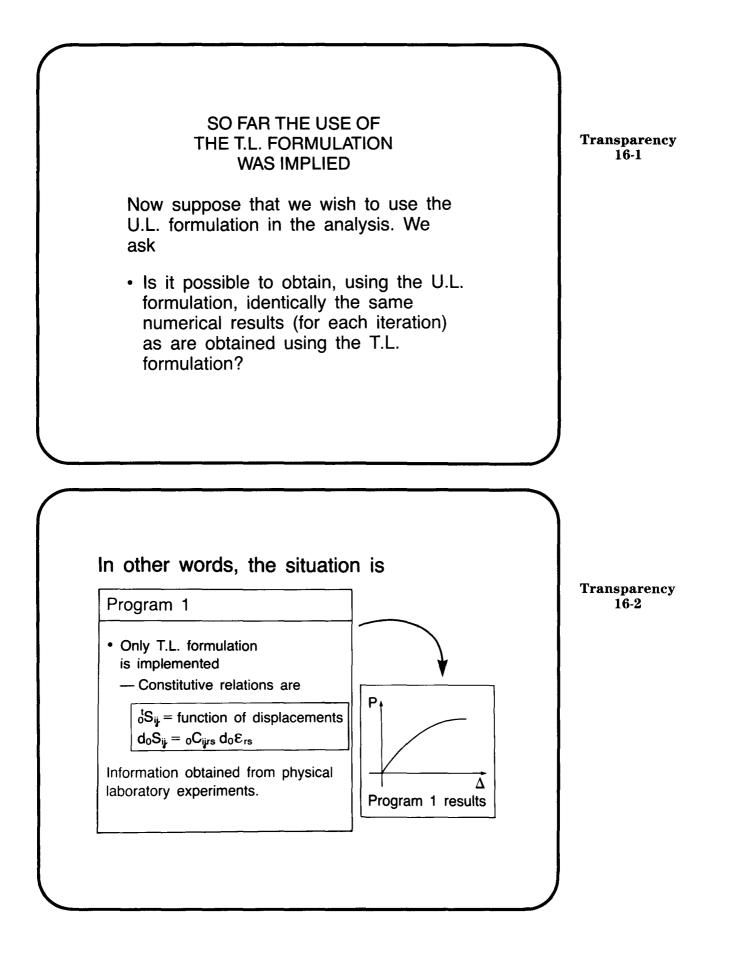
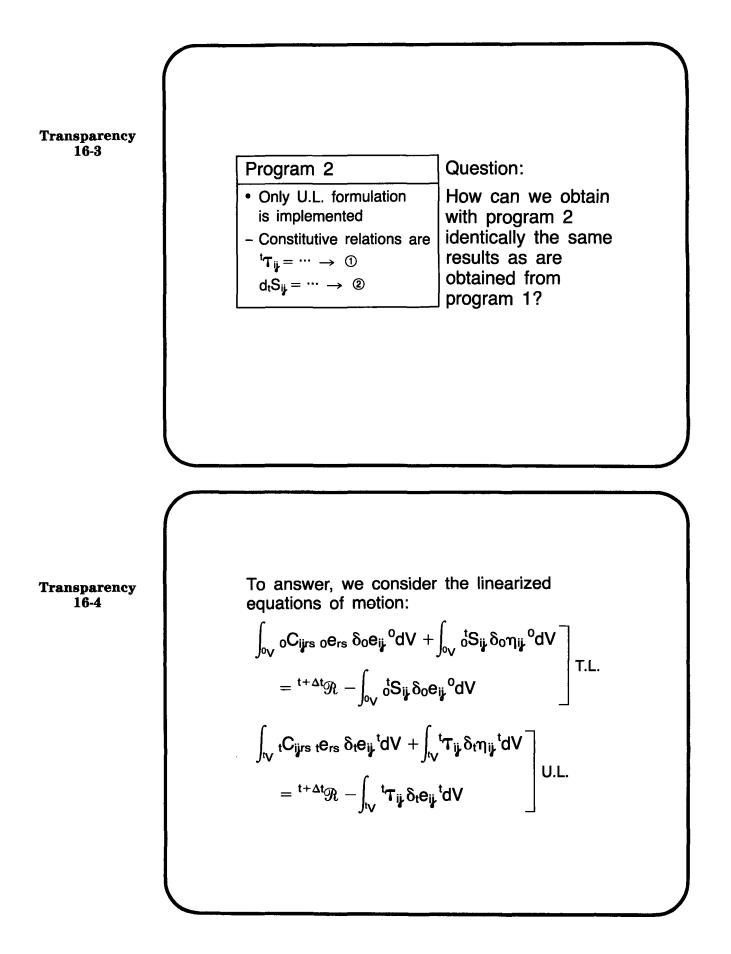
-		0
1.01	nic	h
T O	pic	0

Use of Elastic Constitutive Relations in Updated Lagrangian Formulation

Contents:	Use of updated Lagrangian (U.L.) formulation		
	Detailed comparison of expressions used in total Lagrangian (T.L.) and U.L. formulations; strains, stresses, and constitutive relations		
	Study of conditions to obtain in a general incremental analysis the same results as in the T.L. formulation, and vice versa		
	The special case of elasticity		
	The Almansi strain tensor		
	One-dimensional example involving large strains		
	Analysis of large displacement/small strain problems		
	Example analysis: Large displacement solution of frame using updated and total Lagrangian formulations		
Textbook:	6.4, 6.4.1		
Example:	6.19		





