - outsourced manufacturing
 - market growth
- 3. Leverage venture capital to supply R&D

Basic Design Principle: Acquisition Relationship with Technology Chain Partners

Volatility Amplification in the Supply Chain: "The Bullwhip Effect"

10

Supply Chain Volatility Amplification: Machine Tools at the tip of the Bullwhip

11

"We are experiencing a 100-year flood." J. Chambers, 4/16/01

See "Upstream Volatility in the Supply Chain: The Machine Tool Industry as a Case Study," E. Anderson, C. Fine & G. Parker *Production and Operations Management,* Vol. 9, No. 3, Fall 2000, pp. 239-261.

LESSONS FROM A FRUIT FLY: CISCO SYSTEMS

- 1. KNOW YOUR LOCATION IN THE VALUE CHAIN
- 2. UNDERSTAND THE DYNAMICS OF VALUE CHAIN FLUCTUATIONS
- 3. THINK CAREFULLY ABOUT THE ROLE OF VERTICAL COLLABORATIVE RELATIONSHIPS
- 4. INFORMATION AND LOGISTICS SPEED DO NOT REPEAL BUSINESS CYCLES OR THE BULLWHIP.

Bonus Question: How does clockspeed impact volatility?

INDUSTRY CLOCKSPEED IS A COMPOSITE: OF PRODUCT, PROCESS, AND ORGANIZATIONAL CLOCKSPEEDS

Mobile Phone INDUSTRY CLOCKSPEED

Mobile Phone

THE

product technology

^{ygy} THE *Mobile Phone* **PRODUCTION PROCESS**

process technology

THE Mobile Phone MANUFACTURING COMPANY organization

13

Mobile Phone System CLOCKSPEED is a mix of Transmission Standards, Software and Handsets

Automobile CLOCKSPEED IS A MIX OF ENGINE, BODY & ELECTRONICS

ISSUE: MOST AUTO FIRMS OPERATE AT **ENGINE OR BODY CLOCKSPEEDS**; IN THE FUTURE THEY WILL NEED TO RUN AT **ELECTRONICS CLOCKSPEED**.

See Leonard-Barton, D. Wellsprings of Knowledge

Projects Serve Three Masters: Capabilities, Customers, & Corporate Profit

The Strategic Leverage of Value Chain Design: Who let Intel Inside?

1980: IBM designs a product, a process, & a value chain

The Outcome:

A phenomenonally successful product design A disastrous value chain design (for IBM)

LESSONS FROM A FRUIT FLY: THE PERSONAL COMPUTER

- 1. BEWARE OF *INTEL INSIDE* (Regardless of your industry)
- 2. MAKE/BUY IS **NOT** ABOUT WHETHER IT IS *TWO CENTS CHEAPER* OR *TWO DAYS FASTER* TO OUTSOURCE VERSUS INSOURCE.
- 3. DEVELOPMENT PARTNERSHIP DESIGN CAN DETERMINE THE FATE OF COMPANIES AND INDUSTRIES, AND OF PROFIT AND POWER
- 4. THE LOCUS OF VALUE CHAIN CONTROL CAN SHIFT IN UNPREDICTABLE WAYS

Vertical Industry Structure with Integral Product Architecture

Computer Industry Structure, 1975-85

(See A. Grove, Intel; and Farrell, Hunter & Saloner, Stanford)

Horizontal Industry Structure with Modular Product Architecture

21

Computer Industry Structure, 1985-95

Microprocessors	Intel Moto AMD etc	
Operating Systems	Microsoft Mac Unix	
Peripherals	HP Epson Seagate etc etc	
Applications Software	Microsoft Lotus Novell etc	
Network Services	AOL/Netscape Microsoft EDS etc	
Assembled Hardware	HP Compaq IBM Dell etc	

(See A. Grove, Intel; and Farrell, Hunter & Saloner, Stanford)

THE DYNAMICS OF PRODUCT ARCHITECTURE AND VALUE CHAIN STRUCTURE: THE DOUBLE HELIX

22

See Fine & Whitney, "Is the Make/Buy Decision Process a Core Competence?"

