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Topic 3

Lagrangian
Continuum
Mechanics
Variables for
General Nonlinear
Analysis

• The principle of virtual work in terms of the 2nd Piola-
Kirchhoff stress and Green-Lagrange strain tensors

• Deformation gradient tensor

• Physical interpretation of the deformation gradient

• Change of mass density

• Polar decomposition of deformation gradient

• Green-Lagrange strain tensor

• Second Piola-Kirchhoff stress tensor

• Important properties of the Green-Lagrange strain and
2nd Piola-Kirchhoff stress tensors

• Physical explanations of continuum mechanics variables

• Examples demonstrating the properties of the continuum
mechanics variables

Sections 6.2.1, 6.2.2

6.5,6.6,6.7,6.8,6.10,6.11,6.12,6.13,6.14



CONTINUUM MECHANICS
FORMULATION

For
Large displacements
Large rotations
Large strains

Hence we consider a body subjected to
arbitrary large motions,

We use a Lagrangian description.
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Configuration
at time 0

PC+~'X1, t+~'X2, '+~'X3)

PCX1, 'X2, 'X3)

Confi~uration Configuration
at time t at time t + ~t
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'Xi = °Xi + lUi I X1

t+~'x· = ox· + t+~'u· i = 1 2 3
I I I "

U· - t+~'u· - 'u·1- I I



3-4 Lagrangian Continuum Mechanics Variables
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Regarding the notation we need to
keep firmly in mind that

- the Cartesian axes are stationary.

- the unit distances along the Xi-axes
are the same for °Xi, tXi , t+ ~tXi.

Example:
particle at time 0

0X1 /U1 /particle at time t
1----'---·.· ...

1 2 3 4 5
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PRINCIPLE OF VIRTUAL
WORK

Corresponding to time t+dt:

I t+~tlT'.. ~ e·· t+~tdV - t+~t(flllit Ut+~t It -;n
t+.ltv

where

t+~tffi = r t+~tfF OUi t+~tdV
)t+.ltv

+ r t+~tfr OUr t+~tdS
)t+.lts



t+Atl'T"..
I 'I'

and

Cauchy stresses (forces/unit
area at time t +Llt)

1 ( aOUi aou} )
ot+Atei} = 2 at+Atx} + at+Atxi

variation in the small strains
referred to the configuration
at time t +Llt

We need to rewrite the principle of
virtual work, using new stress and
strain measures:

• We cannot integrate over an
unknown volume.

• We cannot directly work with
increments in the Cauchy stresses.

We introduce:

cis = 2nd Piola-Kirchhoff stress tensor

6E = Green-Lagrange strain tensor
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The 2nd Piola-Kirchhoff stress tensor:

a
t8 POt aa i} = -t tXi,m Tmn tX},n

P

The Green-Lagrange strain tensor:

t 1 (t t t t )
OE" = - aU·" + au.. + aUk" aUk"yo 2 I,t ~I ,I ,t

where
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Note: We are using the indicial notation
with the summation convention.

For example,

a
t Pro t a
0811 = -t tX1,1 Tn tX1,1

P
a t a+ tX1 ,1 T 12 tX1 ,2

+ ...
+ ~X1,3 tT33 ~X1,3]



Using the 2nd Piola-Kirchhoff stress
and Green-Lagrange strain tensors,
we have

This relation holds for all times

at, 2at, ... , t, t+at, ...

To develop the incremental finite
element equations we will use

~vt+~JSt 8t+~JEt °dV = t+~~

• We now integrate over a known
volume, °V.

• We can incrementally decompose t+~JSt
d t+~t .

an oEt, I.e.

t+~ts ts So ~=o iJ-+O iJ-
t+~t t

OEiJ- = oE~ + oE~
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Before developing the incremental con
tinuum mechanics and finite element
equations, we want to discuss

• some important kinematic
relationships used in geometric
nonlinear analysis

• some properties of the 2nd
Piola-Kirchhoff stress and Green
Lagrange strain tensors

To explain some important properties of
the 2nd Piola-Kirchhoff stress tensor
and the Green-Lagrange strain tensor,
we consider the

Deformation Gradient Tensor

• This tensor captures the straining and the
rigid body rotations of the material fibers.

