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change, i.e., provided that the relief does not scatter
energy from one mode into others. Constancy of n is
indeed a feature of Wunsch's solutions but it cannot
be expected to hold for more abrupt relief, especially
if the relief slope exceeds the characteristic slope. If
the relief couples modes efficiently, then scattering
into higher modes allows I to remain real even in deep
water far from shore so that energy is not refractively
trapped near the coast. In principle, scattering into in-
ternal modes thus even destroys the perfect trapping of
long surface gravity waves predicted by LSW theory
over a step shelf, but in practice appreciable trapping
is often observed. The efficiency of mode coupling de-
pends both on the relief and on the vertical profile N(z)
of the buoyancy frequency, so that a general result for
internal waves is difficult to formulate.

(e) Stratified Problem

P1

(f)

Figure Io.2o The deep-water surface-wave analog (d,f) of two
shelf problems involving topographic Rossby waves in uni-
formly stratified rotating fluid: (a) stratified problem; (b) result
of affine transformation; (c) result of rotation; (d) equivalent
deep-water problem (velocity potential ); (e) stratified prob-
lem; (f) equivalent deep-water problem (atmospheric pressure
P, must be maintained lower than P2 for physical realizabil-
ity).

tion. This is the stratified analog of Eckart's (1951)
nonrotating LSW study of waves over a sloping beach
(section 10.4.6).

For beach slopes much smaller than the slope (or/N)
of (low-frequency) internal wave characteristics (10.43),
Wunsch thus found that internal waves are refracted
just like surface gravity waves by the shoaling relief
and that refractively trapped edge modes occur. From
the dispersion relation

o0) 2 (1 2 + k 2 )

for plane internal waves of the form

w = sin( D) exp(-i t + ilx + iky)

over a uniform bottom Do, I must ultimately become
imaginary if Do is allowed to grow parametrically off-
shore while n and k are held fixed. One would therefore
expect a WKB treatment of internal waves over gently
shoaling relief to result in refraction and refractive
trapping provided that the mode number n does not

10.4.8 Free Oscillations of Ocean Basins
Finding the free oscillations allowed by LTE in rotating
ocean basins is difficult even in the f-plane (section
10.4.2). Platzman (1975, 1978) has developed powerful
numerical techniques for finding the natural frequen-
cies and associated flow fields of free oscillations al-
lowed by LTE in basins of realistic shape and bottom
relief. The general classification of free oscillations into
first- and second-class modes characteristic of the
idealized cases discussed in sections 10.4.2 and 10.4.5
(effectively for a global basin) persists in Platzman's
(1975) calculations. For a basin composed of Atlantic
and Indian Oceans, there are 14 free oscillations with
periods between 10 and 25 hours. Some of these are
very close to the diurnal and semidiurnal tidal periods,
and all of them, being within a few percentage points
of equipartition of kinetic and potential energies, are
first-class modes. There are also free oscillations of
much longer period, for which potential energy is only
about 10% or even less of kinetic energy; they are
second-class modes.

I know of no extratidal peaks in open-ocean sea-level
records that correspond to these free oscillations. There
is some evidence in tidal admittances for the excitation
of free modes but the resonances are evidently not very
sharp (see section 10.5.1). Munk, Bryan, and Zetler
(private communication) have searched without suc-
cess for the intertidal coherence of sea level across the
Atlantic that the broad spatial scale of these modes
implies. The modes are evidently very highly damped.

10.5 The Ocean Surface Tide

10.5.1 Why Ocean Tides Are of Scientific Interest
The physical motivation for studying and augmenting
the global ensemble of ocean-tide records has expanded
enormously since Laplace's time. In this section I have
tried to sketch the motivating ideas without getting
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involved in the details of theoretical models; some of
these receive attention in subsequent sections.

Certain of the ancients knew a great deal about tides
[see, e.g., Darwin's (1911a) summary of classical ref-
erences], but the first extant reduction of observations
made explicitly for predictive purposes may be the ta-
ble of "flod at london brigge" due to Wallingford who
died as Abbot of St. Alban's in 1213 (Sager, 1955). Mak-
ing practical tide predictions was probably the preoc-
cupation of observers for the next 500 years.

In 1683, Flamsteed (Sager, 1955) produced a table of
high waters for London Bridge as well as, in the follow-
ing year, corrections making it applicable to other Eng-
lish ports. Darwin (1911a) quotes Whewell's descrip-
tion, written in 1837, of how successors to Flamsteed's
tables were produced:

The course . . . would have been to ascertain by an
analysis of long series of observations, the effects of
changes in the time of transit, parallax, and the decli-
nation of the moon and thus to obtain the laws of
phenomena.

. . .Though this was not the course followed by
mathematical theorists, it was really pursued by those
who practically calculated tide tables. .... Liverpool
London, and other places had their tables, constructed
by undivulged methods ... handed down from father
to son.

... The Liverpool tide tables ... were deduced by a
clergyman named Holden, from observations made at
that port . . . for above twenty years, day and night.
Holden's tables, founded on four years of these obser-
vations, were remarkably accurate.

At length men of science began to perceive that such
calculations were part of their business.... Mr. Lub-
bock . . . , finding that regular tide observations had
been made at the London docks from 1795, . . . took
nineteen years of these . . . and caused them to be
analyzed.... In a very few years the tables thus pro-
duced by an open and scientific process were more
exact than those which resulted from any of the se-
crets.

Quite aside from its proprietary aspects, Darwin
(1911b) explicitly notes the synthetic nature of this
process; it at least conceptually represents "the oscil-
lation of the sea by a single mathematical expression"
provided by Bernoulli in 1738 for an inertialess ocean
(the equilibrium tide), by Laplace for a global ocean
obeying Newton's laws of motion, and assumed to ex-
ist for actual oceans even if too complex to represent
in simple form.

Kelvin, in about 1870 (Darwin, 1911b) introduced
the harmonic method, which Darwin (191 lb) calls "an-
alytic" because synthesis of the entire tide into one
dynamically derived form is abandoned and instead the
tide at any given place is regarded as a sum of harmonic
oscillations whose frequencies are determined from as-
tronomy (section 10.2) but whose amplitudes and
phases must be determined from analysis of in situ sea-

level observations. Prediction is then carried out by
recombining the harmonic oscillations at future times.

Kelvin's suggested procedure was made feasible by
the introduction of recording tide gauges in which the
motion of a float in a well, insulated from short-period
waves but otherwise freely connected with the sea,
drives a pencil up and down a paper wrapped on a drum
rotated by clockwork, thus producing a continuous plot
of sea level versus time. [Darwin (1911 la) describes con-
temporary instruments.] Harmonic analysis of this rec-
ord at relatively few astronomically determined fre-
quencies was feasible by judicious sampling and
manual calculation. The recombination of harmonics
at future times was then carried out mechanically by
means of a series of pulleys, movable at frequencies
corresponding to the astronomical ones, that drove a
pencil over a paper wrapped on a drum rotated by
clockwork, thus ultimately providing a plot of pre-
dicted sea level versus time. The design of such a ma-
chine was due to Kelvin, and elaborations were in reg-
ular use until the mid-1960s (Zetler, 1978).

Even before Kelvin's introduction of the harmonic
method, Lubbock and Whewell (Darwin, 1911b) had
begun to combine observations at different ports into
cotidal maps showing the geographical variation of sea
level associated with tides. Thus Airy in 1845 gave a
chart (modified by Berghaus in 1891) of locations of
high water at different times of day in the North Sea
(figure 10.21). Concerning this, Darwin (1911b) re-
marks, "It will be noticed that between Yarmouth and
Holland the cotidal lines cross one another. Such an
intersection of lines is in general impossible; it is in-
deed only possible if there is a region in which the
water neither rises nor falls.... A set of observations
by Captain Hewitt, R.N. made in 1840 appears to prove
the existence of a region of this kind." This is probably
the first recorded observation of an amphidromic point.

But hourly maps of high-water locations change
throughout the month. Kelvin's harmonic analysis de-
composed the tide into harmonic components for
which a single cotidal map, with cotidal lines drawn
at fractions of the period of the component, can rep-
resent the entire spatial variation of that component
forever. Time series at thousands of ports may thus be
reduced to a handful of global maps that are ideal sum-
maries of observations for comparison with solutions
of LTE forced by the different harmonic components
of the ATGF. Kelvin's abandonment of the "synthetic"
viewpoint thus in effect provided the means for its
reinstatement.