THE **DOUBLE HELIX** IN OTHER INDUSTRIES

- TELECOMMUNICATIONS--
 - "MA BELL" was Vertical /Integral
 - BABY BELLS & LONG LINES & CELLULAR are Horizontal/Modular
 - Today's Verizon is going back to Vertical /Integral
- AUTOMOTI VE--
 - Detroit in the 1890's was Horizontal/Modular
 - Ford & GM in the mid 1900's were Vertical /Integral
 - Today's Auto Industry is going back to Horizontal/Modular
- TELEVISION--
 - RCA was Vertical /Integral
 - 1970'S THROUGH 1990'S were Horizontal/Modular
 - Today's media giants are going back to Vertical /Integral
- BICYCLES--
 - Safety Bikes to 1890's boom to Schwinn to Shimano Inside

Controlling the Chain Through Distribution: The End of P&G Inside ?

- Controlling the Channel Through Closeness to Customers:
- consumer research, pricing, promotion, product development

Customers

Controlling the Chain Through Distribution: Beware of Walmart Outside

Controlling the Channel Through Closeness to Customers: Chain Proximity

Vertical Growth on the Double Helix

Clockspeeds accelerate as you head downstream, closer to the final customer ;

Clockspeed = f(technology push, customer pull, system complexity)

Media Supply Chains: An Industry at Lightspeed

ALL COMPETITIVE ADVANTAGE IS TEMPORARY

- Autos:
- *Ford* in 1920, *GM* in 1955, *Toyota* in 1990
- *Computing: IBM* in 1970, *DEC* in 1980, *Wintel* in 1990
- World Dominion:
- Greece in 500 BC, Rome in 100AD, G.B. in 1800
- Sports:
- Bruins in 1971, Celtics in 1986, Yankees no end
- The faster the clockspeed, the shorter the reign

Value Chain Strategy: Clockspeed & 3-D Concurrent Engineering

- 1. Introduction
- 2. Fruit Flies & Value Chain Evolution
- 3. Value Chain Design & 3-DCE
- 4. Value Chain Roadmapping & Strategy Making

VALUE CHAIN DESIGN: Three Components

1. Insourcing/OutSourcing (The Make/Buy or Vertical Integration Decision)

2. Partner Selection (Choice of suppliers and partners for the chain)

3. The Contractual Relationship (Arm's length, joint venture, long-term contract, strategic alliance, equity participation, etc.)

IMPLEMENTATION OF VALUE CHAIN DESIGN: EMBED IT IN 3-D CONCURRENT ENGINEERING

Projects Serve Three Masters: Capabilities, Customers, & Corporate Profit

IMPLEMENTATION OF **PROJECT DESIGN**: FRAME IT AS 3-D CONCURRENT ENGINEERING

ARCHITECTURES IN 3-D INTEGRALITY VS. MODULARITY

Integral product architectures feature close coupling among the elements

- Elements perform many functions
- Elements are in close spacial proximity
- Elements are tightly synchronized
- Ex: jet engine, airplane wing, microprocessor

Modular product architectures feature separation among the elements

- Elements are interchangeable
- Elements are individually upgradeable
- Element interfaces are standardized
- System failures can be localized
- Ex: stereo system, desktop PC, bicycle

VALUE CHAIN ARCHITECTURE

Integral value-chain architecture

features close proximity among its elements

- Proximity metrics: Geographic, Organizational Cultural, Electronic
 - Example: Toyota city
 - Example: Ma Bell (AT&T in New Jersey)
 - Example: IBM mainframes & Hudson River Valley

Modular value-chain architecture features multiple,

- interchangeable supplier and standard interfaces
- Example: Garment industry
- Example: PC industry
- Example: General Motors' global sourcing
- Example: Telephones and telephone service

ALIGNING ARCHITECTURES: BUSINESS SYSTEMS & TECHNOLOGICAL SYSTEMS

37 **ALIGNING ARCHITECTURES: BUSINESS SYSTEMS & TECHNOLOGICAL SYSTEMS**

BUSINESS SYSTEM ARCHITECTURE (Geog., Organ., Cultural, Elec.) INTEGRAL MODULAR					
TECHNOLOGICAL SYSTEM ARCHITECTURE INTEGRAL	Jet engines Microprocessors Mercedes vehicles	Polaroid Lucent, Nortel			
MODULAR	Automotive Supplier Parks	Personal Computers Bicycles Chrysler Vehicles Cisco			

Demand-Supply Chain Management @ Dell

- Demand Management:
 Forecast = Buy = Sell
- Buy to Plan, but Build to Order
- Inventory Velocity is a wonderful thing ...
 - <u>Customers</u> have immediate access to the latest technology.
 - <u>Suppliers</u> get their products to market quickly
 - <u>Quality</u> is improved with fewer touches.
 - <u>Cash</u> is generated through negative cash cycle.
 - Model efficiencies drive <u>Market Share</u> gain.

