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Topic 16

Use of Elastic
Constitutive
Relations in
Updated
Lagrangian
Formulation

• Use of updated Lagrangian (U.L.) formulation

• Detailed comparison of expressions used in total
Lagrangian (T.L.) and V.L. formulations; strains,
stresses, and constitutive relations

• Study of conditions to obtain in a general incremental
analysis the same results as in the T.L. formulation, and
vice versa

• The special case of elasticity

• The Almansi strain tensor

• One-dimensional example involving large strains

• Analysis of large displacement/small strain problems

• Example analysis: Large displacement solution of frame
using updated and total Lagrangian formulations

6.4, 6.4.1

6.19



SO FAR THE USE OF
THE T.L. FORMULATION

WAS IMPLIED

Now suppose that we wish to use the
U.L. formulation in the analysis. We
ask

• Is it possible to obtain, using the U.L.
formulation, identically the same
numerical results (for each iteration)
as are obtained using the T.L.
formulation?

In other words, the situation is

Program 1
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• Only T.L. formulation
is implemented

- Constitutive relations are

JSij- = function of displacements

doSij- = oCijrs doErs

Information obtained from physical
laboratory experiments.

P

~
~

Program 1 results
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Program 2 Question:
1-------------1

• Only U.L. formulation How can we obtain
is implemented with program 2

- Constitutive relations are identically the same
t'Tij. = ~ CD results as are
dtSij. = ~ ® obtained from

'--- ----' program 1?
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To answer, we consider the linearized
equations of motion:

~v OCijrS oers 80ei~°dV +~v JSijo80'T)i~OdV]

~
T.L.

_ t+~t t 0- m- 0v OSi~ 80ei~ dV



Terms used in the formulations:

T.L. U.L.
formulation formulation Transformation

t
fc °dV 1tdV °dV = oP tdV
°v tv P

t t
Oeij, OT)i} teij' tTl i}

Oei} = OXr,i OXs,} ters
t tOT)i} = OXr,i OXs,} tT)rs

OOeij, OOT)i} Oteij, OtT) i}
OOei} = JXr,i JXS ,} Oters

OOT)i} = JXr,i JXS ,} OtT)rs

Derivation of these kinematic
relationships:

A fundamental property of JCi} is that

JCi} dOXi dOx} = ~ (CdS)2 - (OdS)2)

Similarly,

t+dJci} dOXi dOx} = ~ ((t+dtds)2 - (OdS)2)

and

tCrs dXr dtxs = ~ ((t+dtds)2 - CdS)2)
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timeD
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Fiber dO~ of length ods moves to
become dt~ of length tds.

Hence, by subtraction, we obtain

OCi}doXi dOx} = tCrs dtxr dtxs

Since this relationship holds for
arbitrary material fibers, we have

t tOCi} = OXr,i OXs,pCrs



Now we see that
t t t t

oe~ + o'T)~ = OXr,i OXs,} ters + OXr,i OXS ,} t'T)rs

Since the factors 6Xr,i 6Xs,~ do not
contain the incremental displacements
Ui, we have

ttl" .
oe~ = OXr,i oXs,pers ~ Inear In Ui

t t d t" "
oTJ~ = OXr,i oXsJ tTJrs ~ qua ra IC In Ui

In addition, we have

oOei} = 6Xr,i 6Xs,} oters

OOTJi} = 6Xr,i 6Xs,} OtTJrs

These follow because the variation is
taken on the confi~uration t+Llt and
hence the factors OXr,i 6Xs,} are taken as
constant during the variation.
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We also have

T.L. U.L.
Transformation

formulation formulation

0

JSi} t ts POt 0
1'i} o i} = t t Xi,m 1'mn t Xj,n

P

0

oCijrs tC~rs
C Po 0 Coo

o its = t t Xi,a t Xj,b t abpq t Xr,p t Xs,q
P

(To be derived below)

Consider the tangent constitutive
tensors oC~rs and tCiys :

Recall that

dOSi} = oCijrS doErs

~d'ff '1dtS" = tG· dtE I erentlaIi Irs rs increments
.s--

Now we note that
o

dOSii· = ~ PXi a PXi b dtSabp , "

doErs = JXp,r Jxq,s dtEpq



Hence

(~ PXi,. ?Xj.b d,Sab) =DC". (6xp,r D'xq,S d'E~
... I I • T

doSik doErs

Solving for dtSab gives

d,S.b = (~6x.'i 6xb.j. DCijrs 6xp,r Jx."s) litEpq
\ '

tCabpq

And we therefore observe that the
tangent material relationship to be used
is

t

C _Pt t C t t
t abpq - 0-=- OXa,i OXb.J- o· iJ"s oXp,r oXq,s

P
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Now compare each of the integrals appearing in
the T.L. and U.L. equations of motion:

