Basic assumptions of conjoint analysis

- * The product is a bundle of attributes
- * Utility of a product is a simple function of the utilities of the attributes
- * Utility predicts behavior (i.e., purchases)

Steps in conjoint analysis

- A. *Define attributes* (brainstorm, focus groups, retailer interviews, etc.);
- * should matter to consumers
- * should be technologically modifiable
- B. Select number of levels for each attribute
- * range must be broad enough
- * some attributes can be represented as continuous (price, longevity)

C. Define hypothetical products

* all combinations of attribute levels will generate too many products
* aim for a subset of products with **orthogonal** design, making sure that that all combinations of levels for <u>pairs</u> of attributes occur in some product

Definition of orthogonal:

Let "i" and "j be two levels of attribute A, and "k" a level of attribute B; then:

In words, the chances of finding B_k in a product should be the same irregardless of the level of attribute A.

An orthogonal design for a simplified version of the air conditioner ranking problem might be,

Unit 1	Low noise	\$500	Strong
Unit 2	Low noise	\$400	Adequate
Unit 3	Low noise	\$300	Strong
Unit 4	High noise	\$500	Adequate
Unit 5	High noise	\$400	Strong
Unit 6	High noise	\$300	Strong
Unit 7	Moderate	\$500	Strong
Unit 8	Moderate	\$400	Strong
Unit 9	Moderate	\$300	Adequate

D. Design and conduct survey

There are several methods of eliciting preferences:

* rank order all products

* rate all products on a scale (e.g., 0-100)

* give selected pairs of products

E. Estimating utilities

* Non-metric; program tries to pick utilities that minimize the number of wrong predictions for pairwise preferences

* Metric (ordinary linear regression with dummy variables); theoretically questionabale, but produces almost the same results as the fancier nonmetric techniques.

The linear regression model with conjoint preference data would be:

$$\mathbf{R}_{i} = \mathbf{u}_{0} + \mathbf{\bullet} \quad \mathbf{u}_{j}^{k} \mathbf{X}_{ij}^{k}$$

where,

R_i - the ranking or rating assigned to product i

 $X_{ij}{}^k\,$ - a dummy variable defined as:

 $X_{ij}^{k} = \begin{cases} 1 & \text{if product i has level j on attribute k} \\ 0 & \text{otherwise} \end{cases}$

 $u_j{}^k$ - the utility coefficient for level j on attribute k; <u>precisely</u>: the mean change in rank (or rating) produced when the default level for attribute k is replaced by level j

Unit	Noise level		Price		Cooling	Ranking
	Default=low	noise	Default		Default	
			=\$500		=Strong	
	X1 (High)	X2 (Mod)	X3 (\$400)	X4 (\$300)	X5 (Adeq.)	R
Low noise \$500, Adeq.	0	0	0	0	1	3
Low noise \$400, Adeq.	0	0	1	0	1	6
Low noise \$300, Strong	0	0	0	1	0	9
High noise \$500, Adeq.	1	0	0	0	1	1
High noise \$400, Strong	1	0	1	0	0	2
High noise \$300, Strong	1	0	0	1	0	8
Moderate \$500, Strong	0	1	0	0	0	5
Moderate \$400, Strong	0	1	1	0	0	7
Moderate \$300, Adeq.	0	1	0	1	1	4

With this particular set of ratings, the linear regression formula will be:

Rank = $4.67 - 2.33 X_1 - .67X_2 + 2.0X_3 + 4.0X_4 - 2.0X_5$

F. Calculating the weight of different attributes

* For each attribute, compute the difference between the highest utility level, and the lowest utility level.

* The weight of each attribute is its relative share of these numbers.

* This is a popular summary number of how important a particular attribute is for some person, or population

G. Calculating utilities for specific products

* Encode the new product in terms of dummy variables

* Plug into the regression equation, using the coefficients that have been derived from the study

H. Calculating market shares

* Given a basket of products, calculate for each person the product with highest value, and add up how many "votes" each product gets.

I. Calculating a demand function

* Vary the price of the product, and watch how the market share changes

Critical issues in applying conjoint analysis

* Is the sample representative?

* Should each person have one vote, or should the respondents be weighted in some fashion (e.g., purchasing power)?

* Does the utility of one attribute depend on the level of another?

* Is the product described in a realistic, believable manner

* Will people do what they say?

* What about competitive reactions to new products, price changes?

15 questions about conjoint analysis

- 1. Which attributes?
- 2. How many levels on each attribute?
- 3. How many different products?
- 4. Do they have to be "plausible?"
- 5. How should the products & attributes be described?
- 6. How do I figure out an orthogonal design?
- 7. Do I absolutely need an orthogonal design?
- 8. Does each product need to be defined on all attributes?

- 9. Evaluate all products in one swoop, or evaluate pairs of products?
- 10. Should the products be ranked or rated?
- 11. For rating task, should the rating be a probability of purchase, or attractiveness, or what?
- 12. For ranking task, what if the products "in the middle" are more similar in value than products at the extremes.
- 13. What if the importance of one attribute depends on the level of another attribute?
- 14. How do we go from utility of product to probability of purchase?
- 15. Can I believe the market shares?