Dell Supply Chain

Modular Product Architecture enables Modular Supply Chain

The Dell Model: Simple, Focused, Efficient

Dynamics of Dell Success

LESSON: SYSTEM SPEED FROM MODULAR PRODUCT

Can "Dell Direct" Work for Autos?

- Appealing to OEM's on Many Dimensions
 - -Satisfy customer need for Speed
 - -Reduce Supply Line Inventories
 - -Reduce mismatches and discounting
 - Direct OEM-Customer Relationships (& Data!)
 - -Information Transparency

Adapted from Prof. J.P. MacDuffie, IMVP & The Wharton School

BUT, A Car is not a Computer!!

• <u>Personal</u> <u>Computer</u>

- ~50 components
- 8-10 key parts
- 40 key suppliers
- 24 hour burn-in
- 100 design
 - variations
- Modular
- Architecture

• <u>Car</u>

- ~ 4000 components
- 100 key subsystems
- 300 key suppliers
- 12 month validation
- 1,000,000
- variations
- Integral
- Architecture

Adapted from Prof. J.P. MacDuffie, IMVP & The Wharton School

DESIGNING ARCHITECTURES FOR PRODUCTS & VALUE CHAINS: MODULARITY VS. OPENNESS

ARCHITECTUI		OPEN
RCHITECTURAL TRUCTURE INTEGRAL	Pentium Chip Mercedes Vehicles SAP ERP	Linux
MODULAR	IBM Mainframes Microsoft <i>Windows</i> Chrysler Vehicles	Palm Pilot software & accessories Phones & service Web-based ERP

INFORMATION ARCHITECTURE MUST REFLECT BUSINESS MODEL In/Outsourcing: Sowing the Seeds of Competence Development to develop dependence for knowledge or dependence for capacity

45

Technology Dynamics in the Aircraft Industry: LEARNING FROM THE DINOSAURS

46

SOURCEABLE ELEMENTS

Strategic Make/Buy Decisions: Assess Critical Knowledge & Product Architecture

Adapted from Fine & Whitney, "Is the Make/Buy Decision Process a Core Competence?"

Strategic Make/Buy Decisions: Also consider Clockspeed & Supply Base Capability

Adapted from C. Fine, *Clockspeed*, Chap. 9

Qualitative analysis of strategic importance uses five key criteria

Every decision requires qualitative and quantitative analysis to reach a conclusion

Model developed by GM Powertrain, PRTM, & Clockspeed, Inc.

Value Chain Mapping

Organizational Supply Chain

Chrysler	Eaton	casting supplier	clay supplier
----------	-------	---------------------	------------------

Technology Supply Chain

engines valve lif	rs casting manufacturing process	clay chemistry
-------------------	--	-------------------

Capability Chain

Supply Chain Management	Quality assurance		NVH engineering	R&D
		J		

Underlying Assumption: You have to draw the maps before you can assess their dynamics.

VALUE CHAIN DESIGN IS THE ULTIMATE CORE COMPETENCY

Since all advantages are temporary, the only lasting competency is to continuously build and assemble capabilities chains.

KEY SUB-COMPETENCIES:

1. Forecasting the dynamic evolution of market power and market opportunities

- 2. Anticipating Windows of Opportunity
- 3. 3-D Concurrent Engineering: Product, Process, Value Chain

Fortune Favors the Prepared Firm

PROCESS FOR VALUE CHAIN DESIGN

- 1. Benchmark the Fruit Flies
- 2. Map your Supply Chain
 - -Organizational Value Chain
 - -Technology Value Chain
 - -Competence Chain
- 3. Dynamic Chain Analysis at each node of each chain map
- 4. Identify Windows of Opportunity
- 5. Exploit Competency Development Dynamics with 3-D Concurrent Engineering

BOEING

DOT.COM COMPETITION: FOCUS ON THE SUPPLY CHAIN Napster's New Supply Chain Strategy (go to the end and steal everything!)

STRATEGY IN 3-D: CASE EXAMPLES

- Boeing: Static 3-D in airplane Projects Dynamic, Strategic Value Chain, unintegrated w/ Product & Process
- Intel: Modular Product vs. Process Integral Process and Value Chain
- Chrysler: Modular Product & Value Chain (weak on process?)
- Toyota: Integral 3-D in Nagoya (weak on global 3-D?)

Team Exercise: Value Chain Analysis

- What are the key elements in the value chain?
- What are the key dynamic processes influencing power in the chain?
- What are the key dependency relationships in the value chain?
- What is driving the clockspeed in the chain?
- What are the opportunities for outsourcing to contract manufacturers?
- What are the windows of opportunity in the chain?

