Massachusetts Institute of Technology Department of Urban Studies and Planning

11.520: A Workshop on Geographic Information Systems

11.188: Urban Planning and Social Science Laboratory

Lecture 10: Introduction to Internet GIS and ArcIMS

Nov. 9, 2005, Joseph Ferreira, Jr.

Based primarily on lecture notes by Visiting Prof. Zhong-Ren Peng, Fall, 2003 See: Peng and Tsou, Internet GIS, 2003, John Wiley, ISBN: 0-471-35923-8.

Main Topic: Introduction to Internet GIS and ArcIMS

- Introduction to Internet GIS
- State of the Art of Internet GIS
- Introduction to ArcIMS

The Road Map of GIS

Stand-alone GIS Programs

- Mainframe-based monolithic GIS programs
- Desktop GIS programs
- Limited or no communication with other computers (other than transparently via, for example, use of a network file server)

- Programs need to run on the mainframe or PC where the program resides
- Users need access to that machine via a login or dumb terminal session.
- Examples: early Arc/Info installed on a stand-alone mainframe or PC.

LAN-based GIS Programs

- GIS installed on one or more machines on a Local Area Network (LAN)
- GIS programs run on local machines but can share data and printing facilities from the data server, or
- GIS programs run on a server, user can access it from any machine inside the LAN.
- Typical Client/Server architecture.
- Examples: Most current GIS programs.

Limitations of Stand-Alone and LAN-based GIS Programs

- Difficult for user outside the LAN to access.
- Difficult to directly access data that are available outside the LAN.
- Limited GIS users.
- Difficult to mange, update and extend.

What is Internet GIS?

 Internet GIS is a network-centric GIS tool that uses the *Internet* as a primary means of providing access to the *functionality* (e.g., analysis tools, mapping capability) of GIS and to the spatial *data* and other data needed for various GIS applications.

- Internet GIS is an integrated client/server, and Web/Server application.
- Internet GIS typically uses a Web browser as client.
- Internet GIS can be viewed as a distributed, objectoriented system.
- Internet GIS is portable and cross-platform.

Internet GIS vs Web GIS

- What's the difference between the Internet and the World Wide Web?
- Internet refers to the inter-connected computer network, -- infrastructure.
- Web is one of many applications that are based on the Internet.
- The term Internet GIS focuses the use of a suite of Internet technologies, not only the Web.
- Internet GIS thus has more longevity and is a preferred term.

Features of Internet GIS

- Wide accessibility, users from the world can access GIS data and analysis tools over the Internet.
- No GIS software is required to install locally.
- Takes advantage of the friendly graphic user interface that is provided by the World Wide Web.
- Users can directly manipulate maps and GIS data over the Web.
- Internet-aware GIS software can access remote data anywhere on the Internet.
- Internet GIS can easily incorporate up-to-date, realtime information

Basic Components of the Internet GIS

Internet GIS: State of the Art

- Static Map publishing
- Static Web Mapping
- Interactive Web Mapping
 - Client-side Plug-ins and Helper Program
 - GIS ActiveX Controls
 - Java-based Internet GIS
- Distributed Geographic Information Services

Server-Side and Client-Side Internet GIS

- Server-Side Internet GIS
 - HTML to GIS server via CGI (Common Gateway Interface) script
- Client-Side Internet GIS
 - Client-side Plug-ins and Helper Program
 - GIS ActiveX Controls
 - Java-based Internet GIS
- Hybrid of server- and client-side Internet GIS

Static Map publishing

- Insert Map images in a text file on the Web.
- Not a GIS.

Static Web Mapping

How does it work?

Common Gateway Interface

- When information is collected by a browser it is sent to a HyperText Transfer Protocol (HTTP) server specified in the HTML form, and that server starts a program, also specified in the HTML form, that can process the collected information. Such programs are known as "Common Gateway Interface" programs, or CGI scripts (E.O. Johnson).
- CGI is a simple interface that links Web browser, server and other external programs.
- CGI or Dynamic Link Library (DLL) has three functions:
 - It receives user inputs and parses them into parameters of variables to be used in GIS programs.
 - It lets Web servers run other GIS programs.
 - It interprets output and sends back to browsers.

Advantages of Static Web Mapping

- A "thin" client (e.g., all data processing is done on the server, while the client is used only for display and user input).
- Takes full advantage of all GIS software functionality at the server.
- Ubiquitously accessible over the Internet.
- Can handle large database to serve spatial queries

Drawbacks of Static Web Mapping

- Every user request has to go through the Internet to activate a CGI script every time.
- Creates heavy traffic over the Internet.

- Operation is slow, because every command (even very simple ones like zoom and pan) has to be operated on the GIS server.
- Maps are static images.
- User cannot draw a box or a circle or select polygons on the map images.