Of the handful of such maps constructed empirically
for global tides, Dietrich's (1944) are perhaps the most
widely quoted. Villain (1952) gives an extensive dis-
cussion of the observations leading to his global M2
cotidal map (figure 10.22). Much modern tidal research
has consisted of attempts to apply the principles of
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Figure Io.2I Airy's chart of cotidal lines in British seas. (Dar-
win, 1911b.)
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Figure IO.22 Cotidal lines for M2 (in lunar hours relative to
moon's transit over Greenwich). (Villain, 1952.)

dynamics to reproduce and hence to "explain" the
global distribution of tides as suggested by such em-
pirical maps. But the degree of success achieved to
date, as well as insight into the variation of the dynam-
ics of tides over the globe, has required thinking about
how the response of the ocean would change if tidal
frequencies could be varied. Since they cannot be, this
implies comparing global tidal maps at different tidal
periods. The origins of this viewpoint are found in the
work of Munk and Cartwright (1966), who were ena-
bled by the advent of modern computers to analyze 19
years of hourly tide readings at Honolulu and Newlyn
"without astronomical prejudice as to what frequen-
cies are present and what are not, thus allowing for
background noise."

Their work has been influential in two very general
ways quite apart from the improvement in tide predic-
tion that it introduced. First, it provided a clear dis-
tinction between sea-level fluctuations due to TGF and
those of similar period due to nontidal agents, a dis-
tinction crucial in establishing the significance of any
geophysical interpretation of all but the strongest con-
stituents of ocean or solid-earth tides. Second, it intro-
duced the idea of oceanic admittance, the (possibly
complex) ratio between ocean response and forcing, as
a continuous function of frequency that can be esti-
mated from tidal observations and that summarizes

the dynamic response of the ocean to time-variable
forcing in a manner easily related to the properties of
free solutions of LTE by an expansion in eigenfunc-
tions.

If the ocean had many sharp resonances within the
frequency bands spanning the three species, the tidal
admittance would have amplitude peaks and rapid
phase shifts. Typical deep-sea admittances tend to be
smooth across a species but are far from constant. Ad-
mittance curves for the Coral Sea (Webb, 1974) and at
Bermuda (Wunsch, 1972c) are shown in figures 10.23A
and 10.23B, respectively. The Coral Sea admittance is
unusual in its very sharp sudden variation between M2
and S, apparently showing the existence of a sharp
local resonance. The amplitude of the Bermuda admit-
tance rises smoothly, by 400% toward lower frequen-
cies over the semidiurnal band; Wunsch's result is con-
sistent with Platzman's (1975) prediction of an Atlantic
resonance of roughly 14-hour period, but one appreci-
ably broadened by dissipation.

Smoothness of the admittance across tidal bands was
anticipated by Munk and Cartwright (1966) in their
"credo of smoothness": "We do not believe, nor will
we tolerate, the existence of very sharp resonance
peaks." In part, this credo had its origin in the prevail-
ing beliefs, since then largely confirmed, that ocean
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tides must be of rather low Q. Evaluation of Q requires
knowledge of the total energy E stored in the tide as
well as the rate E at which it is dissipated; then

27rE

= PT

Estimation of the stored energy E was difficult before
modem numerical solutions of LTE because of the
open-ocean detail required. Earliest estimates assumed
the tide to be in equilibrium; allowance for (likely)
equipartition between potential and kinetic energy and
for the area of the oceans led to an estimate of 5.6 x
1016J for M2 (Garrett and Munk, 1971). I interpolated

coastal M2 harmonic constants over the globe by solv-
ing LTE with these as boundary values and thus ob-
tained (Hendershott, 1972) an estimate of 7.29 x 1017 J.
But my kinetic energy was over twice my potential
energy and I now believe this to have been a numerical
artifact, especially since Platzman's (1975) near-tidal
normal modes are within a few percentage points of
equipartition. My estimate should thus be revised to
5.14 x 1017 J. Parke and Hendershott (1980) improved

the interpolation by taking island data into account
and found 2.68 x 1017 J (assuming equipartition).

The estimation of P historically has been of impor-
tance in cosmology. Halley in 1695 first discovered
that the apparent position of the moon is not that
predicted by (frictionless) Newtonian mechanics. The
discrepancy is real; Munk (1968) outlines ultimately
unsuccessful attempts to resolve it by appealing to
perturbation of the moon's orbit by changes in the
earth's orbit around the sun. Much of the discrepancy
is now believed to be due to tidal friction. As Immanuel
Kant noted in 1754, tidal friction must slow the earth's
daily rate of rotation; this alone gives rise to an appar-
ent perturbation of the moon's mean longitude. By the
conservation of angular momentum, the moon's an-
gular velocity about the earth-moon center of mass is
also altered and (for the present prograde rotation of
the moon about the earth) the moon recedes from the
earth (by about 6 cmyr-1; Cartwright, 1977). Miiller
(1976) reviews astronomical data both ancient (eclipse
observations) and modern, and analyzes them simul-
taneously to estimate iit (the tidal acceleration of the
moon's longitude n), flil (the observed apparent ac-
celeration of the earth's rotation frequency f), fl/fTNT

(the nontidal part of l/fl), and G/G (the possible rate
of change of the gravitational constant G). He finds

it = -27.2 + 1.7" cy-2 ,

Qn/f = -22.6 + 1.1 x 10- 1' yr - 1,

the latter corresponding to a lengthening of day of 2.0 x
10-3 s cy-1. If he assumes /IG = 0, then /flTNT be-
comes 9.2 + 2.5 x 10-1 yr-', a sizable portion of fl/fl
that demands geophysical explanation. Various cos-

mological theories have G/G of order 5 x 10- yr-';
I'/fTNT then becomes zero with an uncertainty of order

5 x 10-11 yr-'. "It appears that either we really have a
(non zero) cosmological constant G/G consistent with
the Hubble constant, or we have a significant fl/flTNT"

[Muiller (1976)].

Lambeck (1975) gives expressions for the tidally in-
duced rates of change of the semimajor axis a of the
moon's orbit, of its eccentricity e, and of its orbital
inclination i in terms of a spherical harmonic decom-
position of the ocean tide 50. For semidiumal tides only
the second harmonic is important. Once these rates of
change have been estimated, then it and (fl)t (i.e.,
the tidal part of fl/fl) may be estimated from, respec-
tively, Kepler's law (Cartwright, 1977, equation 8.3)
and from the conservation of angular momentum
(Lambeck, 1977, equations 2). it and (/fl)t imply a rate
Et of tidal energy dissipation in the earth-moon system
(Lambeck, 1977, equations 3). Using global calculations
of 10 for the M2 ocean tide by Bogdanov and Magarik
(1967), by Pekeris and Accad (1969) and by myself (Hen-
dershott, 1972), Lambeck (1977) thus estimates for M 2

tit= -27.8 -+ 3" cy- (his table 7),

(f/fl)t = -25.8 x 10-"11 yr- 1 (his table 8),

Pt = 3.35 x 1019 ergs - ' (his equation 3b).

Since his work, new M2 calculations by Accad and
Pekeris (1978) and by Parke and Hendershott (1980)
have appeared. These calculations include ocean self-
attraction and loading (section 10.5.3) and are not un-
realistically resonant. Accad and Pekeris (1978) directly
evaluate the flow of M2 energy out of the numerical
ocean and obtain 2.44-2.79 x 1019 ergs-'. Parke and
Hendershott (1980) evaluate the rate (W) at which the
M2 tide generating forces (potential F) and ocean floor
(solid earth M2 tide 86) do work on the ocean averaged
(( )) over a tidal period

(w)=ff (p (r 2 )
ocean

+ pg M)dA

(Hendershott, 1972) and obtain 2.22 x 1019 ergs-'. All
this work is lost in tidal friction. If these results are
taken as an improved estimate Et of Et for the M2 tide

/t = 2.2-2.8 x 1019 erg s-',

then Lambeck's (1975) procedure would yield

th' = -(18.3-23.2)" cy-2,

(fl/fl)t = -(16.9-21.6) x 10-11 yr-'

for M2. If we retain unaltered Lambeck's (1977) esti-
mate of the contribution An and A (l/fl) of all remain-
ing tides to ht and (fI/fl)t,

322
Myrl C. Hendershott

___I� CII�IIIL�-�L_ �_�_ I _



An = -3.1" cy-2 ,

A(tl/l) = -6.9 x 10-1l yr -1

then we obtain the revised estimates for all tides:

nt = (21.4-26.3)" cy-2,

(/fl) = -(23.8-28.5) x 10-l yr- 1.