1) fav dSij.8oeij. °dV =ftvtTij.8tet tdV ?
, ,

True, as we verify by substituting the
established transformations:

Lv (~ PXi,m ~mn PX~n ) (dXr,i dxs.;. 8ters) °dV

. IS . 30eiL

o t •
=r tTmn 8ters (~Xi,m dXr,i) (~Xj.,n dxs,j.) ~p °dV
~v p

3m• 3ns -1-dV-

=r tTmn 8temn tdVJtv

2) fov dSt8011t °dV =JvtTt8tl1t tdV ?
I I

True, as we verify by substituting the
established transformations:

fav (:PPXi,m tTmn PX~n) (dXr,i dxs,j. 8tl1rs) °dV
. P " ,. .

riSt 30TJij-

=r tTmn 8tl1rs (PXi,m dXr,i)(?X~,n dxs,~) ~P °dVJov P
----=---~~

3m• 3ns IdV

= r tTmn 8tl1mn tdVJtv



3) fov oCijrs oers 80eij °dV = t tC~rs ters &e~ tdV ?
I I

True, as we verify by substituting the
established transformations:

fa (0 )Po 0 0 0
0v tp t Xi,a t Xj,b tCabpq t xr,p t Xs,q X

\ I I

OCijrs

(dXk,r dxe.s tekf) (dXm,i dxn.j- 8temn) °dV
\ T I \ J

Provided the established
transformations are used, the three
integrals are identical. Therefore the
resulting finite element discretizations
will also be identical.

(JKL + JKNd dU = t+~tR - JF

(~KL + ~KNd dU = t+~tR - ~F
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dKL = asL

dKNL = asNL

dE = tE

The same holds for
each equilibrium iteration.
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Hence, to summarize once more,
program 2 gives the same results as
program 1, provided

CD ~ The Cauchy stresses are
calculated from

t
t _Pt ts tTiJ- - 0:::- OXi,m 0 mn oXj,n

P
® ~ The tangent stress-strain law is

calculated from
t

C _Pt t C t t
t ifs - up OXi,a OXj,b 0 abpq oXr,p oXs,q

Conversely, assume that the material
relationships for program 2 are given,
hence, from laboratory experimental
information, tTij- and tCijrs for the U.L.
formulation are given.
Then we can show that, provided the
appropriate transformations

o
ts - POt 0
o it - -t tXi,m Tmn tXj,n

P
o

C - Po 0 Coo
o ijrs - -t tXi,a tXj,b t abpq tXr,p tXs,q

P
are used in program 1 with the T.L.
formulation, again the same numerical
results are generated.



Hence the choice of formulation (T.L.
vs. U.L.) is based solely on the
numerical effectiveness of the methods:

• The ~BL matrix (U.L. formulation)
contains less entries than the tiBL
matrix (T.L. formulation).

• The matrix product BT C B is less
expensive using the U.L. formulation.

• If the stress-strain law is available in
terms of tis, then the T.L. formulation
will be in general most effective.

- Mooney-Rivlin material law
-Inelastic analysis allowing for large

displacements / large rotations, but
small strains
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THE SPECIAL CASE
OF ELASTICITY

Consider that the components JCi1S are
given:

ts tc ta i} = a ijrs aE rs
From the above discussion, to obtain
the same numerical results with the
U.L. formulation, we would employ

t
t _ P t (tc t) tTi} - op aXi,m a mnrs aE rs aXj.n

t

C Pt t C t t
t ilS = 0 aXi,a aXj,b a abpq aXr,p aXs,q

P

We see that in the above equation, the
Cauchy stresses are related to the
Green-Lagrange strains by a
transformation acting only on the m
and n components of JCmnrs .

However, we can write the total stress
strain law using a tensor, ~C~rs, by
introducing another strain measure,
namely the Almansi strain tensor,

tTi} = ~C~s !E~~/AlmanSi strain tensor

t
tca _ P t t tc . t t
tits - ~ aXi,a aXj.b a abpq aXr,p aXs,q

P



Definitions of the Almansi strain tensor:

~Ea = ! (I - ~XT ~X) / a:uk- 2 - - - aXJ-

ta 1(t t t t)
tE·· = - tU" + tU' . - tUk' tUk .I'" 2 I.... ~.I .I.~

• A symmetric strain tensor, ~E~ = ~E;

• The components of ~E a are not
invariant under a rigid body rotation
of the material.