Value Chain Strategy: Clockspeed & 3-D Concurrent Engineering

- 1. Introduction
- 2. Fruit Flies & Value Chain Evolution
- 3. Value Chain Design & 3-DCE
- 4. Value Chain Roadmapping & Strategy Making

One View (the consumer's) of the Communications Value Chain

59

Another View of the Communications Value Chain

-							
•Silicon •Gaas •InP •Polymers •Steppers •Etchers •MEMS •Insertion •Etc	•Lasers •Amplifiers •Transceiver •Filters •Processors •Memories •Fiber •ASICS •MEMS •DSP's •Etc	•Routers •Switches •Hubs •Base Stations •Satellites •Servers •Software •O/S •Etc	•Wireless •Backbone •Metro •Access •Substations •Satellites •Broadcast Spectrum •Communic Spectrum •Etc	•Long dist. •Local •Cellular •ISP •Broadcast •Hot Spots •Cable TV •Satellite TV •VPN's •MVNO's •Etc	•Music •Movies •Email •VoIP •POTS •Shopping •ERP •SCM, CRM •Surveillance •eBusiness •Etc	•Computers •Phones •Media Players • Cameras •PDA's •Weapons •Etc	•Business •Consume •Gov't •Military •Educatio •Medical •Etc

Roadmapping Communications: What are the Premises?

Silos in the value chain are interdependent (integrality).

Absence of leadership and coordination across an interdependent value chain creates uncertainty, risk, and reluctance to invest.

HOW TO ACHIEVE COORDINATION IN THE ABSENCE OF VERTICAL INTEGRATION?

Roadmapping Communications: What are the Premises?

Technology dynamics, Industry dynamics, and Regulatory dynamics are interdependent.

Technology and industry roadmapping are typically done by different people

SIA roadmaps provided productive coordination in semiconductors, but focused only on technology & a narrow slice of the value chain. Industry growth was assumed. --> Not a good model for Communications.

Productive roadmapping must encompass multiple links of the value chain, a multidisciplinary team, and the coevolution of technology, industry, and regulatory policy.

"If you come to a fork in the Road[map], Take it." --Yogi Berra

INFORMATION WANTS TO BE SHARED ==> Difficult content business models

63

Internet explosion Wireless Explosion Connectivity Explosion File Sharing Explosion

> INFORMATION SHARERS GO TO JAIL ==> Poverty of The Commons

"If you come to a fork in the Road[map], Take it." --Yogi Berra

Internet explosion Wireless Explosion Connectivity Explosion File Sharing Explosion INFORMATION WANTS TO BE SHARED ==> Difficult content business models

> Is there a third way? (Quantum Roadmap)

64

INFORMATION SHARERS GO TO JAIL ==> Poverty of The Commons

Proposed MIT Communications Roadmap Consortium ⁶⁵

CROSS-INDUSTRY CHALLENGES

Digital Rights ("To promote the Progress of Science and useful Arts, by securing for limited Times to Authors and Inventors the exclusive Right to their respective Writings and Discoveries;" U.S. Constitution, Article 1, Section 8, Clause 8) Access Architecture

Dynamic Analysis to Support Industry & Technology Roadmapping

Business Cycle Dynamics "The Bullwhip Effect"

See Fine & Whitney, "Is the Make/Buy Decision Process a Core Competence?"

Corporate Strategy Dynamics

Corporate Strategy Dynamics

Customer Preference Dynamics

71

(adapted from Sadek Esener, UCSD and Tom O'Brien, Dupont "Macro-Trends" process)

- 1. Population
 - Aging, Growth
- 2. Awareness
 - of Environment/Energy costs, Personal Health
 - of consumption possibilities & disparities
- 3. Globalization
 - of commerce, culture, knowledge, disease, terrorism
- 4. Clusters
 - urbanization
 - wealth
 - affinity/ethnic groups
- 5. Technology
 - cheap computation, pervasive connectivity
 - technology at the molecular (nano) level (life sciences, electronics, polymers)

Regulatory Policy Dynamics: Some Components

- 1. Players:
 - United States: FCC, Congress, Consumers, Corporations, Interest Groups
- 2. Environments:

Wireless in Europe, NTT DoCoMo, Broadband in Sweden & Korea India vs. China Development US: Access, Digital Rights