These are to be compared with Miller's (1976) esti-
mates from astronomical data:

fit = -27.2" cy-2

and

t//)t = -(13.4-22.6) x 10- " yr-1

for

GIG = -(0-6.9) x 10-l yr-1.

The comparison is worst if GIG is taken zero and be-
comes rather good if C/G is allowed to differ from zero.

There is thus some interest in estimating E for ocean
tides but, as indicated above, results differ significantly
depending on details of the estimation procedure. The
estimates referred to above (except for that of Accad
and Pekeris, 1978) essentially use global cotidal maps
to find the part of the ocean tide in phase with the tide
generating forces. The resulting rate of working W is
then attributed to friction without having to localize
it anywhere. Indeed, the long waves making up the tide
transmit energy over the globe so readily that we may
expect no correlation between where the moon and
sun work hardest on the sea and where the energy thus
put into the sea is dissipated.

It may be that little of that dissipation occurs in the
open ocean. Taylor (1920) estimated tidal friction in
the Irish Sea and showed that most of the energy thus
lost comes from the adjacent deep ocean with little
direct input due to local working by moon and sun.
His methods were extended to the world's coasts and
marginal seas by Jeffreys (1921), Heiskanen (1921), and
Miller (1966). Miller finds E = 0.7-2.5 x 10 9 ergs -l,
two-thirds of which occurs in the Bering Sea, the Sea
of Okhotsk, the seas north of Australia, the seas sur-
rounding the British Isles, the Patagonian shelf, and
Hudson Bay. This is below all but the most recent
estimates of (). It should be, by perhaps 10%, be-
cause of open-ocean internal tidal dissipation not con-
sistently or completely taken into account (section
10.6). It is now difficult to say whether or not the
difference indicates an important omission of some
dissipative mechanism.

Additional information about tidal dissipation is
contained in the width of conjectured or observed
peaks in the admittance amplitude and in shifts in
phase of the admittance from one constituent to an-
other. Thus the width of the amplitude-response curve

at Bermuda (figure 10.23B; Wunsch, 1972c) suggests a
local Q exceeding about 5. Garrett and Munk (1971)
surveyed the difference in admittance phase between
M2 and S2 (the age of the tide) and concluded that
worldwide semidiumal tides had a Q of order 25. Webb
(1974) argued that such age-derived estimates of Q pri-
marily reflect localized resonances. It is thus difficult
to compare such results with the global Q, for M2, with
a Q of 17 emerging from the most recent cotidal chart
of Parke and Hendershott (1980).

Astronomical and oceanographic interest in the
amount and geographical distribution of tidal friction
constitutes one of the principle modern motivations
for studying ocean tides. The other principle motiva-
tion is the need, by solid-earth tidalists (Farrell, 1979)
and satellite geodesists (Marsh, Martin, McCarthy, and
Chovitz, 1980) for a very accurate map of the global
distribution of ocean tides. Significant improvement of
the most recent numerical maps is going to require
extensive new observations.

The technology of deep-ocean pressure sensors suit-
able for gathering pelagic tide records was pioneered by
Eyries (1968), F. E. Snodgrass (1968) and Filloux
(1969). The latest compilation of such results (Cart-
wright, Zetler, and Hamon, 1979) summarizes har-
monic constants for 108 sites irregularly distributed
around the world. Cartwright (1977) reviews the his-
tory and considerable accomplishments of pelagic tide
recording but concludes that economic and political
difficulties as well as rapidly evolving research priori-
ties make it an unlikely method for detailed global tide
mapping.

Several alternative methods are beginning to be stud-
ied. Given a sufficient number of measurements of the
solid-earth tide, it is possible to construct estimates of
the ocean tide that (in part) generated the solid-earth
tide. But high precision earth-tide measurements are
needed, and ocean tides in the vicinity of coastal earth-
tide stations must be accurately known in order to
perceive global ocean tide contributions (Farrell, 1979).
Kuo and Jachens (1977) document attempts along these
lines.

Satellites may be employed to study ocean tides in
two ways. First, the periodic tidal deformation of earth
and ocean results in significant perturbation in the
orbits of close satellites (Cazenave, Daillet, and Lam-
beck, 1977). The lowest-order spherical-harmonic com-
ponents of the tide are the most accessible by this
method. It therefore complements the second possibil-
ity, direct measurement of satellite-to-sea-surface al-
titude. The greatest obstacle to extraction of ocean
tides from such altimetry is not the error in the altitude
measurement but rather the error in our knowledge of
where the satellite is relative to the center of the earth.
This "tracking" or "orbit" error is greatest at a spatial
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scale corresponding to the earth's circumference but
decreases rapidly at smaller spatial scales. It probably
makes the large-scale features of ocean tides inacces-
sible from the GEOS-3 altimetry-data set. But smaller-
scale tidal systems appear to be directly observable
from the later SEASAT-1 altimetry. Parke has permit-
ted me to reproduce (figure 10.24) his recovery of tides
along the Patagonian shelf from SEASAT-1 altimetry
(Parke, 1980) as an example.

Determining the combination of ocean-tide gauge
data (coastal, island, and pelagic), of earth-tide data, of
satellite-orbit perturbations, and of satellite altimetry
optimal for mapping ocean tides and localizing their
dissipation is now perhaps the outstanding theoretical
problem in ocean tides.

10.5.2 Partial Models of Ocean Tides

Introduction In his George Darwin lecture "The Tides
of the Atlantic Ocean," Proudman (1944) stated, "I
shall mainly be concerned with the discovery of the
distribution of tides over the open Atlantic Ocean, by
the application of the principles of dynamics."

This was, of course, Laplace's goal for global tides.
From Laplace's time until now, many researchers have
pursued this goal with dogged persistence by solving
LTE with astronomical forcing for oceans having shape
and relief sufficiently idealized that existing methods
of solution could produce an evaluable answer. With
hindsight, the properties of these solutions may be
appreciated by regarding the solution as eigenfunction
expansions in which the various eigenfunctions
Z(0,O) exp[-ir.t] or free oscillations allowed by LTE
have the properties summarized in section 10.4. The
frequency ar of oscillation is the most natural eigen-
parameter, but the eigenfunction expansion 4(,O,t) =
XEa,,Z, exp[-o-Tt] for a tide forced at frequency CT is
not of the usual form in which (in the absence of dis-
sipation) an - (2T - O-r)-z. If however, for a given fre-
quency rT of forcing, the inverse A-1 of the mean depth

A = (47T)-1 ff D(,O) cosOdd0

[D(,O) = 0 on land] is regarded as the eigenparameter
with "resonant" depths A., then a. - (A-1 - An)- .

Nothing restricts A. to positive values. Indeed, nega-
tive-depth modes having A, < 0 often exist and may
be important in the eignefunction expansion of forced
solutions. This evidently was pointed out first by Lind-
zen (1967) for atmospheric tides.

Direct numerical solution of LTE in realistically
shaped basins may be viewed as summation of this
eigenfunction expansion, and has gone some distance
toward attaining Proudman's stated goal. But Proud-
man's George Darwin lecture marked an important
break with the sequence of dynamic studies that have
since culminated in modem numerical solutions.
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Figure 10.24 SEASAT altimeter record (wiggly line) and a
reconstruction (smooth lines) from coastal harmonic con-
stants of nearshore Patagonian shelf tides at the subsatellite
point for the SEASAT pass whose path is shown in the upper
panel. (Parke, 1980.)

Rather than solving LTE for Atlantic tides, Proudman
computed free and forced M2 solutions of LTE for a
portion of the Atlantic and fitted their sum to obser-
vations. Subsequent studies carried out in the same
spirit but for more simple continental-shelf and mar-
ginal-sea geometries have provided dynamically under-
standable rationalizations for the distribution of tides
in these regions and have led to a reappraisal of both
observations and of global solutions of LTE. Discussion
of these matters occupies the remainder of this section.