Terms used in the formulations:				
T.L. formulation	U.L. formulation	Transformation		
∫₀vodV	$\int_{t_V}{}^t dV$	$Vb^{t}\frac{\rho}{\rho}=Vb^{0}$		
₀ eiյ, ₀ ηiյ	_t e _{ij} , _t ηij	${}_{0}\mathbf{e}_{ij} = {}_{0}^{t}\mathbf{X}_{r,i} {}_{0}^{t}\mathbf{X}_{s,j} {}_{t}\mathbf{e}_{rs}$ ${}_{0}\eta_{ij} = {}_{0}^{t}\mathbf{X}_{r,i} {}_{0}^{t}\mathbf{X}_{s,j} {}_{t}\eta_{rs}$		
$\delta_0 e_{ij}, \delta_0 \eta_{ij}$	δ _t e _{ij} , δ _t η _{ij}	$\begin{split} \delta_0 \mathbf{e}_{ij} &= {}_0^t \mathbf{x}_{r,i} {}_0^t \mathbf{x}_{s,j} \delta_t \mathbf{e}_{rs} \\ \delta_0 \eta_{ij} &= {}_0^t \mathbf{x}_{r,i} {}_0^t \mathbf{x}_{s,j} \delta_t \eta_{rs} \end{split}$		

Transparency 16-5

Derivation of these kinematic relationships:

A fundamental property of ${}_{0}^{t}\epsilon_{ij}$ is that

$${}_{0}^{t} \varepsilon_{ij} d^{0} x_{i} d^{0} x_{j} = \frac{1}{2} \left(({}^{t} ds)^{2} - ({}^{0} ds)^{2} \right)$$

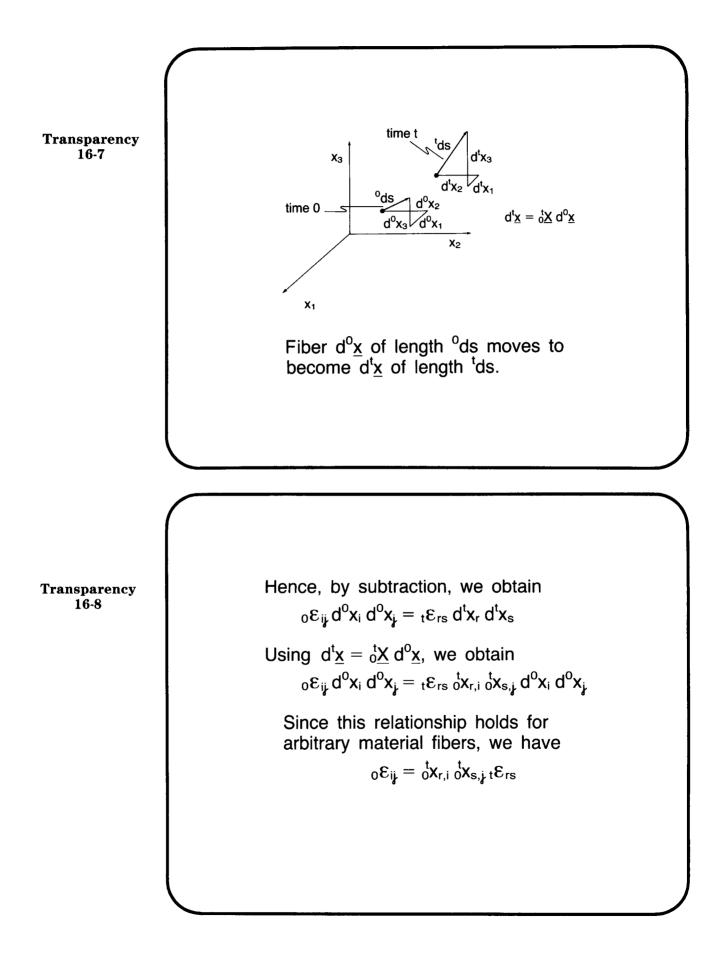
Similarly,

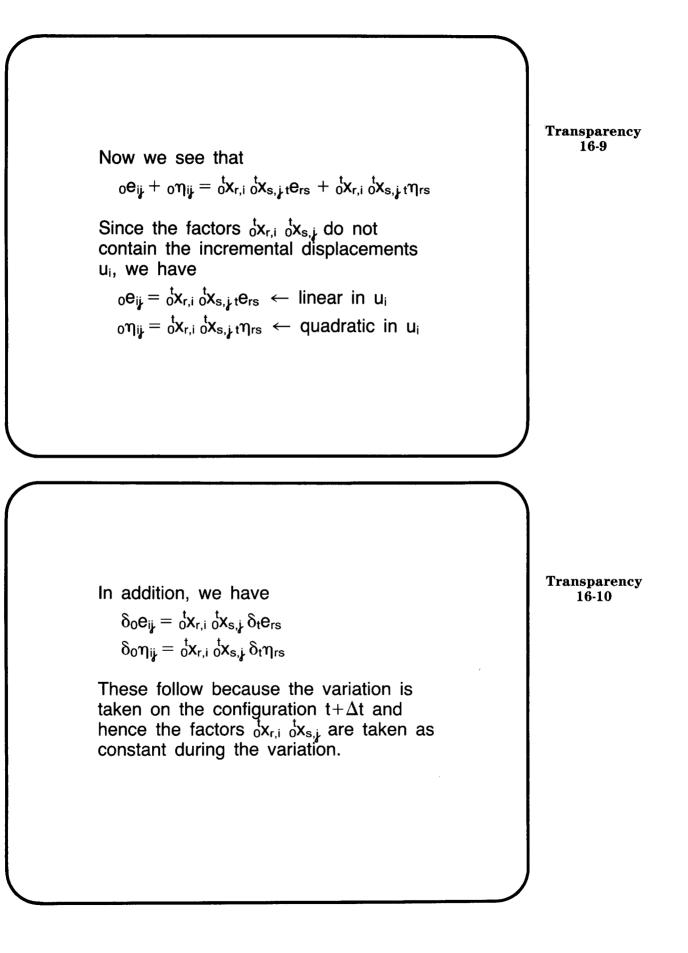
$${}^{t+\Delta t}_{0} \epsilon_{ij} d^{0} x_{i} d^{0} x_{j} = \frac{1}{2} \left(({}^{t+\Delta t} ds)^{2} - ({}^{0} ds)^{2} \right)$$

