Study Guide Block 4: Matrix Algebra

Unit 4: Matrices as Linear Functions

- 1. Read Supplementary Notes, Chapter 6, Section F.
- 2. Exercises:

4.4.1

Define $\underline{f}: E^2 \rightarrow E^2$ by $\underline{f}(x, y) = (u, v)$ where u = 6x + 5y and v = x + y.

- a. In terms of the determinant of the matrix of coefficients, show how we may conclude that \underline{f}^{-1} exists.
- b. Letting $A = \begin{bmatrix} 6 & 5 \\ 1 & 1 \end{bmatrix}$, compute A^{-1} and then describe the mapping $f^{-1}: E^2 \rightarrow E^2$ explicitly.
- c. In particular, compute f⁻¹(16,3).
- d. Compute f(L) where L is the line $y = 2x [i.e., L = \{(x,y): y = 2x\}]$.

4.4.2

Define $\underline{f}: E^2 \rightarrow E^2$ by $\underline{f}(x, y) = (u, v)$ where u = x + 4y, v = 3x + 12y.

- a. Using determinants, show that \underline{f}^{-1} does not exist.
- b. Describe the set $f(E^2)$.
- c. Assuming that we view <u>f</u> geometrically, find the locus of all points (x,y) in the xy-plane such that f(x,y) = (8,24).
- d. Use (c) to show a geometric construction for finding the point (x,y) on the line 2x + 9y = 17 for which f(x,y) = (8,24).
- e. Show that no other point on 2x + 9y = 17 can be mapped into (8,24) by <u>f</u>.

4.4.3 Define $\underline{f}: E^3 \rightarrow E^3$ by $\underline{f}(x, y, z) = (u, v, w)$ where $\begin{cases} u = x + y + z \\ v = 2x + 3y + 2z \\ w = x + 3y + z \end{cases}$ (continued on the next page)

4.4.3 continued

- a. Show that $\underline{f}(\underline{E}^3)$ is contained in $\{(u,v,w): 3u 2v + w = 0\}$.
- b. Interpret part (a) geometrically.
- c. Describe the set S of all elements of E^3 for which f(x,y,z) = (0,0,0).
- d. The points (0,0,0) and (1,1,-1) lie in the plane defined by $f(E^3)$ [i.e., in w = -3u + 2v]. Describe the locus of all points (x,y,z) such that $\underline{f}(x,y,z)$ is on the line L determined by (0,0,0) and (1,1,-1).

4.4.4

Given the system of equations $x_1 + 2x_2 + x_4 + x_4 = b_1$ $2x_1 + 5x_2 + 3x_3 + 4x_4 = b_2$ $3x_1 + 5x_2 + 2x_3 + x_4 = b_3$ $3x_1 + 4x_2 + x_3 - x_4 = b_4$

- a. Use the augmented-matrix technique to determine the constraints under which the above equations have a solution.
- b. In particular, show that if the constraints are met, x_3 and x_4 may be chosen at random, after which x_1 and x_2 are uniquely determined.
- c. Let $\underline{f}: \underline{E}^4 \rightarrow \underline{E}^4$ be defined by $f(x_1, x_2, x_3, x_4) = (b_1, b_2, b_3, b_4)$, where b_1, b_2, b_3 , and b_4 are as above.
 - (i) Show that there is no $x \in E^4$ such that f(x) = (1,1,1,1).
 - (ii) Find all $x \in E^4$ such that f(x) = (1, 1, 4, 5).

4.4.5

Find the constraints under which the system

(continued on the next page)

Study Guide Block 4: Matrix Algebra Unit 4: Matrices as Linear Functions

4.4.5 continued

 $x_{1} + x_{2} + x_{3} + 2x_{4} + x_{5} = b_{1}$ $2x_{1} + 3x_{2} + 2x_{3} + 3x_{4} + 3x_{5} = b_{2}$ $3x_{1} + 3x_{2} + 4x_{3} + 5x_{4} + 2x_{5} = b_{3}$ $x_{1} + 3x_{2} - x_{3} + 2x_{4} + 5x_{5} = b_{4}$ $-2x_{1} + x_{2} - 6x_{3} - 3x_{4} + 5x_{5} = b_{5}$

(1)

has solutions. In particular, discuss the function $\underline{f}: E^5 \rightarrow E^5$ defined by $\underline{f}(\underline{x}) = \underline{f}(x_1, x_2, x_3, x_4, x_5) = (b_1, b_2, b_3, b_4, b_5)$, where b_1, b_2, b_3, b_4 , and b_5 are as defined in (1). MIT OpenCourseWare http://ocw.mit.edu

Resource: Calculus Revisited: Multivariable Calculus Prof. Herbert Gross

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.