Tides in the Gulf of California Godin (1965) and Hen-
dershott and Speranza (1971) noted that (10.29) is sat-
isfied for all the Poincar6 channel modes n = 1,2,...
in many of the world's long and narrow marginal seas.
In these, then, all Poincar6 modes are evanescent so
that the tide away from the ends of the basin must be
mainly a sum of two oppositely traveling Kelvin waves,
usually of unequal amplitude. Friction in the basin (or
a net rate of working on the tide-generating body by
tides in the basin) will make the outgoing Kelvin wave
of lower amplitude than the incoming one and will
shift amphidromic points (at which the two Kelvin
waves interfere destructively) toward the "outgoing"
coast.
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Figure 10.25 illustrates application of these ideas to
the M, tide in the Gulf of California. The westward
displacement of the amphidromes points to substantial
dissipation in the upper reaches of the Gulf. But this
Kelvin wave fit does not well represent the tide there.
On the basis of his extensive network of tide-gauge
observations, Filloux (1973a) was able to estimate the
tidal prism and mass transport for six sections along
the length of the Gulf and could thus directly evaluate
stored energy and energy flux along the Gulf, and en-
ergy flux from the moon into dissipation. About 10%
of the energy entering the mouth from the Pacific
(4.7 x 1016 ergs - ') is lost as the Gulf M2 tide works on
the moon; the remainder is dissipated frictionally lover
80% northward of the islands in figure 10.25).

Elementary considerations suggest that the Gulf of
California has a resonance fairly close to the semidi-
urnal tidal frequency. Filloux (1973a) estimates a Q of
about 13 for the thus nearly resonant M2 tide. Stock
(1976) constructed a finite-difference model of Gulf
tides using a very fine (10-km) mesh. His solutions
effectively sum both of the Kelvin waves and all the
evanescent Poincar6 modes as well as allowing for their

Figure IO.25 Left and right panels are co-oscillating tides in
a rectangular gulf with little (left panel) and much (right panel)

distortion by the irregular shape of the basin. He in-
cluded dissipative effects and specified the elevation
across the mouth of the Gulf in accordance with ob-
servations. His model is resonant at about 1.8 cpd with
a Q sufficiently high that different discretizations of
the problem, all a priori equally reasonable, can give
very different Gulf tides. He found it necessary to force
his model to have a realistic resonant frequency-fixed
by arbitrarily varying the mean depth-before it would
produce realistic cotidal maps (figure 10.26). Once this
had been done, he found small but nevertheless signif-
icant sensitivity of the solution to the localization of
dissipation; the solution agreeing best with Filloux's
data was that in which most of the dissipation took
place around the islands in the upper portion of the
Gulf.

The Boundary-Value Problem for Marginal Sea
Tides The Gulf of California is one of many marginal
seas that connect with the global ocean across a rela-
tively small mouth. Dynamic models of tides in such
regions have generally been constructed by solving LTE
in the region subject to the condition that the elevation
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absorption at upper boundary. Center panel is a Kelvin wave
fit to M2 as observed in the Gulf of California.
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The latter half of this relation is an integral equation
to be solved for U(S). Once U(S) has been found, the
problem for the marginal-sea tide is well posed. If the
deep sea is, for example, idealized as an infinite half-
plane ocean, then KD(S,S') can be constructed by im-
posing the radiation condition far from the mouth. The
boundary condition across the mouth for marginal sea
tides, the specified mass flux U(S), will thus incorpo-
rate radiative damping into the solution for marginal-
sea tides. Garrett (1974) has discussed limiting cases of
(10.133). Garrett and Greenberg (1977) have used the
method to discuss possible perturbations of tides by
construction of a tidal power station in the Bay of
Fundy.

U(S) as given by (10. 133) is also the correct marginal-
sea boundary condition for models of deep-ocean tides.
Its application could allow optimal coupling of finely
resolved marginal-sea models to more coarsely resolved
global ones, but the methodology requires further de-
velopment.

Figure Io.z6 A comparison of the tidal response at Punta
Penasco Isolid squares) with the tide at the mouth of the Gulf
of California for two numerical models with different mean
depths.

across the open mouth is equal to that actually ob-
served. This is disadvantageous for two reasons. First
of all, it eliminates damping of the marginal sea tide
by radiation into the deep sea; second, it results in
solutions that cannot predict the effects of changes in
basin geometry (i.e., installation of causeways, etc.) on
the tides because the tide across the open mouth is not
allowed to respond to them.

Garrett (1974) pointed out that in many cases these
difficulties may be resolved partially by allowing the
marginal sea to radiate into an idealized deep sea. For
a given constituent, suppose that, with forcing in-
cluded and all other boundary conditions (i.e., no mass
flux through coasts) satisfied, the mass flux a(S - S')
normal to the mouth (across which distance is meas-
ured by S) would result in the tide G(S) + aKG(S,S')
across the mouth when the marginal-sea problem is
solved and would result in D(S) + aKD(S,S') when the
deep-sea problem is solved. The tides G(S) and CD(S) are
thus those that would result just inside and just outside
across the mouth if it were closed by an imaginary
impermeable barrier. In the real world, the mass flux
U(S) across the mouth is fixed by the necessity that its
incorporation into either the marginal-sea or the deep-
sea problem give the same tide CM(S) across the mouth:

M(S) = G(S) + f U(S')KG(S,S')dS'

= WD(S) + f U(S')KD(S,S')dS. (10.133)

Continental Shelf Tides When the tide progresses par-
allel to a fairly long, straight continental shelf, then
the free waves of section 10.4.6 are natural ones in
terms of which to expect an economical representation
of the tide. Munk, Snodgrass, and Wimbush (1970) ana-
lyzed California coastal tides in this way. In addition
to the free waves capable of propagating energy at tidal
frequencies, they introduced a forced wave to take local
working by TGF into account. For the M2 tide, the
Kelvin wave, the single representative member of the
Poincar6 continuum, and the forced wave have coastal
amplitudes of 54, 16, and 4 cm, respectively. The
coastal tide is dominated by the northward-propagating
Kelvin mode, but further at sea the modes unexpect-
edly combine to yield an amphidrome (figure 10.27)
whose existence was subsequently confirmed by Irish,
Munk, and Snodgrass (1971). For the K1 California tide,
the corresponding amplitudes are 21, 24, and 9 cm; the
Kelvin wave is not nearly as important. Platzman
(1979) has shown how this local representation is re-
lated to the properties of eigensolutions of LTE for the
world ocean.

The California coast is too low in latitude for second-
class shelf modes (section 10.4.6) to propagate energy
at tidal frequencies. At higher latitudes, however, Cart-
wright (1969) has found evidence of their excitation;
strong diurnal tidal currents without correspondingly
great diurnal surface tides. At very low latitudes, low-
mode edge waves could be resonant at tidal frequen-
cies. Stock (private communication) has applied these
ideas to the west coast of South America and to the
Patagonian shelf. Geometrical difficulties prevent
quantitative results in the latter case but the qualita-
tive prediction that the coastally dominant Kelvin
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Figure IO.27 M2 cotidal chart from Munk, Snodgrass, and Modal fit was to coastal stations plus Josie I, Kathy, and
Wimbush (1970) (amplitudes in cm, phases relative to moon's Filloux. Subsequent observations at Josie II confirmed phase
transit over Greenwich). Ellipses show computed currents at shift across predicted amphidrome (Irish, Munk, and Snod-
ellipse center (ticks on ellipse axis correspond to 1 cms-1). grass, 1971.)

mode decays by e - across the broad and shallow Pa-
tagonian shelf and that the low speed of long-wave
propagation over the shallow shelf so compresses the
length scale of the tides that a complex system of
several amphidromes fits over the shelf are nonetheless
important.

On all the shelves so far mentioned, the tide ad-
vances parallel to the shelf so that decomposition into
modes traveling parallel to the coast is natural. But not
all shelf tides are of this nature. Redfield (1958) has
summarized observations of United States east coast
continental shelf tides (figure 10.28). There the salient
features are a very close correspondence between local
shelf width and the coastal amplitude and phase of the
tide. Tides are nearly coincident over the entire length
and width (Beardsley et al., 1977) of the shelf, in
marked contrast with the California case.