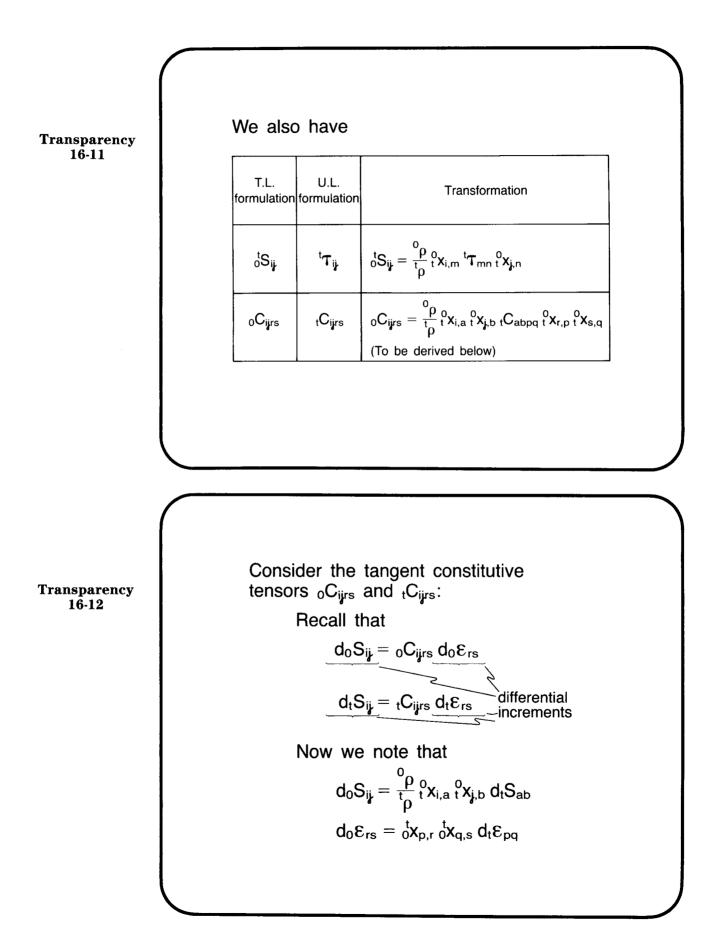
and

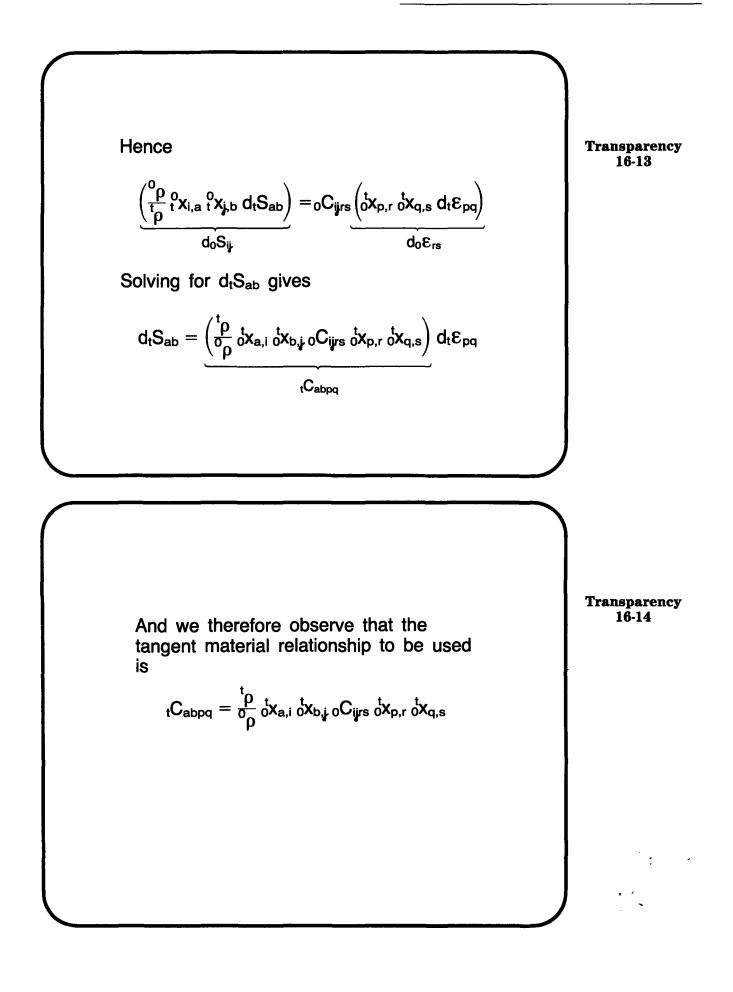
$$_{t}\epsilon_{rs} d^{t}x_{r} d^{t}x_{s} = \frac{1}{2} \left(\left({}^{t+\Delta t}ds \right)^{2} - \left({}^{t}ds \right)^{2} \right)$$