Examples of Static Web Mapping

- VISA International ATM locator (<u>http://www.visa.com</u>/)
- ESRI's MapObjects Internet Map Server (<u>http://metro-trip.ci.waukesha.wi.us/waukesha</u>/)
- Map Quest (<u>http://www.mapquest.com/</u>)

Interactive Web Mapping (Client-Side Internet GIS)

- Interactive Web Mapping programs allow the user to manipulate GIS data and conduct GIS analysis at the client/user side, including:
 - GIS Plug-Ins and Helper Programs
 - GIS Java Applets
 - GIS ActiveX Controls

GIS Plug-Ins or Helper Programs

- GIS plug-ins are software executables that run on the browser and interpret the GIS data received from the server.
- GIS plug-ins are used in extending the browser to process GIS data.
- While GIS plug-ins are small applications, GIS helper programs can be large GIS applications or existing GIS software that is located in the user's local machine.

How Do GIS Plug-Ins Work?

Partition Points for GIS Plug-In

Examples of GIS Plug-ins

- Autodesk: MapGuide (http://www.mapguide.com/)
- GeoMedia Web Map (for Netscape browser)

Advantages of GIS Plug-Ins

- GIS plug-ins enable Web browser to interact with GIS data.
- Some GIS functions (i.e., zoom, pan, query) can be conducted by the plug-ins, so it can reduce traffic on the Internet.
- GIS plug-ins can fetch data from the server on demand.
- Plug-ins are easy to control and are not distributed with browsers.

Drawbacks of GIS Plug-Ins

- Plug-ins are not platform-independent. The GIS vendor has to create different plug-ins for different operating systems (Unix, PC).
- Users have to download different plug-ins from different GIS servers.

- GIS plug-ins and helper programs have to be installed in the user's machine.
- Security concerns make users hesitant to download plug-ins.

GIS Applets

- GIS applets are executable code that are downloaded from the server and executed on the browser client at runtime.
- Java applets use an object-oriented language designed to work on a virtual machine and including functionality that is useful for the interface design of GIS mapping and analysis functions.
- Java applets are interpreted locally via tools that are embedded in the most common browsers.

Java-Based Internet GIS

How does it work?

Examples of Java-Based Internet GIS

- MapXtreme from MapInfo (http://www.mapinfo.com/)
- Google maps (<u>http://maps.google.com/</u>) (using AJAX: asynchronous javascript technology and XML: <u>http://java.sun.com/developer/technicalArticles/J2EE/</u> <u>AJAX</u>)
- ArcIMS from ESRI.

Partition Point for GIS Applets

The applet model moves the partitioning point further to the right.

Applet gives the application designer/developer the flexibility to determine where to split the application.

For example, a Web server may supply different applets depending on the speed of the connection between it and its clients.

Advantages of Java-based Internet GIS

- Java's byte code is platform-neutral, so it can run in any machine without modification.
 - For vendors and developers, it means larger potential market and the elimination of "software porting."
 - For users, it means lower cost and greater interoperability among components.
- Java applet is run on local machine, minimizing through-net traffic, and making better use of local computing resources.
- Java applets are more flexible in creating and displaying graphics and maps.
- Java applets are downloaded from the server at runtime and will disappear when the user quits the application.
- Java is more secure, because applets run on the JVM on the user's local device. Java applets have no access to local system.

Drawbacks of Java Applet

 It takes some time to initially download applets. This is especially problematic for slow connections (e.g., via dialup modems).

- It needs Java-enabled Web browser for Java applets to function.
- It cannot access local files and data (due to security limitations of Java tools).
- Java based Web GIS can not select objects by radius or select object from multiple themes (E.O. Johnson).

Java Plug-In

- Old Java applet relies on the web browser's default virtual machine.
- Java Plug-in software enables enterprise customers to direct applets or JavaBeans on their intranet web pages to run using Sun's Java 2 Runtime Environment, Standard Edition (JRE).
- The Java plug-in allows redistribution of both standalone Java technology-based applications and browser-based applets (<u>http://java.sun.com/products/plugin/</u>).

GIS ActiveX Controls

- An ActiveX control is a piece of executable code that can run on Windows platforms.
- ActiveX controls conform to the COM (Component Object Model) standard.
- They are loaded and executed inside a container (Internet Explorer).

How Do GIS ActiveX Controls Work?

Partition Point for ActiveX Controls

Same as for Java Applet

Example of GIS ActiveX Controls

- Intergraph's GeoMedia Web Map Server (http://imgs.intergraph.com/gmwm/)
- MapGuide (<u>www.mapguide.com</u>)

Advantages of GIS ActiveX Controls

- Offers better performance, because they are compiled to the native executable format.
- Takes full advantage of local machine resources and platform functionality (e.g. files, memory, hardware and software system controls) unavailable to a Java applet.
- Can access to local data.

Advantages of GIS Controls

- Some GIS functions (i.e., zoom, pan, query) can be conducted by the GIS controls.
- GIS controls can fetch data from the server on demand.
- GIS controls can communicate with other ActiveX controls and data locally as well as remotely as long as they conform to the COM standard.

Drawbacks of GIS ActiveX Controls

- Portability: platform dependent, different ActiveX controls need to be created for different platforms.
- Users have to download different GIS controls from different GIS vendors, such as GIS controls from ESRI, Intergraph, etc.
- Not all browsers support ActiveX controls. For example, Netscape needs a plug-in to run ActiveX controls.
- GIS controls have to be installed in the user's machine and lead to a "fat" client.
- Safety: Because ActiveX controls have full access to platform services, they can do great damage to a local system.
- Safety solution: Use verification approach to verify if a control is supplied by a trusted source. The assumption is that if it is supplied by a trusted source, it should be safe to use.