Island Modification of Tides Island tide records have
been prized in working out the distribution of open-

ocean tides not only because of their open-ocean lo-
cation but also because they have been supposed more
representative of adjacent open-ocean tides than are
coastal records.

Nevertheless, they are not entirely so. Tsunami
travel-time charts suggest that tides in island lagoons
may be delayed by as much as 20 minutes; harmonic
constants for open-ocean tide charts correspondingly
may need revision (Parke and Hendershott, 1980). Pe-
lagic records (section 10.5.1) do not, of course, present
this problem.

Diffractive effects near island chains may result in
appreciable local modification of the tides. Larsen
(1977) has studied the diffraction of an open-ocean
plane wave of tidal frequency by an elliptical island
(intended to model the Hawaiian Island plateau). A
typical cotidal chart is shown in figure 10.29. Diffrac-
tion alters the time of high water by as much as an
hour.
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Figure Io.28 Distance from shore to 1000 m depth contour,
mean coastal tidal range, and Greenwich high-water interval
for selected outlying stations along the eastern coast of the
United States. (Redfield, 1958.)

Figure Io.29 Theoretical cotidal chart for an M2 plane wave
in a uniformly rotating ocean of 5000 m depth incident from
the northeast on an elliptical island modeling the Hawaiian
Chain. (Larsen, 1977.)

10.5.3 Global Tidal Models
The shape of the world's oceans is so complicated that
realistic solutions of LTE must be numerical. Pioneer-
ing studies were made by Hansen (1949) and by Ros-
siter (1958). The first global solution was presented by
Pekeris and Dishon at the 1961 IUGG Assembly in
Helsinki. I have reviewed subsequent developments
elsewhere (Hendershott and Munk, 1970; Hendershott,
1973, 1977) and so will not attempt a comprehensive
discussion.

Generally, numerical tidalists have solved (often by
time-stepping) the forced LTE (10.5) with adjoined dis-
sipative terms, and taking the numerical coasts as im-
permeable, or else they have solved the elliptic eleva-
tion equation [obtained by eliminating the velocities
from LTE (10.5) without dissipative terms] for individ-
ual constituents (most often M2) with elevation at the
numerical coast somehow specified from actual coastal
observations. Combinations of these approaches have
also been employed.

The first procedure yields solutions that may be
thought of as a weighted sum of the dissipative analogs
of Platzman's (1975) normal modes (section 10.4.8).
Neither mass nor energy flows across the numerical
coast. If the dissipation is modeled accurately (a matter
of real concern since the smallest feasible global mesh
spacing of about 1° cannot adequately resolve many
marginal-sea and shelf tides), then such models should
have fairly realistic admittances.

The second procedure attempts to circumvent this
difficulty by allowing most or all dissipation to occur
beyond the numerical coasts in regions that thus do
not have to be resolved. It yields solutions that may be
thought of as a tide reproducing the prescribed coastal
tide plus a superposition of eigensolutions [of LTE
(10.5) or of the elevation equation] that have vanishing
elevation at the numerical coast. These eigensolutions
have no simple oceanic counterparts since their coastal
boundary condition does not require vanishing coastal
normal velocity. The full solution satisfies the forced
LTE and reproduces the prescribed coastal tide but also
generally does not have vanishing normal velocity at
the numerical coasts. Consequently there may be at
any instant a net flow of water through the numerical
coastline, and the flux of energy (averaged over a tidal
period) through the numerical coastline need not be
zero.

This flux of energy through the numerical coast is a
realistic feature since the numerical coast is not in-
tended to model the actual coast but, instead, crudely
models the seaward edges of the world's marginal seas
and shelves. The same is true of the mass flux, al-
though, in using the solution to estimate ocean-tide
perturbations of gravity, etc., the water that thus flows
through the numerical coast must somehow be taken
into account (Farrell, 1972b). Perhaps the greatest
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drawback of the second procedure is the possibly res-
onant forcing of the unphysical zero-coastal-elevation
eigensolutions. This can cause the model to have a
very unrealistic admittance even though it is in prin-
ciple capable of correctly reproducing all constituents.
In practice, it often causes the model to be unrealisti-
cally sensitive to the way in which discretization of
the equations or of the basin has been carried out. Thus
Parke and Hendershott (1980) encountered resonances
in solving for semidiumal constituents by the second
procedure and were forced to appeal to island obser-
vations in the manner described below in order to ob-
tain realistic results. They encountered no similar res-
onances when solving for the diurnal K1 constituent,
perhaps because the artificial coastal condition filters
out the Kelvin-like modes that could be resonant at
subinertial frequencies in the f-plane (section 10.4.2).
All these remarks also apply to marginal-sea-tide
models (section 10.5.2): when the elevation at the con-
nection to the open ocean is specified ab initio.

These two procedures and variants of them have
resulted in global solutions (most for M2) that show
good qualitative agreement (Hendershott, 1973, 1977).
The most recent published global models are by Zahel
(1970), Parke and Hendershott (1980), and Accad and
Pekeris (1978). I know of new calculations by Zahel,
by Estes, and by Schwiderski (Parke, 1979) as well, but
have not been able to examine them in detail. When
all have been published, a careful comparison of these
models with one another, with island and pelagic tidal
data, with gravity data, and with tidal perturbations of
satellite orbits ought to be carried out.

All the most recent solutions include effects of ocean
loading and self-attraction (section 10.3). Many of them
have been published since Cartwright (1977) and I
(Hendershott, 1977) reviewed the tidal problem. The
varying methods of solution may be summarized by
abbreviating LTE (10.5) or the elevation equation as in
Hendershott (1977):

[01 = '[TffGJ] + '[(1 + k2 -h2 )U2/g]. (10.134)

Here U2 is the tide-generating potential (a second-order
spherical harmonic) for a given constituent, (k2, h2 ) are
Love numbers (section 10.3), Y and .2' are operators
elliptic in space with 2 representing LTE (10.5) or the
elevation equation, and ffG40 abbreviates the global
convolution expressing effects of loading and self-at-
traction as in (10.14).

I attempted to solve (10.134) for M2 using the second
procedure iteratively,

.[~o '+ )] = T'[ffG"oi] + '[(1 + k 2 - h 2)U2 /g], (10.135)

(Hendershott, 1972) but the iteration did not look as
though it would converge. Gordeev, Kagan, and Pol-

yakov (1977) found that inclusion of dissipation could
result in convergence. Parke (1978) used the iterates

(0) as a basis set for a least-squares solution C of
(10.134) of the form

to = X A1, 09

in which the Ai are found by solving

a
A {E f f lY(o) - '[ff GCo0 ]

- '1 + k - h = 

- 2'[(1 + k 2 - h2)U2 g]12} = 0-

(10.136)

(10.137)

He obtained solutions that evidently were quite accu-
rate [E as defined in (10.137) was small], but their
realism was marred by the unphysical resonances of
the sec9nd procedure. Parke and Hendershott (1980)
therefore effectively adjusted the locations of these res-
onances to yield realistic global results by getting the
Ai from a least-squares fit of (10.136) to island and
pelagic observations.

Accad and Pekeris (1978) noticed that ffG(oAi was
very similar to 5o0+1). They therefore put

ff G4ot) = K"oi) + ff vAi, (10.138)

where K is a constant evaluated empirically at each
iteration by

K = ff[S")* ff G[j)]I/ ff [()*C(o]

and then iterated not (10.135) but

2[f+f]] - K .'[4(i+kl]

= f[ JJ &4")] + '[(l +k2 - h)U2/g).

(10.139)

(10.140)

This greatly accelerated the slow convergence of
(10.135), presumably already established by dissipation
in their calculations.

Figure 10.30 shows two M2 global cotidal maps of
Accad and Pekeris (1978), which differ only in the in-
clusion of the convolution terms JJffG. These terms
do not result in an order of magnitude alteration of the
computed tide but their effects are large enough that
they must be included in any dynamically consistent
model aiming at more than order-of-magnitude cor-
rectness. These solutions and others like them are ob-
tained solely from a knowledge of the tidal potential
and are, in that sense, as close as modern investigators
have come to attaining Laplace's original goal.