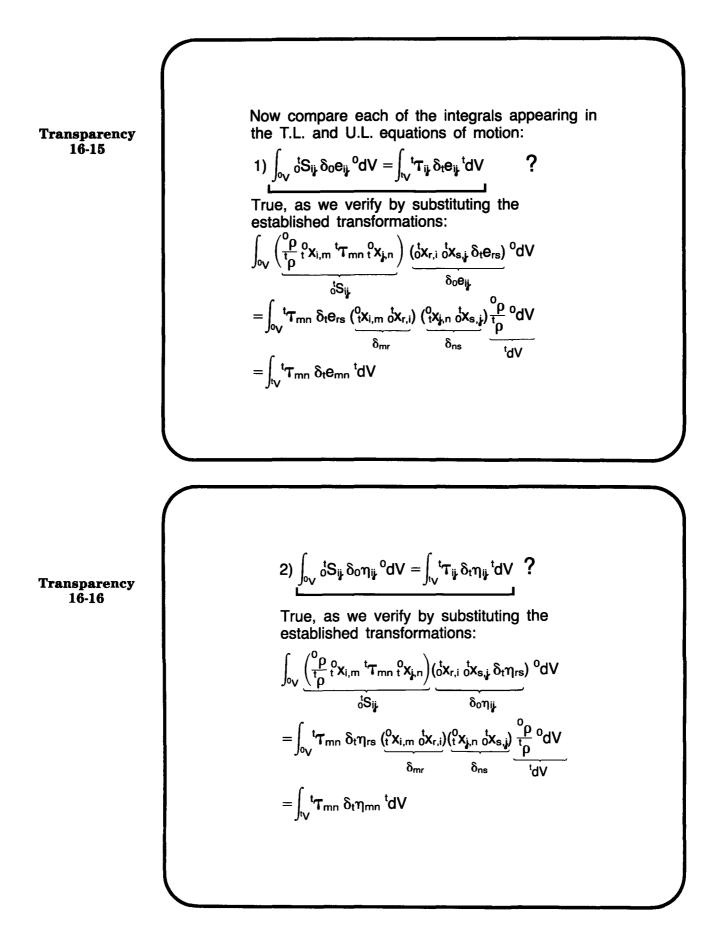
Transparency 16-6



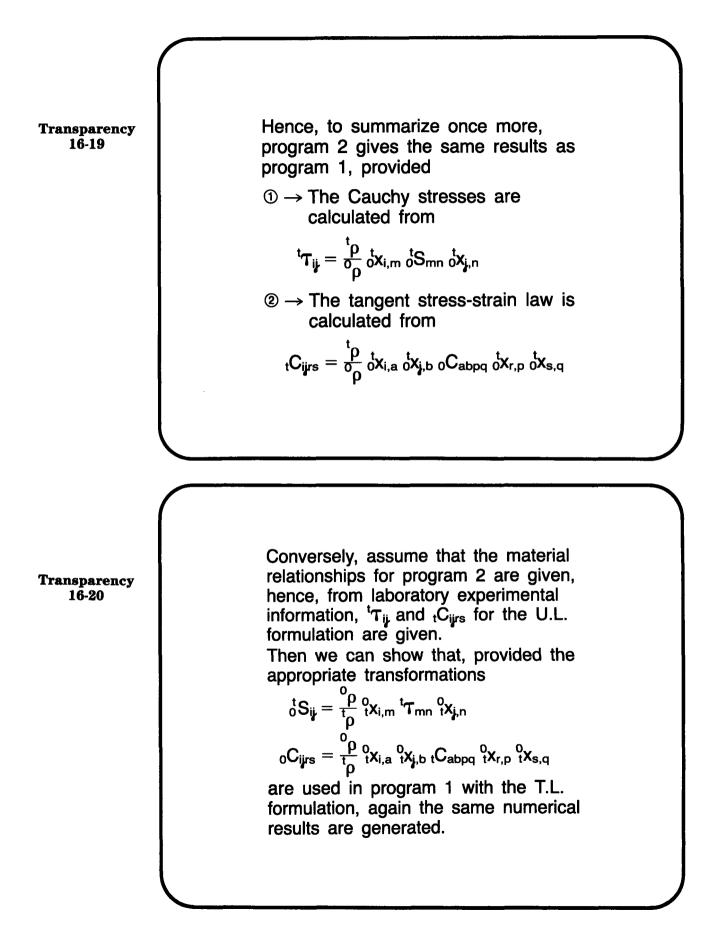


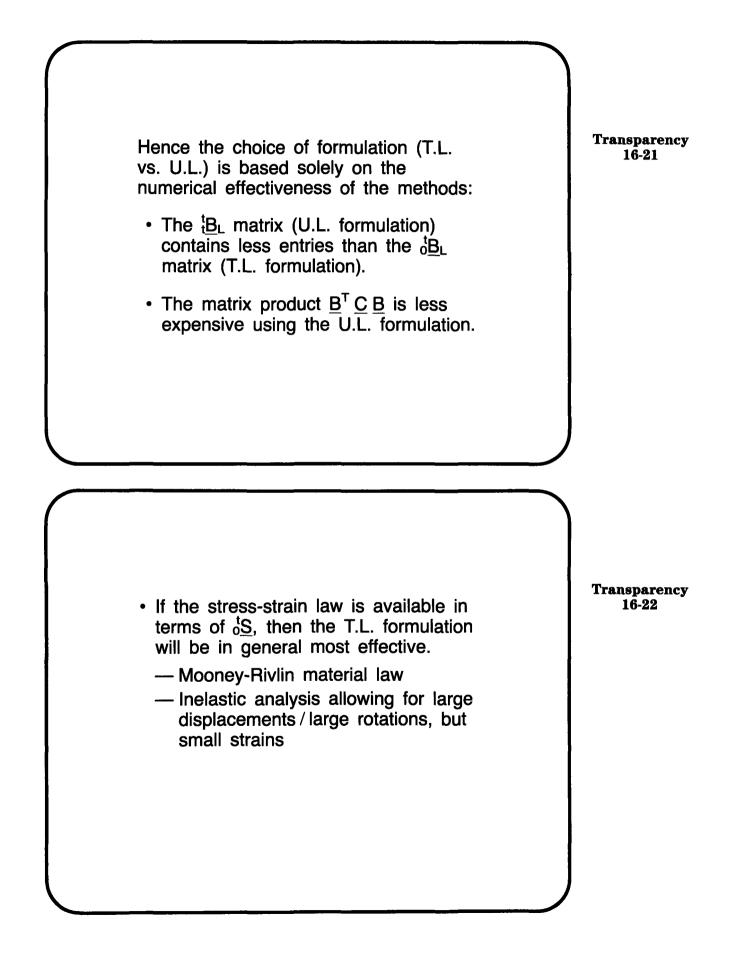


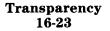




$$\begin{array}{l} \text{3)} \int_{\nabla} {}_{0} \mathcal{C}_{\mu \mu a} {}_{0} e_{ra} \; \delta_{0} e_{\mu} \; {}^{0} dV = \int_{\nabla} {}_{1} \mathcal{C}_{\mu \mu} \; e_{ra} \; \delta_{1} e_{\mu} \; {}^{1} dV \; ? \\ \hline \text{True, as we verify by substituting the established transformations:} \\ \int_{\nabla} \left(\frac{\partial_{\mu}}{f_{\mu}} \frac{\partial_{\lambda | a}}{\partial \xi_{\mu a}} \frac{\partial_{\lambda | b}}{\partial \xi_{\mu a}}$$







