Massachusetts Institute of Technology Department of Urban Studies and Planning

11.520: A Workshop on Geographic Information Systems

11.188: Urban Planning and Social Science Laboratory

GIS Principles & Methods

September 14, 2005, Joseph Ferreira, Jr.

(including contributions from Visiting Prof. Zhong-Ren Peng who taught the Fall 2003 class)

Administrative notes regarding lab exercises and schedule

- Lab Exercises #2: we've made some minor edits regarding how to control the labeling (it's different in new version, ArcGIS 9.1)
- Lab Exercise grading
 - we aren't going to grade every detail
 - you'll get a 'check' = okay, 'check-plus' = especially good, or 'check-minus' = not as complete as we had hoped.
 - all together, the lab exercises count for 25% of semester grade.
- Lab Exercise purpose:
 - quick start with basic ArcGIS tools and features
 - highlight important ideas and methods
 - assist you in becoming more self-sufficient with ArcGIS help pages
 - as semester progresses, they will be less cookbook and a little more open ended
 - **Don't just push the buttons to get the 'right' answer** pause to think about what you are trying to do, what info/tools are needed, and why ArcGIS is organized in a particular way.

General Approach to the Course

- Understand the "What."
 - What phenomena are we interested in studying? Learning and discovering.
- Think about the "Why."
 - Why are 'spatial analysis' and GIS tools relevant? Critical thinking.
- Master the "How."
 - How do we solve the problem? decompose a question into spatial analysis and visualization components that can be handled by the data and software.

How to distinguish different geographic information?

- How do we represent geographic location?
- How do we represent objects in space?
- Are all maps equal? (Scale or level of geographic detail)
- Must geographic information be mappable? (Shortest path algorithm)
 - Data, Information and Knowledge where does GIS fit in?
 - Data Raw geographic facts, context free.
 - Information the interpretation of data.

 Knowledge – interpreted information based on a particular content, experience and purpose.

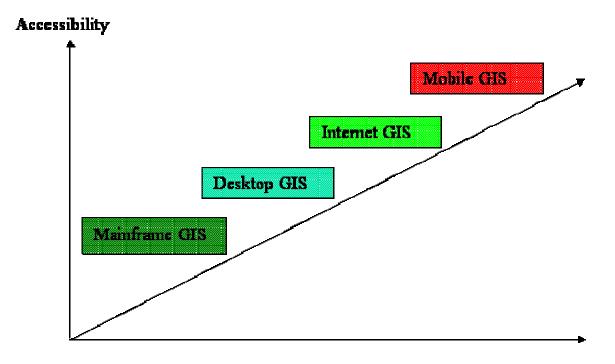
Why Spatial information is special?

- 80% of all information includes spatial component
 - Data, Information and Knowledge relevant at every level.
 - Urban planning is inherently spatial.
 - Spatial *relationships* are as relevant as spatial location.
 - It takes spatial analysis to understand their relationship.
 - Spatial data are usually voluminous.
 - Presentation as a map often takes a huge amount of data.
 - Visualization and data consistency require use of particular map projections and spatial reference system.
 - Distinguish among: images of a place (streetscape), aerial photo of a place (orthophoto), and a cartographic map of the same place (Mapquest)
 - Distinguish among: <u>Mapquest</u>, <u>NOAA hurricane</u> <u>map</u>, <u>NOAA data buoy center</u>, EPA's <u>Enviromapper</u>, <u>MIT OrthoTools</u>, <u>traffic reports</u>, ..., and ArcGIS

Where is knowledge of geographic location, spatial analysis/manipulation/visualization capability

What is GIS?

 GIS is a computer-based information system that enables capture, modeling, manipulation, retrieval, analysis and presentation of geographically referenced data. (Worboys, 1997)


Other definitions of GIS

- A container of maps in digital form.
 - A computerized tool for solving geographic problems.
 - A spatial decision support system.
 - A tool for revealing what is otherwise invisible in geographic information
 - A tool for automatically performing operations on geographic data.

Components of GIS

- Hardware,
- Software,
- Data,
- People, (humanware)
- Procedure,
- Network (Internet).

Evolution of GIS: A Timeline from 1970s to now

•

•

- •
- •
- •
- - •
 - The following contents of today's lecture is derived from Longley, Goodchild, Maguire and Rhind, *Geographic Information Systems and Science*, 2001, as organized by Prof. Zhong-Ren Peng for 11.520 in Fall 2003.
- GISytems, GIScience, GIStudies, and GIServices
 - GISystems A computerized tool that helps solve geographic problems.

- GIScience A scientific approach to the fundamental issues arising from geographic information.
- GIStudies the systematic study of society's use of geographic information, including institutional, organizational and procedural issues.
- GIServices The business of providing GIS data and analysis tools to GIS users.
- These concepts are derived from Longley, e al, (2001)
- Some Examples of GIS Applications
 - Resources inventory (what is available at where?)
 - Network Analysis (How to get to a place in the shortest amount of time?)
 - Location Analysis (Where is the best place to locate a shopping mall?)
 - Terrain Analysis (What is the danger zone for a natural disaster? Visibility analysis)
 - Spatio-Temporal Analysis (What has changed at what locations over the last twenty years, and why?)
 - •

<u>Overview of ArcGIS software</u>

- What are the various parts of ArcGIS and what do they do
- How is ArcMap organized
- Understanding the 'vector' and 'raster' data models underlying ArcGIS

• <u>'Vector' data models for geospatial location</u>

- Geometry model:
 - boundary representation 'vector' model
 - points (sales), lines (streets), and polygons (block groups)
 - assign spatial feature ID to each spatial object
- Attribute data model
 - \circ relational tables linked to spatial features via ID

- o graphical interface to utilize geometry/attribute links
- Complications
 - islands, lakes, overpasses
 - share edges?, move links when you move points?
 - o ambiguity: summer/winter wetland boundaries
 - scale, generalization, conflation, slivers
 - Coordinate systems and projections
- Thematic mapping tip of iceberg regarding GIS applications
 - Symbology
 - many options
 - review 'symbology' page of layer properties
 - review ArcGIS help files for symbology
 - Different classification schemes (show help page):
 - Equal Interval
 - Natural Breaks
 - Quantile
 - Standard Deviation
 - Normalization: people or population density Why do we care? (show examples)

Raster vs. vector data models

- regular grid on top of spatial features (instead of encoding boundary)
- pixel brightness in orthophoto of Boston
- Vector: points, lines, polygons
 - Coverages: old Arc/Info a directory per layer, plus INFO files
 - Shapefiles: .shp, .shx, .dbf files (and possibly others)
 - Spatial Database Engine (SDE): retrieved dynamically from a database server
- Raster: orthophotos scanned maps, grids
 - orthophoto has been 'unwarped' and registered to a coordinate system
 - ortho can be treated as raster coverage layer where darkness of pixel is proportional to attribute of interest
 - ArcGIS has 'spatial analyst' extensions to create and manipulate raster data layers and combine them via 'map algebra'

Boston/Cambridge Streets superimposed on orthophoto. Zoomed-in view shows raster nature of the ortho.

- MITOrthoTools
 - Installing the 'button'
 - What it does
 - pass window size and coordinate system information to web service on ortho server
 - add returned image as registered raster layer in ArcMap
 - Later in semester, we'll use other web services that adhere to interoperable geospatial service protocols promoted by the Open Geospatial Consortium

Last modified 14 September 2005 [jf]