11.220 Quantitative Reasoning & Statistical Methods for Planners I Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Computer Lab #3

Apr 3rd, 2009

Analyze data: T-test, ANOVA and Correlation

Tips to get the software and data work: To use STATA on Linux system type "add stata" in the terminal type "xstata" in the terminal To use flash drive on Linux system type "add consult" in the terminal type "tellme root" and pay attention to the password it gives you type "attach-usb" and then enter that password The path will be "/mnt/usb/foldername" type "detach-usb", and give the same password to detach f-drive

Metadata of "Hedonic.dta"

This data set contains observations on house prices and attributes in the city of Newton.

id price	house code
price	sale price
lot	lot size
style	building style
year_b	year when the house was built
size	total areas of living space
room	number of rooms
bed	number of bedrooms
bath	number of bathrooms
q1	interior condition of the house: "above","average","bellow"
q2	bathroom condition: "above", "average", "bellow"
year_s	year of sale
old	dummy variable = 1 if the house was built before 1930

STATA commands used in today's class

compare the sample means or other descriptive statistics values
one-way analysis of variance
analysis of variance
simple correlation among variables
produce scatter plot of outcome vs. predictor
produce multiple twoway scatter plot at a time

Scripts in the real Command Window

```
cd E:\MIT\09Spring\STATALAB\DATA (change this part to your own local
directory)
      use hedonic, clear
```

```
log using log1, text
summarize
```

1) T-test (One sample and two independence samples)

2 11.220 Quantitative Reasoning and Statistical Methods for Planning

```
/// Compare the mean of one variable to some constant value

ttest size = 1770 * Can we reject H0 \mu = 1770? Why?

ttest size = 2000 * Can we reject H0 \mu = 2000? Why?

ttest size = 1770, level(99) * Can we reject H0 \mu = 1770 now?
```

*Note: This is to infer whether the mean of the population equals 1700 or 2000, given the sample mean we already know.

/// Compare the mean of two different variables
 ttest bed = bath, unpaired

*Note: Here I use the option "unpaired" since the means are from different variables. "Paired" ttest is by default, which is designed to compare the means of the same variable from different samples. Think of a "pre-post" situation.

```
/// Compare the mean price of old houses vs. new houses
    tab old, summarize(price)
    ttest price, by(old) * Can we reject H0: µp_old = µp_new?
    ttest price, by(old) unequal
```

*Note: If we concern that the samples may have different variances, we need to include "unequal" option.

2) Analysis of Variance

3) Things to do before run into "regression"

graph matrix price lot size room, half

/// Plot "price" against "lot" with fitted linear regression line
 twoway scatter price lot || lfit price lot

/// Plot "price" against "lot" with 95% confidence interval twoway scatter price lot || lfitci price lot

/// Do simple linear regression! regress price lot

Exercises

1: Test whether the μ of lot size = 8600? 8900? On a 95% confidence level.

2: Test whether the μ of lot size is statistically different between new and old house.

3. Test whether the variances of price are different for houses with different interior quality? Hint: use "q1" to divide the data into 3 groups.

4. Plot "price" against "room" with fitted regression line and confidence interval.