THE SPECIAL CASE OF ELASTICITY

Consider that the components ${}_{0}^{t}C_{ijrs}$ are given:

$${}_{0}^{t}S_{ij} = {}_{0}^{t}C_{ijrs} {}_{0}^{t}\varepsilon_{rs}$$

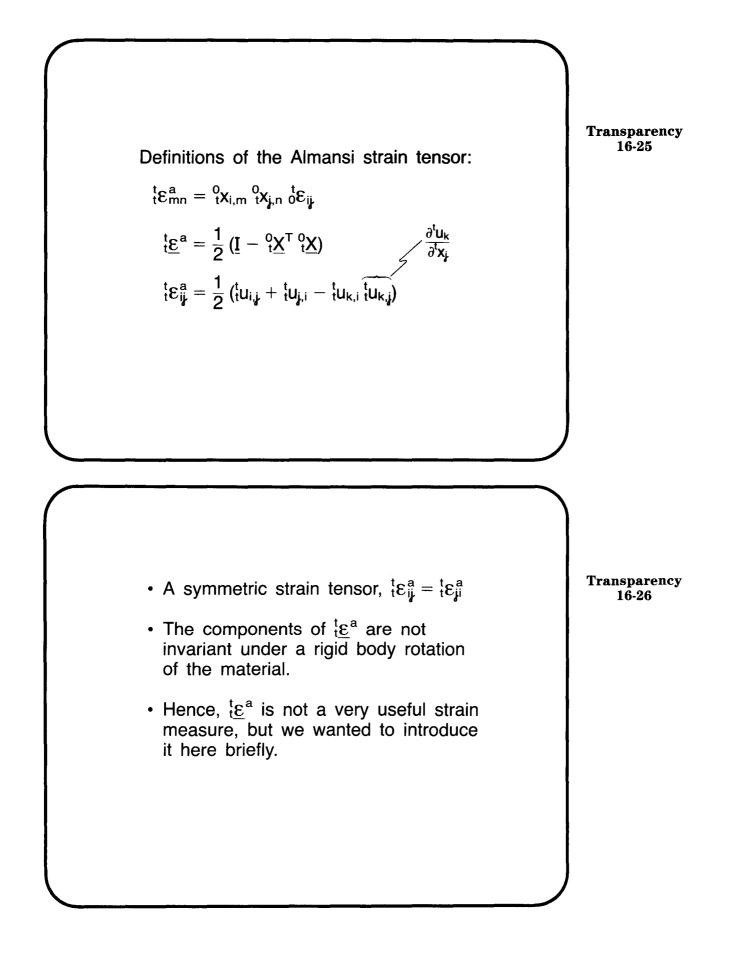
From the above discussion, to obtain the same numerical results with the U.L. formulation, we would employ

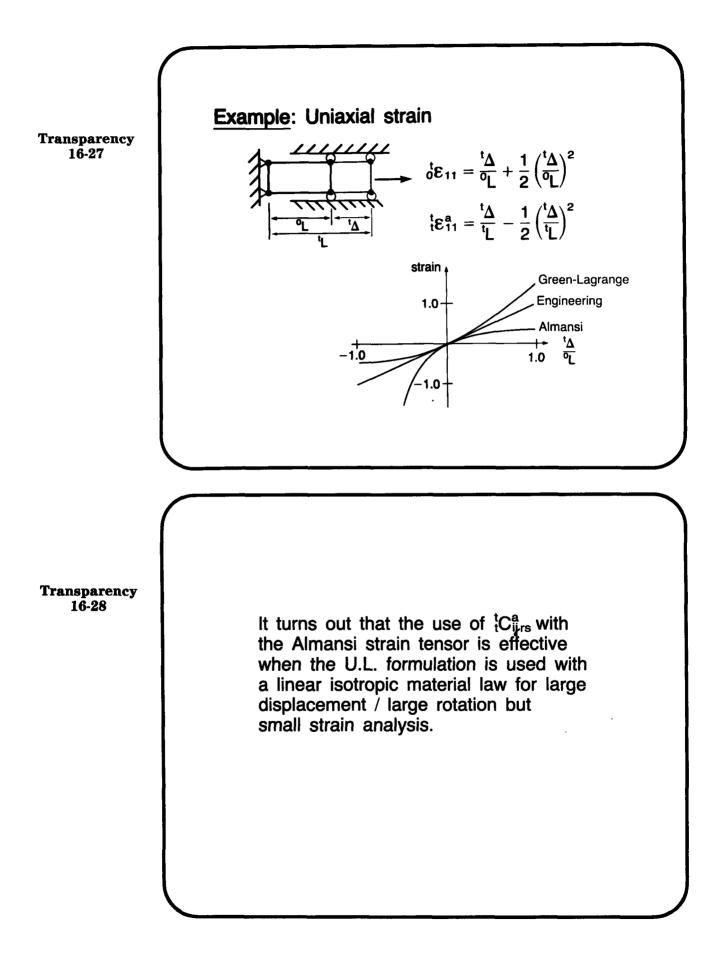
$${}^{t}\mathbf{T}_{ij} = \frac{\dot{\rho}}{0\rho} {}^{t}_{0}\mathbf{X}_{i,m} \left({}^{t}_{0}\mathbf{C}_{mnrs} {}^{t}_{0}\mathbf{\mathcal{E}}_{rs} \right) {}^{t}_{0}\mathbf{X}_{j,n}$$
$${}^{t}_{1}\mathbf{C}_{ijrs} = \frac{{}^{t}\rho}{0\rho} {}^{t}_{0}\mathbf{X}_{i,a} {}^{t}_{0}\mathbf{X}_{j,b} {}_{0}\mathbf{C}_{abpq} {}^{t}_{0}\mathbf{X}_{r,p} {}^{t}_{0}\mathbf{X}_{s,q}$$