Safety Concerns of ActiveX Controls

- Problems with the verification approach
 - To be safe, users would have to reject all ActiveX controls not signed by an authority.
 - Even if the user can verify the ActiveX control comes from a reliable source, there is still no way to tell if executing the control will cause damage.

Data Streaming on the Internet

- Streaming subset of data to the client.
- Full data set stored in the data server.
- The client has the capability to replicate and cache data on the client side.
- The presentation (display and visualization) and logic components (map rendering) of the application reside

on the client side in order to intelligently display the data.

 Example: Google Earth's client: (<u>http://earth.google.com</u>)

Partition Point for Data Streaming

Advantages of Interactive Web Mapping

- Interactive Web mapping enables Web browser to interact with vector data rather than static map images.
- Some GIS functions (i.e., zoom, pan, query) can be conducted by the client-side programs, so it can reduce traffic on the Internet.
- Client-Side programs can fetch data from the server at runtime.

Drawbacks of Interactive Web mapping

- It takes some time to initially download client-side Internet GIS programs.
- Some client-side Internet GIS programs are not platform-independent.
- Limited functionality
- Difficult to handle very large database, since the transport of large amounts of data over the Internet is slow.

Introduction to ArcIMS

ArcIMS Architecture

ArcIMS Components

ArcIMS Client Viewers

- HTML/DHTML Viewer
 - written using HTML, DHTML (dynamic HTML), and JavaScript.
 - A thin client that only supports map images on the Web browser.
 - Only one image can be displayed at a time.
- ColdFusion and ActiveX Viewers
 - Similar to HTML/DHTML Viewer, but thinner
- Java Viewer
 - support both Image and Feature streaming

ArcIMS Business Logic Tier

ArcIMS Web Server

- Receives request from Web Client.
- Communicates with the Web client (browser) through HTTP.
- Forwards client request to Application Server via Application Server Connector.
- Communicates with Application Server through either a Java Servlet, or ColdFusion or the Active Server Pages (ASP).

Application Server Connector

- The connectors provide a communication channel between a Web Server or a third party application server and the Application Server.
- The connectors establish a socket connection with the Application Server for each request.
- Once the communication channel is established, requests are sent to and responses are received from the Application Server.

ArcIMS Application Server

- Manages load and assigns tasks to spatial servers.
- Serves as a bookkeeper for keeping track of which MapServices are running on which ArcIMS Spatial Servers.
- Allocates an incoming request to the appropriate Spatial Server.
- The Application Server can communicate with Multiple Web Servers.

ArcIMS Spatial Server

- This is the backbone of ArcIMS.
- It can produce maps, access data, and bundle maps into an appropriate format based on the user requests.
- It contains several supporting components: Weblink, the XML parser, and the Data Access Manager.
- Weblink is the communication gateway between the ArcIMS Application Server and the Spatial Server.
- The XML parser is used for parsing ArcXML requests.
- The Data Access Manager provides a link between the Spatial Server and any data sources.

Functions of ArcIMS Spatial Server

- Image rendering generates map images
- Feature streaming streams feature data
- Geocoding locates addresses on maps
- Query returns associated data for spatial and tabular queries
- Data extraction returns data in Shapefile format to the client

ArcIMS Virtual Server

- It is a grouping of one or more Spatial Servers; it is not a physical entity.
- It is created to better manage distributed Spatial Servers.
- To improve service reliability and scalability
- Five Virtual Servers: ImageServer, FeatureServer, QueryServer, GeocodeServer, and ExtractServer.

Feature Streaming (Java clients only)

- Streams vectors and attributes
- Locally cached
- Compressed binary / XML
- Java clients
- Local geoprocessing
 - Buffer, MapTips, Query, Map Symbolization, ...

Internet Feature Streaming

Thin Client vs. Thicker Client

- Thin Client Image Streaming
 - Server-side processing
 - GIF/JPEG/PNG images
 - Faster Loading
- Thicker Client Feature Streaming (java only)
 - Vector / Raster / Attribute Data
 - More Client-side Functions
 - Robust Development Environment

Examples: (how do they split client/server tasks, what protocols are used,...)

- Running ArcMap on the 37-312 lab machines
- Running ArcGIS on MIT's Citrix server
- Using the MITOrthoServer via a browser (<u>http://ortho.mit.edu</u>)
- Using the MITOrthoTools button from within ArcMap
- Running Google Earth (<u>http://earth.google.com</u>)
- The MassGIS data viewer: Oliver (<u>http://maps.massgis.state.ma.us/massgis_viewer/index.htm</u>)
- Shown in lab next Monday:
 - ArcIMS server for (optional) Lab #9 (running on a Linux PC)
 - 'Intelligent Middleware' project: web services using Minnesota Map Server + PostgreSQL and PostGIS (running on a Linux PC)

Written by Zhong-Ren Peng, Fall, 2003

Last modified 9 November 2005. [jf]