3. Standards:

e.g., wCDMA vs CDMA2000
Roadmap for Electronic Devices

Number of chip components

International Technology Roadmap for Semiconductors '99

74

Year	2005	2008	2011	2014
I Cal	2005	2000	2011	2014
Technology (nm)	100	70	50	35
DRAM chip area (mm ²)	526	603	691	792
DRAM capacity (Gb)	8		64	
MPU chip area (mm ²)	622	713	817	937
MPU transistors (x10 ⁹)	0.9	2.5	7.0	20.0
MPU Clock Rate (GHz)	3.5	6.0	10.0	13.5

Moore's Law

Transistors per chip

Source: Joel Birnbaum, HP, Lecture at APS Centennial, Atlanta, 1999

Disk Drive Development 1978-1991

Disk Drive Generation	Dominant Producer	Dominant Usage	Approx cost per Megabyte	
14"	IBM	mainframe	\$750	
8"	Quantum	Mini-computer	\$100	
5.25"	Seagate	Desktop PC	\$30	
3.5"	Conner	Portable PC	\$7	
2.5"	Conner	Notebook PC	\$2	

76

From 1991-98, Disk Drive storage density increased by 60%/year while semiconductor density grew ~50%/year. Disk Drive cost per megabyte in 1997 was ~ \$.10

⁷⁷ "Killer Technologies" of the Information Age: Semiconductors, Magnetic Memory, Optoelectronics

"We define a <u>*killer technology*</u> as one that delivers enhanced systems performance of a factor of at least a hundred-fold per decade."

C.H.Fine & L.K. Kimerling, "Biography of a Killer Technology: Optoelectronics Drives Industrial Growth with the Speed of Light," published in 1997 by the Optoelectronics Industry Develoment Association, 2010 Mass Ave, NW, Suite 200, Wash. DC 20036-1023.

Killer Question:

Will <u>Integrated Optics</u> evolve linearly like Semiconductors with Moore's Law or like Disk Drives with repeated industry disruptions?

Example Concept for Integrated Photonics Chip Dr. Gale Petrich, MIT Microphotonics Center

Optical Technology Evolution: Navigating the Generations with an Immature Technology

			A CONTRACTOR OF		
	1	2	3	4	5
Timeline	Now	Starting	Starting	3-5 years	5-15 years
Stage	Discrete Components	Hybrid Integration	Low-level monolithic integration	Medium Monolithic integration	High-level monolithic integration
Examples	MUX/ DEMUX	TX/RX module OADM	TX/RX module OADM	OADM, Transponder Switch Matrix	Transponder
Core Techno- logies	FBGs, Thin- film, fused fiber, mirrors	Silicon Bench, Ceramic substrates	Silica Silicon InP	InP, ??	InP, ??
How many Functions?	1	2-5	2-5	5-10	10-XXX
Industry Structure	Integrated	Integrated/ Horizontal	Integrated /Horizontal	DOUBLE HELIX	DOUBLE HELIX

Dr. Yanming Liu, MIT & Corning

WIRELESS VALUE CHAIN:MINI CASE EXAMPLE

Wireless Base Stations (WSB'S) comprise 4 key subsystems:

WSB architectures are -integral & proprietary Suppliers include: Nortel, Moto, Ericsson, Siemens, Nokia Disruptive Modem advances (e.g., MUD) can double Base Station Capacity

Modular WSB's might

(1) Stimulate new WSB entrants (ala Dell)

80

- (2) Stimulate standard subsystem suppliers
- (3) lower prices to the network operators
- (4) Speed base station performance imp.
- (5) Increase demand for basestations due to improved price-performance ratios.

Supply Chain Design is the Ultimate Core Competency: Competency of passing judgement on all other competencies

All Conclusions are *Temporary*

Clockspeeds are increasing almost everywhere

Many technologies and industries exhibits fast clockspeed & high volatility

Value chain design and service system key competencies

Study of Fruit Flies can help with crafting strategy

Mother Nature strikes The Cell Phone Supply Chain

8:00 pm, Friday 17 March 2000: Lightning Strikes an ASIC semiconductor plant of Philips in Albuquerque, New Mexico, USA8:10 pm: Fire is extinguished. Plant will be down for months.

Mother Nature strikes The Cell Phone Supply Chain

NOKIA

Shipment discrepancies noticed within 3 days. Philips is pushed hard. New supply sources. New chip design. Global capacity grab.

ERICSSON

Problem undiscovered for weeks. Slow chain of command. Slow response. Capacity already taken. \$400M revenue loss. Exits phone manufacture.