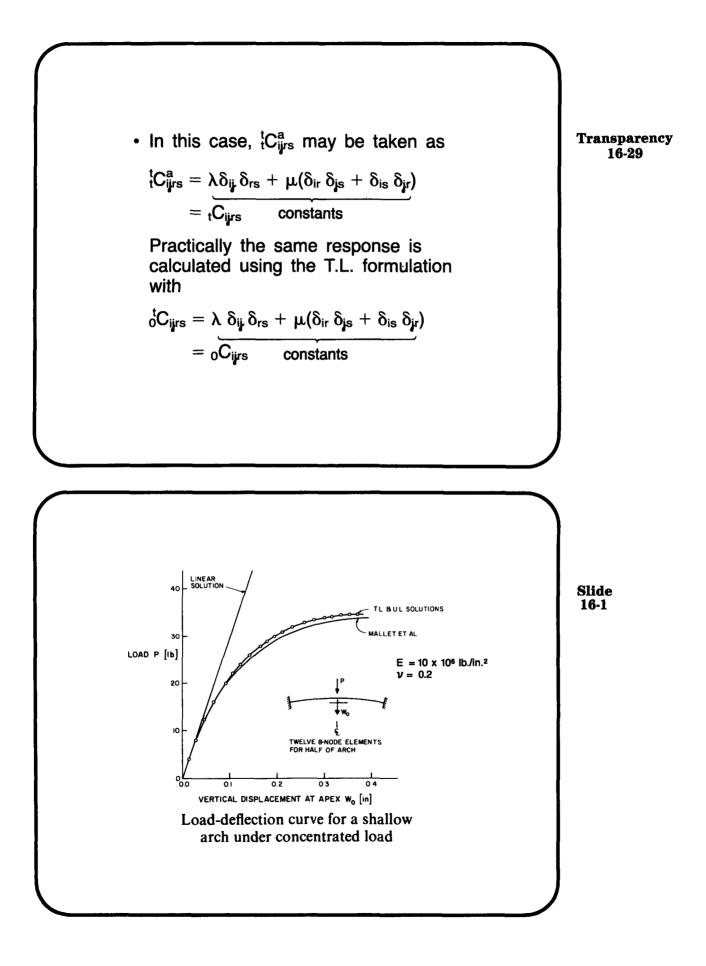
Transparency 16-24 We see that in the above equation, the Cauchy stresses are related to the Green-Lagrange strains by a transformation acting only on the m and n components of $_0^tC_{mnrs}$.

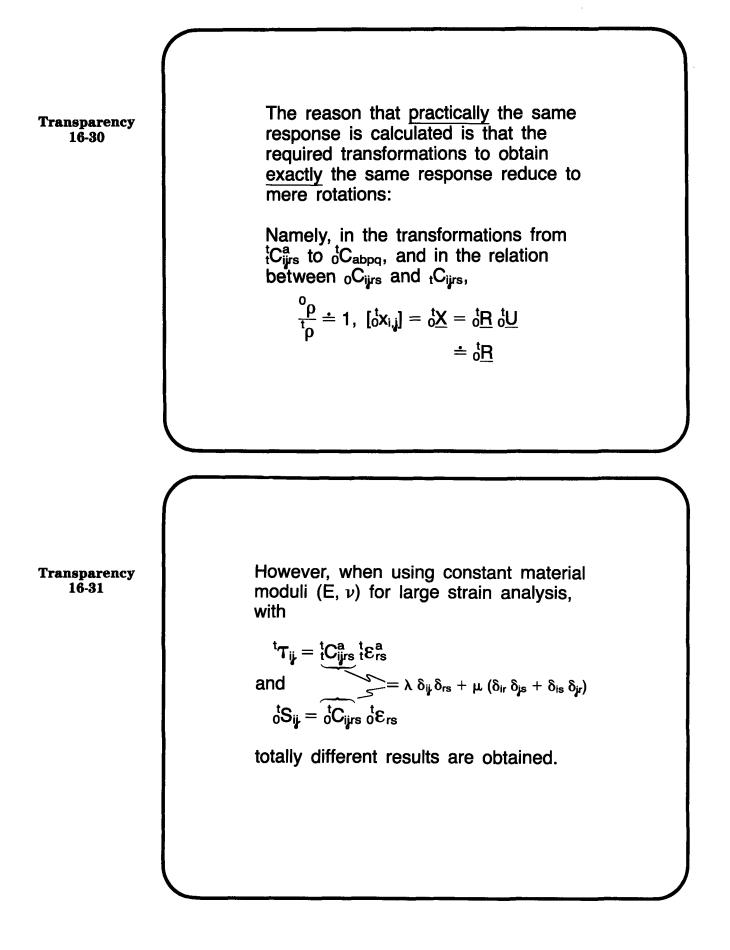
However, we can write the total stressstrain law using a tensor, ${}^{t}_{t}C^{a}_{ijrs}$, by introducing another strain measure, namely the Almansi strain tensor,