10.6 Internal Tides

10.6.1 Introduction
Internal tides have long been recognized as internal
waves somehow excited at or near tidal periods. Their
potential as a source of error in hydrographic casts
seems to have been recognized since their earliest re-
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ported observation by Nansen (1902). Because con-
stant-depth internal-wave modes are almost orthogonal
to the ATGF (they would be completely so if the sea
surface were rigid and the ATGF exactly depth inde-
pendent) it has always been difficult to see why inter-
nal tides exist at all. The work of Zeilon (1911, 1912)
appears to be the precursor of the now generally ac-
cepted explanation-energy is scattered from surface
to internal tides by bottom roughness-but there has
been a history of controversy. The lack of correlation
between internal tides at points separated vertically by
O (100 m) or horizontally by O (100 km) puzzled early
observers. Subsequent observations showed semidi-
urnal and diurnal internal tides to be narrow-band proc-
esses each with a finite band width Aor of order several
cycles per month. This property manifests itself both
in a decay of spatial coherence of internal tides over a
length associated with the spread of spatial wavenum-
bers corresponding to Aor and in temporal intermit-
tency over times Ao--', as well as in a corresponding
lack of coherence with either the surface tide or the
ATGF. Typical observations are shown in figure 10.31.

10.6.2 Generation Mechanisms
Zeilon (1934) carried out laboratory experiments show-
ing that a step in bottom relief could excite internal
waves in a two-layer fluid when a surface tidal wave
passed overhead. Two-layer models are attractive ana-
lytically because each layer is governed by a well-posed
boundary-value problem; such experiments have been
studied theoretically by Rattray (1960) and many oth-
ers.

Haurwitz (1950) and Defant (1950) noticed that in
the f-plane both the horizontal wavelength and the
phase speed of plane internal waves grow very large as
or - f [(10.23e) with D. = D]. Resonance with the
ATGF might thus be possible near the inertial latitudes
corresponding to tidal frequencies. But the equatorial
,8-plane solutions (section 10.4.5) (even though only
qualitatively applicable at tidal inertial latitudes) show
that this apparent possibility of resonance is an artifact
of the f-plane, which provides WKB solutions of LTE,
and so cannot be applied at the inertial latitudes.

Miles (1974a) has shown that the Coriolis terms cus-
tomarily neglected in the traditional approximation
scatter barotropic energy into baroclinic modes (section
10.3). Observations of internal tides (section 10.6.3)
appear to favor bottom relief as the primary scatterer,
but this may be because steep bottom relief is spatially
localized whereas the "extra" Coriolis terms are
smoothly distributed over the globe. Further theoreti-
cal work is needed to suggest more informative obser-
vations.

For a continuously stratified ocean, Cox and Sand-
strom (1962) calculated the rate of energy flow from

surface to internal tides due to single scattering from
small-amplitude, uniformly distributed, open-ocean-
bottom roughness eDl(x, y) [where E << 1, D, is 0(1)].
Their calculation is most succinctly summarized by
specializing to one-dimensional relief Dox) and con-
stant buoyancy frequency No. If the incident surface
tidal-velocity field is idealized as Uexp( -ioTt), with no
space dependence, then the singly scattered internal-
tide field u"' is obtained by solving (10.45)

2W(l) ( No \ O2w"m

Oz2 _ 2----- =0x
T - f20 &24 dx

(10.141)

and

Ou 1) Ow m)-+ =0
ax Oz

subject to

'( 1) = 0 at z = 0,

w(1) = eUOD/IOx at z = -(D, + eD1)

(10.142)

(10.143)

(10.144)

plus a radiation condition as xl -, o.
Equation (10.143) idealizes the free surface as rigid

(adequate for internal waves); (10.144) is the 0(e) ex-
pansion about the mean relief z = -D of the condition
(10.15) of zero normal flow at the actual relief:

w = u - (D + D1) at z = - eD1. (10.145)

The solution of (10.141)-(10.144) for w is

w,(x,z) = f_ W,(,z) exp(ilx)dl,

where

W,(1,z) = (eUOD1,/x) sin[lzNo/(4 - f[l' 2 ]sin[-1D.N,/(o.- f)]

(10.146)

(10.147)

with (eUdD/Ox) defined as the Fourier transform of
(EU ODlax). The integrand of (10.14.6) has simple poles
at [-IDNo/1(2T - f0)1/2] = nr, i.e., at horizontal wave-
numbers I satisfying the internal wave dispersion re-
lation (2T - f2 = gDn12, D, = N20D2*lgn22r2. Equatorward
of the tidal inertial latitude, a2 < f, so that each pole
is real and corresponds to an internal wave traveling
away from the scattering relief. Poleward of the tidal
inertial latitude, or- < f20, so that each pole is imaginary
and the corresponding internal mode decays exponen-
tially away from the scattering roughness without car-
rying energy away. The sum of all evanescent modes
also decays in the vertical away from the scattering
relief. Wunsch (1975) reports the existence of obser-
vations showing this evanescent behavior for diurnal
internal tides.

When o(r > f, (10.141) is hyperbolic in (x, t) with
characteristic slope (rT - f)21No. Baines (1971) solved
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Figure Io.3IA Time series of temperature and velocity at the
IWEX mooring (Hatteras Abyssal Plain) at 640 m depth (Bris-
coe, 1975b).

(10.141) and (10.145) exactly, by the method of char-
acteristics, thus eliminating the restriction to weakly
sloping relief. The analytical novelty of his work was
the imposition of the radiation condition on the char-
acteristic form

F(x - Rz) + G(x + Rz), R = No/(Cr, - ),;2

of the solutions of (10.141) by, for example, choosing

F(x) = ei'xF(1)dl

so that F(x Rz)exp(-i Tt) contains only outgoing
plane waves. Laboratory work (Sandstrom, 1969) and
analysis (Wunsch, 1969) showed that when bottom and
tidal characteristic slopes coincide, the near-bottom
motion is strongly intensified. Wunsch and Hendry
(1972) show evidence for such intensification over the
continental slope south of Cape Cod (figure 10.32).

The general possibility that diurnal tides enhance
diurnal inertial motion by some mechanism has been
suggested by Ekman (1931), Reid (1962) and Knauss
(1962b). I (Hendershott, 1973) estimated the amplitude
of motion if the mechanism is scattering of surface

tides into internal tides by open-ocean bottom rough-
ness, but obtained a result sufficiently small that it
would not stand out noticeably against the high level
of inertial motion found at all mid-latitudes (Munk and
Phillips, 1968).

Thus far, the discussion is in terms of linearly scat-
tered linear waves. Bell (1975) considers the formation
of internal lee waves on periodically varying barotropic
tidal currents. This process could generate a complex
spectrum of internal waves even with a monochro-
matic surface tide. What actually occurs when labora-
tory or ocean stratified flow passes over relief is com-
plicated. In Massachusetts Bay, Halpern (1971) has
observed that tidal flow over a ridge generates a ther-
mal front that propagates away as a highly nonlinear
internal wavetrain (Lee and Beardsley, 1974) or as an
internal bore. Such bores are commonly observed along
the Southern California coast (Winant, 1979).

Maxworthy (1979) emphasizes the importance of the
collapse of the stirred region that initially develops
over relief in the subsequent generation of laboratory
internal waves. The relative importance of all these
processes near the sea floor is unknown. If separation
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Figure Io.32A Current meter mooring positions and shelf to-
pography. (Wunsch and Hendry, 1972.)

over abyssal relief does occur in tidal currents, it could
contribute to abyssal mixing by helping to form the
near-bottom laminae observed by Armi and Millard
(1976). Wunsch (1970) made a somewhat similar sug-
gestion based on laboratory studies.

Besides this potential complexity of generation, the
medium through which the internal tide moves is
strongly inhomogeneous in space and time. The overall
result is the complicated and irregularly fluctuating
internal tide observed. Still, away from generation re-
gions, some features of the linear theory shine through.