• Hence, ~Ea is not a very useful strain
measure, but we wanted to introduce
it here briefly.
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Example: Uniaxial strain

t t~ 1 (t~)2
of 11 = 0L +"2 0L

strain

1.0

-1.0=--_~~

Green-Lagrange

Engineering

~:.--_- Almansi
ta

1.0 °L
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It turns out that the use of ~Clrs with
the Almansi strain tensor is effective
when the U.L. formulation is used with
a linear isotropic material law for large
displacement / large rotation but
small strain analysis.
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• In this case, ~C~s may be taken as

t . a
tCijrS = A8ij- 8rs + f.L(8ir 8js + 8is 8jr)

• j

= tCiys constants

Practically the same response is
calculated using the T.L. formulation
with

JCijrS = A 8it 8rs + f.L(8ir 8js + 8is 8jr)
\
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= oC iys constants

MALLET ET AL

TL au L SOLUTIONS

r-~---{

I
i

TWELVE &-NODE ELEMENTS
FOR HALF OF ARCH

Slide
16·1

E =10 X 108 Ib./in.2

v= 0.2

04030.201

20

30

40

LOAD P [Ib]

VERTICAL DISPLACEMENT AT APEX Wo [in]

Load-deflection curve for a shallow
arch under concentrated load
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The reason that practically the same
response is calculated is that the
required transformations to obtain
exactly the same response reduce to
mere rotations:

Namely, in the transformations from
~C~s to JCabPq, and in the relation
between oCijrs and tCiys ,

o
-.e ..!- 1 [JXi.~ = JX = JR Jutp -, r

..!- tR-0_
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However, when using constant material
moduli (E, v) for large strain analysis,
with

totally different results are obtained.
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E= -:-:--_E--'-:-(1---,---:-.--:v)__=__:_
(1 + v) (1 - 2v)
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A

°L
t - tBefore, we used 0811 = E oE11.

. t - t aNow, we consider 'T11 = E tE 11 •

Consider the 1-D problem already
solved earlier:

Material constants E, v

Here, we have
Transparency

16-33

t tp
1'11 = ~

A

U · tL 0L tAt E- t asing = + '-1, 'T11 = tE11,

obtain the force-displacement
relationship.

we
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~tp = E2A (1 - C~r)
-t-----jL-----+-- t~
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Example: Corner under tip load

L

h A

L = 10.0 m}!! = _1
h = 0.2 m L 50
b = 1.0 m
E = 207000 MPa
v = 0.3



Finite element mesh: 51 two-dimensional
a-node elements

25 elements
-I

Topic Sixteen 16-21

Transparency
16-36

JR
f'+t""-----"""1JI-'""'1J

not drawn
to scale

25
elements

:~
I I I I I

All elements are
plane strain
elements.
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Consider a nonlinear elastic analysis.
For what loads will the T.L. and U.L.
formulations give similar results?
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rotation, but small strain condi
tions, the T.L. and U.L. formula
tions will give similar results.

- For large displacement/large
rotation and large strain condi
tions, the T.L. and U.L. formula
tions will give different results,
because different constitutive
relations are assumed.

Beam elements,
.-:T.L. formulation

ol&-===----+-----+---_+_-
o 5 10 15
Vertical displacement of tip (m)

Results: Force-deflection curve
• Over the range of loads shown, the T.L.

and U.L. formulations give practically
identical results

• The force-deflection curve obtained with
two 4-node isoparametric beam
elements is also shown.

6
2-D elements,
T.L. and U.L.
formulations~4

Force
(MN)2
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Deformed configuration for a load of 5 MN
(2-D elements are used):

Undeformed 1Rr--------
I
I
I
I
I
I Deformed, load = 1 MN

Deformed, load=5 MN

Numerically, for a load of 5 MN, we have,
using the 2-D elements,

T.L. formulation U.L. formulation
vertical tip

15.289 m 15.282 m
displacement

The displacements and rotations are large.
However, the strains are small - they can
be estimated using strength of materials
formulas:

Cbase = M~~2) where M • (5 MN)(7.5 m)

• 3%
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