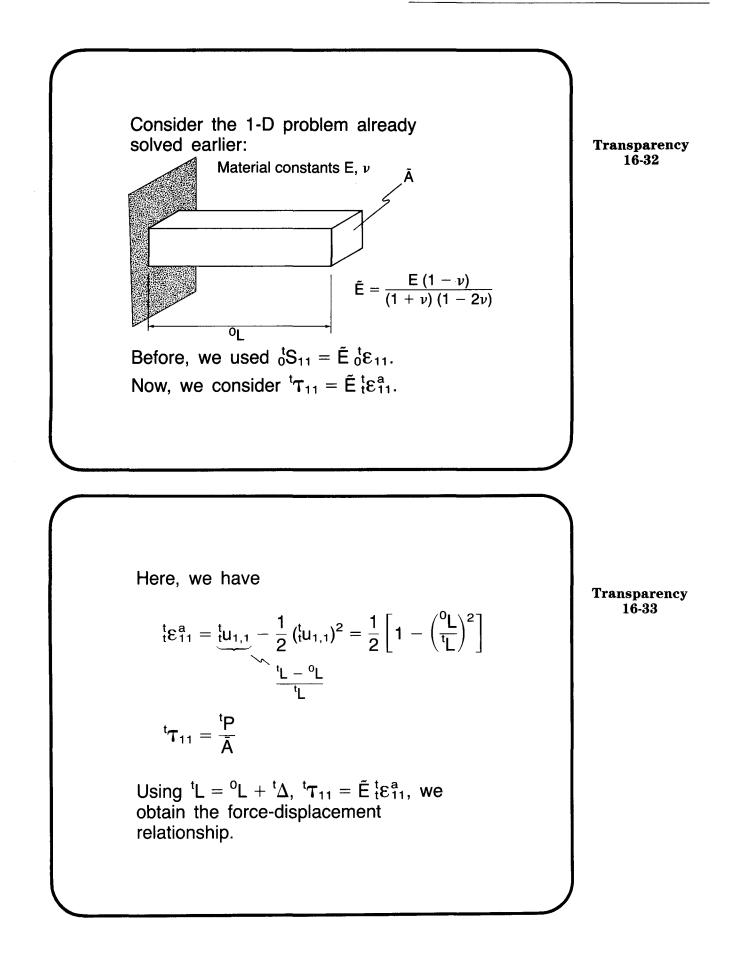
 ${}^{t}\mathbf{T}_{ij} = {}^{t}_{t}C^{a}_{ijrs} \underbrace{{}^{t}_{t} \underbrace{\boldsymbol{\epsilon}}^{a}_{rs}}_{\mathbf{0}\rho} Almansi strain tensor$ ${}^{t}_{t}C^{a}_{ijrs} = \frac{{}^{t}\rho}{{}^{0}\rho} \, {}^{t}_{0} \mathbf{x}_{i,a} \, {}^{t}_{0} \mathbf{x}_{j,b} \, {}^{t}_{0} C_{abpq} \, {}^{t}_{0} \mathbf{x}_{r,p} \, {}^{t}_{0} \mathbf{x}_{s,q}$