10.6.3 Observations
In linear theory, breaks in the slope of the relief and
extended regions where that slope coincides with a
tidal characteristic slope make themselves felt in the
body of the ocean as narrow-beam disturbances con-
centrated along the characteristics (Rattray et al.,
1969). The beams are typically narrow (figure 10.33)
and their (characteristic) slope in the presence of mean
currents varies both with local stratification and shear.
This suggests that, especially near generation regions,
the internal tide will have a complex spatial structure
and that its amplitude at a given point may vary mark-
edly as nearby stratification and mean flow change.
Thus Hayes and Halpern (1976) document very large
variability of semidiurnal internal tidal currents during
a coastal upwelling event; they account for much of it
by appealing to the deformation of characteristics as
vertical and horizontal density gradients change during
the upwelling. Regal and Wunsch (1973) find internal
tidal currents at site D, over the continental slope
south of Cape Cod, to be concentrated near the surface
and there highly (and uncharacteristically) coherent
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Figure Io.32B Profile of topography through the array along
the dashed line of figure 10.32B with mooring positions in-
dicated. Several internal wave characteristics for the M2 tide
are shown, and the critical period (at which internal-wave
characteristics are locally tangent to the relief) is plotted
across the profile. (Wunsch and Hendry, 1972.)
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Figure Io.32C Vertical profiles of kinetic energy density (ob-
served values are solid dots) for various periods over the slope
where the tidal characteristic is locally tangent to the relief
(moorings 347-350). (Wunsch and Hendry, 1972.)
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Figure IO.33 Depth distribution of horizontal internal tidal
currents away from a step shelf (top) at two times (center and
bottom) separated by a quarter-wave period. Ratio of deep sea
to shelf depth is 12.5, characteristic slope is 1/715; current

with the surface tide. The result is consistent with
generation where tidal characteristics graze the slope
perhaps 60 km to the north followed by propagation
along characteristics that leave the region of tangency
and bounce once off the ocean floor before passing
through the near surface part of the water column at
site D (figure 10.34). Observations at site L, some
500 km to the south, show no evidence of propagation
along beams.

Beams are a coherent: sum of many high internal
modes. We intuitively expect that high modes are more
rapidly degraded by whatever processes ultimately lead
to dissipation than are low modes, and that they are
more sensitive to medium motion and fluctuation than
are low modes because they propagate so slowly. We
thus do not expect beamlike features in the deep sea,
and they are not observed. Instead, we expect a few
low modes to dominate in a combination of arrivals
from distant steep relief. These will have made their
way through significant oceanic density fluctuations
and through fluctuations of mean flows often at an
appreciable fraction of internal-wave-phase speeds. The
line spectrum characteristic of the ATGF and the sur-
face tide will thus be so broadly smeared into semidi-
umal and diurnal peaks that individual constituents or

profiles begin at shelf edge and are separated horizontally by
1.8 of the deep-sea (first-mode) internal-tide wavelength. (Rat-
tray et al., 1969.)

even the spring-neap cycle are at best very difficult
(Hecht and Hughes, 1971) to perceive.

The most complete description of open-ocean inter-
nal tides is due to Hendry (1977), who used the western
central Atlantic Mid-Ocean Dynamics Experiment
(MODE) data. Figure 10.35 summarizes the results. M2
tends to dominate semidiurnal temperature variance
over the water column. Adjacent N2 and S2 variances
are nearly equal, and the vertical variation of N2, S2
variance generally follows M2 (with qualifications near
the bottom). M2 likewise dominates horizontal semi-
diurnal current variance over the water column. At
subthermocline depths M2 variance approaches esti-
mates of the barotropic M2 tidal current variance while
S2 and N2 variances exceed their barotropic counter-
parts by an order of magnitude. All this suggests that
much of what appears in the N2 and S2 bands has really
been smeared out of M2. The vertical distribution of
variance is broader than the two WKB profiles
(a0/z)2N(z)-1 ( is mean potential temperature) and
N(z), for temperature and horizontal current variance,
respectively. This indicates that the lowest vertical
modes dominate. M2 temperature variance has a co-
herence of about 0.7 with the ATGF in the upper ther-
mocline while N2 and S2 are far less coherent with the
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Figure Io.34A Profile of relief along 70°W (see figure 10.32 for
local isobaths) together with selected semidiumal character-
istics passing near site D. (Regal and Wunsch, 1973.)

ADMITTANCE AMPLITUDE (S- 1)
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(z) (RADIANS/HOUR) 1/ 2

Figure Io.34B Admittance amplitude x for semidiurnal tidal
currents together with buoyancy frequency N(z) at site D.
Near-surface admittances are strongly intensified; currents
there are highly coherent with the surface tide. (Regal and
Wunsch, 1973.)
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Figure Io.34C A similar display at site L, 599 km south of
site D, shows no comparable surface intensification. (Regal
and Wunsch, 1973.)
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ATGF but yet not totally incoherent. The M2 first in-
temal mode dominates and propagates to the south-
east; this plus the (significantly not random) phase lag
between M2 and S2 in the thermocline (the age of the
internal tide) point to the 700-km distant Blake escarp-
ment as a generating region. Other discussions of open-
ocean internal tides are consistent with the foregoing
picture although necessarily based upon less extensive
observations.

Wunsch (1975) reviews observations allowing esti-
mation of the energy density in units of ergs per
squared centimeters) of internal tides and suggests that
it is from 10 to 50% of the corresponding energy den-
sity of the barotropic tide, albeit with wide and unsys-
tematic geographic variation.

10.6.4 Internal Tides and the Tidal Energy Budget
It thus appears that barotropic tides somehow give up
energy to internal tides. Return scattering is probably
unimportant. It is important to know the rate at which
this energy transfer occurs because (section 10.5) the
energy budget for global tides may not yet be closed.
Wunsch (1975) reviews estimates arising from the var-
ious scattering theories outlined above (section 10.6.2);
typical values are 0.5 x 1019 ergs - from deep-sea
roughness [using the theory of Cox and Sandstrom as
rediscussed by Munk (1966)], 6 x 107 ergcms-' from
continental shelves [using the theory of Baines (1974)
and also from independent measurements by Wunsch
and Hendry (1972)]. The latter value extrapolates to
5.6 x 10'5 ergs - l over the globe.

A bound on this estimate independent of scattering
theories was pointed out by Wunsch (1975). Internal-
tide energy densities E I are order 0.1 to 0.5 times sur-
face-tide energy densities Es. Group velocities c of
internal waves are order (DD o)

1 12 - (N2DO/gn27r2)12

times group velocities c3s of long-surface gravity waves.
If open-ocean tidal energy is radiated toward shallow
seas (or any other dissipation region) at rates cE. and
c~E, then internal tides can never account for more
than 0(10%) of the total energy lost from surface tides.

Wunsch's (1975) discussion of the caveats to this
result has not been substantially altered by subsequent
developments. Nonlinear interactions that drain inter-
nal energy from the tidal bands to other frequencies
and scales certainly do occur but their rates are not yet
accurately estimable. Such rates as have been calcu-
lated [Garrett and Munk (1972a) calculated the energy
loss due to internal wave breaking; McComas and
Bretherton (1977) the time scale for the low-frequency
part of the internal wave spectrum to evolve by reso-
nant interactions]; they are small, but the problem is
not closed.
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Figure Io.35A Vertical profile of squared temperature fluc-
tuations in the (a) S2 band (°C), averaged at depth levels over
the entire array; the number of 15-day-piece lengths at each
level is indicated. Vertical profile of average squared temper-
ature fluctuations in the (b) M2 band. Vertical profile of av-
erage squared temperature fluctuations in the (c) N2 band.
(Hendry, 1977.)

10.6.5 Internal Tides and Ocean Stirring
Even if internal tides turn out to be a minor component
of the global tidal-energy budget, they could be an im-
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Figure o0.35B Vertical profile of squared horizontal current
(cm s- ) for U (east and V (north) in the (a) S band, averaged
at depth levels over the entire array; estimates of squared
amplitude for the barotropic current components U and V are
given, showing that the currents are dominanted by internal
waves at all depths. Similar estimates for the (b) M, band
currents. Here the deep currents are greatly influenced by the
barotropic mode. Similar estimates are given for the (c) N2
band; internal waves appear to dominate at all depths. (Hen-
dry, 1977.)

