Topic 2

Basic Considerations in Nonlinear Analysis

Contents:

	The principle of virtual work in general nonlinear	
	analysis, including all material and geometric	
	nonlinearities	

- A simple instructive example
- Introduction to the finite element incremental solution, statement and physical explanation of governing finite element equations
- Requirements of equilibrium, compatibility, and the stress-strain law
- Nodal point equilibrium versus local equilibrium
- Assessment of accuracy of a solution
- Example analysis: Stress concentration factor calculation for a plate with a hole in tension
- Example analysis: Fracture mechanics stress intensity factor calculation for a plate with an eccentric crack in tension
- Discussion of mesh evaluation by studying stress jumps along element boundaries and pressure band plots

Textbook:	Section 6.1
Examples:	6.1, 6.2, 6.3, 6.4
References :	The evaluation of finite element solutions is studied in
	Sussman, T., and K. J. Bathe, "Studies of Finite Element Procedures— On Mesh Selection," Computers & Structures, 21, 257–264, 1985.
	Sussman, T., and K. J. Bathe, "Studies of Finite Element Procedures— Stress Band Plots and the Evaluation of Finite Element Meshes," <i>Engineering Computations</i> , to appear.

IN THIS LECTURE

- . WE DISCUSS THE PRINCIPLE OF VIRTUAL WORK USED FOR GENERAL NONLINEAR ANALYSIS
- WE EMPHASIZE THE BASIC REQUIRE-MENTS OF MECHANICS
- . WE GIVE EXAMPLE ANALYSES
 - PLATE WITH HOLE
 - PLATE WITH CRACK

Markerboard 2-1

Using these assumptions, **Transparency** 2-9 $\int_{t_V} {}^t T_{ij} \, \delta_t e_{ij} \, {}^t dV = \int_{t_I} {}^t T \, \delta_t e^{t} A^{t} dx ,$ $i\mathfrak{R} = \int_{t_1} t_{\rho g} \delta u A dx$ Hence the principle of virtual work is now $\int_{t_1} {}^t T \, {}^t A \, \delta_t e \, {}^t dx = \int_{t_1} {}^t \rho g \, {}^t A \, \delta u \, {}^t dx$ where $\delta_t \mathbf{e} = \frac{\partial \delta \mathbf{u}}{\partial^t \mathbf{x}}$ We now recover the differential equation of Transparency equilibrium using integration by parts: 2-10 $\int_{t_{t}} \left[\frac{\partial}{\partial t_{x}^{t}} \left({}^{t} T^{t} A \right) + {}^{t} \rho g^{t} A \right] \delta u^{t} dx - \left[\left({}^{t} T^{t} A \right) \delta u \right]_{0}^{t_{L}} = 0$ Since the variations δu are arbitrary (except at x = 0), we obtain $\frac{\partial}{\partial^t \mathbf{x}} \left({}^t \tau \; {}^t A \right) \, + \, {}^t \rho g \; {}^t A = 0 \; , \qquad \qquad \left({}^t \tau \; {}^t A \right) \Big|_{_{t_L}} = 0 \label{eq:static_transformation}$ THE GOVERNING THE FORCE (NATURAL) DIFFERENTIAL EQUATION BOUNDARY CONDITION

- Displacements coarse mesh
- Stress intensity factors coarse mesh
- Lowest natural frequencies and associated mode shapes — coarse mesh
- Stresses fine mesh

General nonlinear analysis — usually fine mesh

Transparency 2-59 MIT OpenCourseWare http://ocw.mit.edu

Resource: Finite Element Procedures for Solids and Structures Klaus-Jürgen Bathe

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.