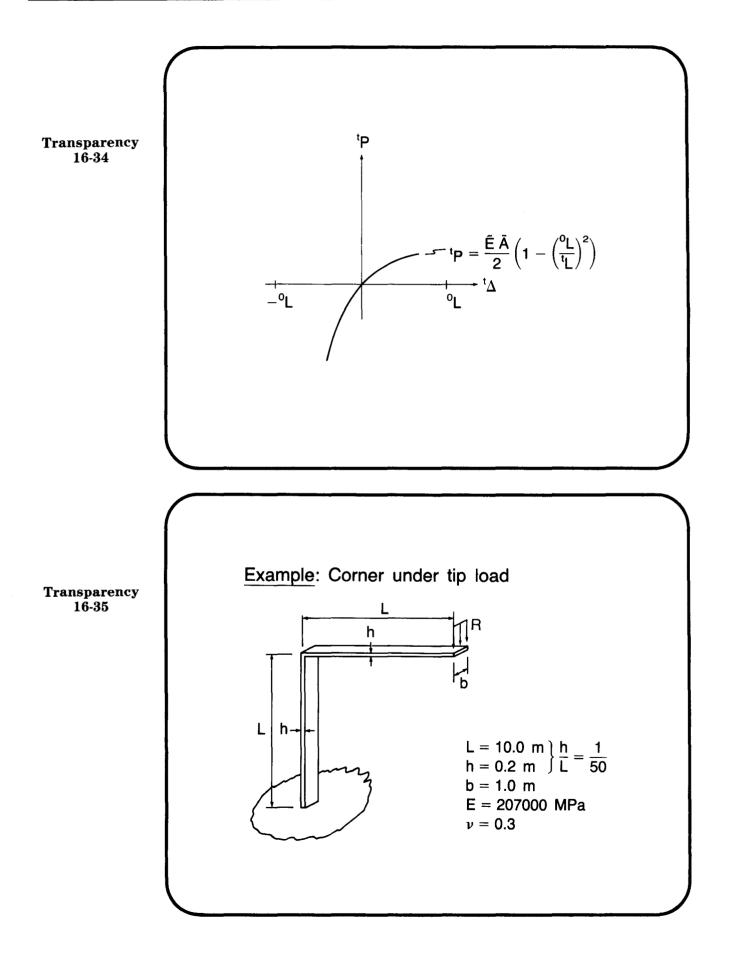


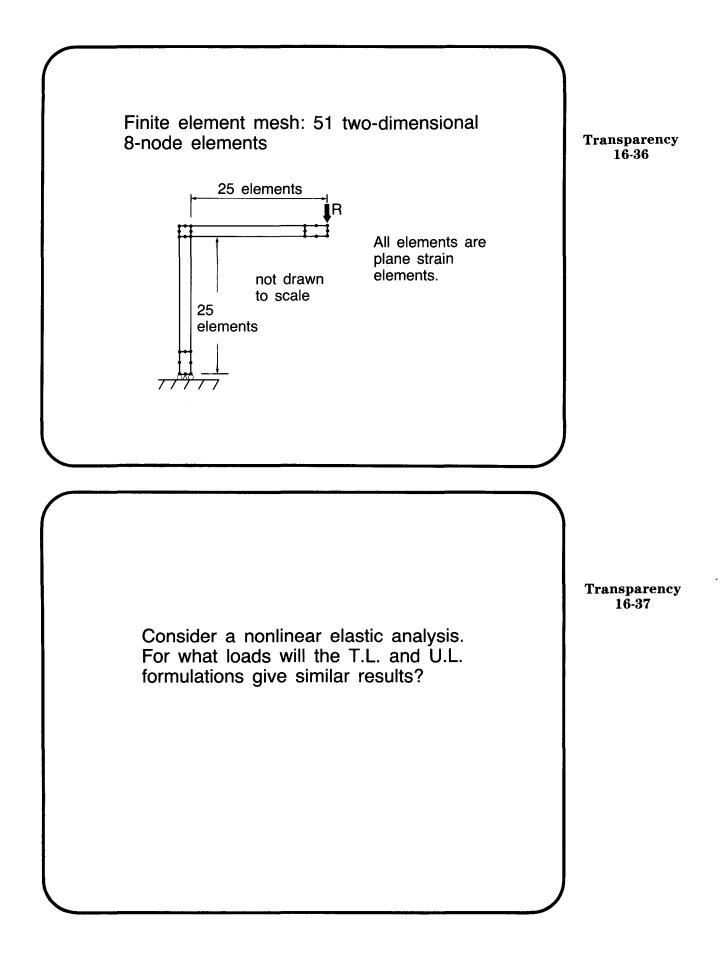


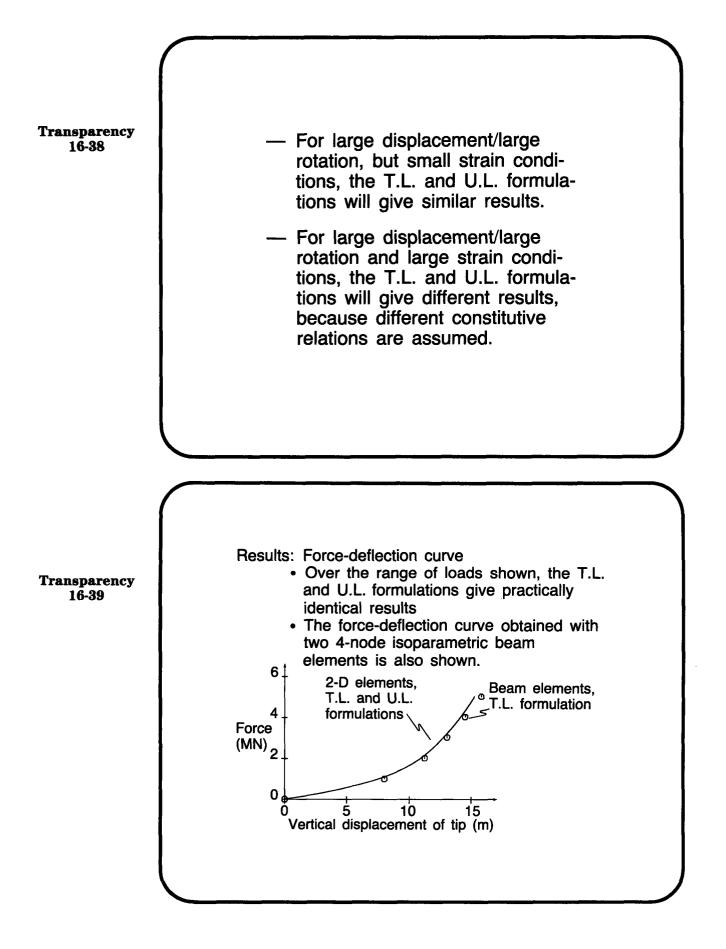


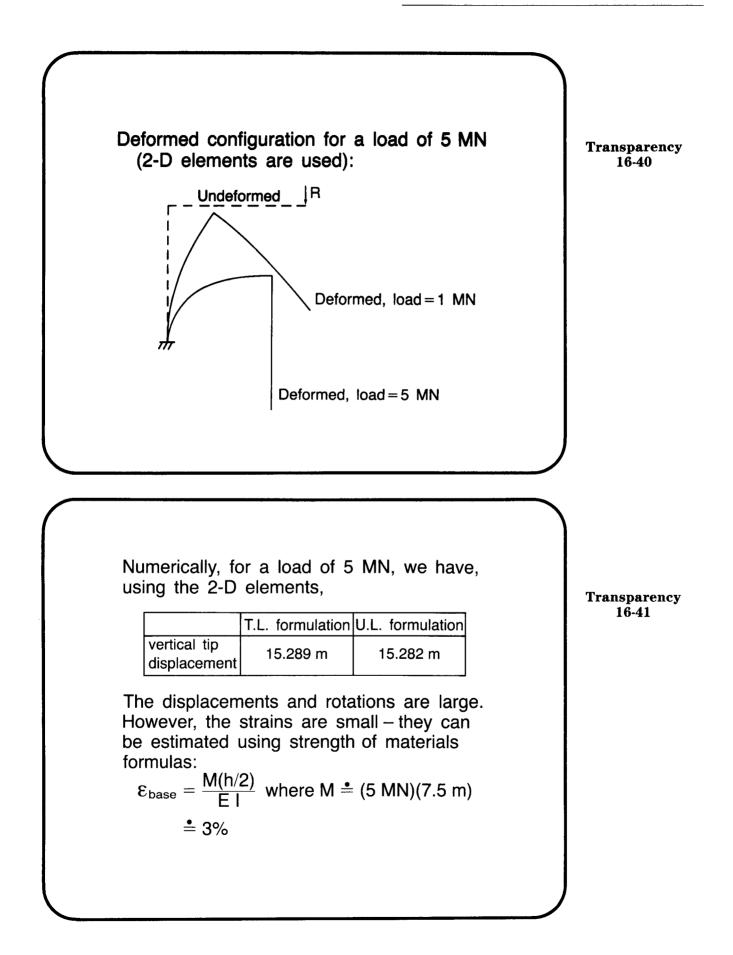












MIT OpenCourseWare http://ocw.mit.edu

Resource: Finite Element Procedures for Solids and Structures Klaus-Jürgen Bathe

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.