Figure Io.35 C Vertical profile of average coherence amplitude
of temperature fluctuations and the equilibrium tide for three
semidiumal frequency bands. The averages are taken over the
whole array at depth levels, and include individual cases with
both five and seven degrees of freedom. The expected values
of coherence amplitude for zero true coherence are shown for
each case, and while the central M, band shows a definite
determinism, the adjacent frequency bands are much more
dominated by randomly phased temperature fluctuations.
(Hendry, 1977.)
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Figure Io.35D Conventional wavenumber spectrum of first-
mode M, temperature fluctuations from MODE. The peak in
the southeast quadrant has wavenumber 1/163 cpkm and rep-
resents a wave propagating from northwest to southeast. A
secondary peak in the northwest quadrant is interpreted as an
alias of the main peak. (Hendry, 1977.)
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portant source of energy for ocean stirring and mixing.
About 10% of the total tidal dissipation would be en-
energetically adequate (Munk, 1966). The hypothesis is
that internal tides somehow (by bottom turbulence, by
nonlinear cascade) cause or enhance observed fine
structure and microstructure events in which mixing
is believed to be occurring. It thus is pertinent to ex-
amine observations for any correlation between tidal
phenomena and smaller-scale events. Such a correla-
tion could be temporal [with the intensity of small
structure modulated at semidiurnal, diurnal, fort-
nightly (i.e., the spring-spring interval) or even longer
tidal periods] or spatial (with small structure near gen-
erators different from that far away).

Although definitive studies have yet to be made,
preliminary indications are that little such correlation
exists. Cairns and Williams (1976) contour the spec-
trum of vertical displacement in a frequency-time
plane for 17 days over the frequency band 0.2-6.0 cpd
(figure 10.36) but see no modulation at tidal or fort-
nightly periods of any part of the spectrum. Wunsch
(1976) finds no correlation between the overall spectral
level of internal waves (specifically, the spectral inten-
sity at 5-hour period of a model fitted to observed
spectra) and the intensity of the internal tidal peak for
observations from the western North Atlantic (figure
10.37).

The demonstration that tidal contributions to
ocean mixing are significant will thus involve subtle
measurements. Perhaps something may be learned by
comparing internal waves, fine structure, and micro-
structure in the open ocean with their counterparts in
the relatively tideless Mediterranean Sea or in the
Great Lakes (see chapters 8 and 9).

10.7 Tidal Studies and the Rest of Oceanography

Although tidal studies were the first dynamic investi-
gation of oceanic response to forcing, insight into wind-
and thermohaline-driven ocean circulation developed
largely independently of them. In the case of semidi-
urnal and diurnal tides, the reason is primarily dy-
namic. But the dynamics of long-period tides are likely
to be much more like those of the wind-driven circu-
lation (both steady and transient) than like those of
semidiurnal and diurnal tides. It is possible that, if the
long-period components of the ATGF had been large
enough to make the long-period tides stand out recog-
nizably above the low-frequency noise continuum,
then the early tidalists might have recognized, in the
low-frequency tides, features such as westward inten-
sification also evident in the general circulation. They
might then have been forced into the recognition that
a linear superposition of (possibly damped) first-class
waves could not account for long-period tides, as it
seems able to do for semidiurnal and diurnal tides. As

things are, however, long-period tides are so near to
the noise level that their observation did not provide
a global picture clear enough to force tidalists out of
the semidiumal-diurnal framework.

It was, in fact, insight into the problem of time-
dependent wind-driven ocean circulation that led
Wunsch (1967) to provide the modem view of long-
period tides: a superposition of damped second-class
waves (section 10.4.4) whose horizontal length scales
are only 0(103 km) and whose amplitudes and phases
are likely to undergo substantial fluctuations in time
on account of the overall time variability of the ocean
currents through which they propagate. Laplace had
supposed that a small amount of dissipation would
bring the long-period tides into equilibrium, i.e., the
geocentric sea surface would be an equipotential of
the total tide-generating potential F {(Lamb, 1932, §217).
The most recent elaboration of this view is by Agnew
and Farrell (1978), who solved the integral equation

= 0 + 8 = rig

[with 8 (the solid-earth tide) and r given by (10.11) and
(10.12) as functions both of the observed tide ~o and of
the long-period astronomical potential U2] for equilib-
rium global-ocean fortnightly and monthly tides t0 sub-
ject to the conservation of mass. Wunsch's (1967) anal-
ysis and dynamic model of the fortnightly tides suggest
that they are not in equilbrium with either the astro-
nomical potential U2 or with the full potential r of
Agnew and Farrell (1978). Their Pacific averaged ad-
mittance has magnitude 0.69 - 0.02 relative to r with
significant island-to-island variation. The Pacific av-
eraged monthly tide admittance has magnitude
0.90 - 0.05 relative to F, but island-to-island fluctua-
tions vanish only by pushing individual island admit-
tances to the very end of their error bands. Whether
the kinds of dissipation and of nonlinear interaction
between low-frequency motions that occur in the real
ocean favor an equilibrium tidal response at suffi-
ciently low frequencies is not yet known either obser-
vationally or theoretically. The 14-month pole tide is
known to be significantly non-equilibrium in the shal-
low seas of Northern Europe (Miller and Wunsch, 1973)
but nearly invisible elsewhere.

Observations of long-period tides have thus been too
noisy to exert real influence on tidal studies and hence
on dynamic oceanography. But the theoretical ideas
emerging from study of the low-frequency solutions of
LTE have been of great importance for dynamic ocean-
ography (even though they are likely to be inadequate
to model the full dynamics of the general circulation).

Steady as opposed to wavelike) solutions of LTE
obtained by active tidalists (Hough, 1897; Golds-
brough, 1933) had a profound effect on dynamic ocean-
ography through the review by Stommel (1957b) of
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southern California. Spatial estimates with 2 df are made for
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Figure IO.37 Five-hour internal wave energy at various loca-
tions vs. semidiurnal tidal energy. (Wunsch, 1976.)

successive 5.8-h data segments and the results are contoured.
(Cairns and Williams, 1976.)

ocean-current theory and through the work by Stom-
mel and Arons (1960a,b) on abyssal circulation. Golds-
brough (1933) studied nonperiodic solutions of LTE
driven by global patterns of evaporation and precipi-
tation. The solutions are steady, provided that the pre-
cipitation-evaporation distribution vanishes when in-
tegrated along each parallel of latitude between basin
boundaries. Stommel (1957b) pointed out that Ekman
suction and blowing due to wind-stress convergence
and divergence could effectively replace the evapora-
tion-precipitation distribution, while the introduction
of ageostrophic western boundary currents allowed the
solutions to remain steady even when the integral con-
straint on the evaporation-distribution function was
violated. The resulting flows display the main dynamic
features of the theory of wind-driven circulation due to
Sverdrup (1947), Stommel (1948), and Munk (1950).
When the evaporation-precipitation function is viewed
as modeling the high-latitude sinking of deep water
and its mid-latitude subthermocline upwelling, the
abyssal circulation theories of Stommel and Arons
(1960a,b) result.

The seminal work on low-frequency second-class
motions was the study (section 10.4.4) by Rossby and
collaborators (1939), ironically inspired by meteorolog-
ical rather than tidal studies. It led, through the studies
by Veronis and Stommel (1956) and Lighthill (1969) of
time-dependent motion generated by a fluctuating
wind to the very different views of mid-latitudes and
tropical transient circulation that prevail today (al-
though, especially in mid-latitudes, linear dynamics
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are now generally acknowledged to be inadequate for
a full description; see chapter 5). Pedlosky (1965b)
showed how the steady western boundary currents of
Stommel 1948), Munk (1950), and Fofonoff (1954)
could be viewed as Rossby waves reflected from the
western boundary and either damped by friction or
swept back toward the boundary by the interior flow
that feeds the boundary current; Gates's (1968) numer-
ical examples showed clearly the development of a
frictional western boundary current as a group of short
Rossby waves with seaward edge propagating away
from the western boundary at the appropriate group
velocity.

Modern interest in estimating the role of direct tran-
sient wind forcing in generating mesoscale oceanic var-
iability (see chapter 11) calls for an up-to-date version
of N. A. Phillips's (1966b) study of mid-latitude wind-
generated Rossby waves using more realistic wind
fields and taking into account new insight into the
combined effects of bottom relief and stratification
(section 10.4.7). Such a calculation would closely re-
semble a proper (linear) dynamic theory of long-period
tides. But similar caveats apply to uncritically accept-
ing either as representing an actual flow in the ocean.
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