• It is a very fundamental quantity used in
continuum mechanics.



The deformation gradient is defined as

atx1
aOx1

atx2

aOX1

atXa
aOX1

atx1
aOX2

atX2
aOX2

atXa
aOX2

atx1
aOXa

atx2
aOXa

atXa
aOXa

in a Cartesian
coordinate
system
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Using indicial notation,

Another way to write the deformation
gradient:

Jx = (oVJt~T)T

where
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oV =

the/
gradient
operator
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The deformation gradient describes the
deformations (rotations and stretches)
of material fibers:

The vectors dOx and
dt~ represent the
orientation and length
of a material fiber at
times 0 and t. They
are related by
dtx JX dOx

Transparency
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Example: One-dimensional deformation

time 0 time t

X1/ /'
11
H

...I....-------al.....--._.. 1
1.0 0.5



Consider a material particle initially at
X1 = 0.8:

f------X1

°X1 = 0.800
1<1 = 1.120

Consider an adjacent material particle:
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I•I

Compute Jx11 :

d tx1 1.211 - 1.120
d OX1 = .850 - .800 = 1.82 ~ Estimate

JX11 lo = 1.80
x1=O.8
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Exam~: Two-dimensional deformation
Transparency
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(0 0) (t t ). tx [ .481
X1, X2 ~ X1. X2 ·0_ = -.385

Considering dO~,

X2

time t

f

.667]

.667

X1

dt~ = hx dO~

[ .75] = [ .481 .667][.866]o - .385 .667 .5



Considering cf!.
X2

dtx = tx cfx_ 0_ _

[1] [.481 .667][ 0]
1 = -.385 .667 1.5

The mass densittes 0p and tp may be
related using the deformation gradient:

infinitesimal volumes

time 0 time t

//:
::;;:;Ls- tdV

~
~dt!l

Three material fibers describe each volume.

'Ibpic Three 3-13
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For an infinitesimal volume, we note
that mass is conserved:

tp tdV = 0p 0dV
volume at .----:--- ~~volume at
time t~ - ~time 0

However, we can show that

Hence

Proof that tdV = det Jx °dV:

dO~1 =[g}S1 ; dO~ =[!}S2

dO~=[~}S3
° -Hence dV = dS1 dS2 ds3 •



and tdV = (dt~1 X dt~2) . dt~3

= det Jx dS1 dS2 dS3

= det Jx °dV

Example: One-dimensional stretching

/
1 ~timeO

,/, x:r ~time t

/ uniform stretching
// plane strain conditions

1.0 .25

Deformation field: 'x, = ox, + O.250x,

Deformation [1.25 0 01
gradient: J~ = 0 1 0 -+ det J~ = 1.25

o 0 1

Hence 0p = 1.25tp (tp < 0p makes physical sense)

'""""""-----------------",
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We also use the inverse deformation
gradient:

o . 0 t
;;{d ~ = tXd~~

MATERIAL FIBER MATERIAL FIBER
AT TIME 0 AT TIME t

Mathematically, ~X = (JX)-1

Proof: dO~ = ~ (Jx dO~)

= (~X JX) dO~
= I dOx

An important point is:

Polar decomposition of JX:

JR = orthogonal (rotation) matrix

Ju = symmetric (stretch) matrix

We can always decompose JX in the
above form.



Example: Uniform stretch and rotation
timet
~

I: 3.0 I I
4.0 X1

~ = dR dU

[1.154 -0.750] .. [0.866 -0.500] [1.333 0]
0.887 1.299 0.500 0.888 ° 1.500

Using the deformation gradient, we can
describe the (right) Cauchy-Green
deformation tensor

tc - txT tx0_ - 0_ 0_

This tensor depends only on the stretch
tensor riU:

tc = (tuT tAT) (tA tU)0_ 0_ 0_ 0_0_

= (riU)2 (since riA is orthogonal)

Hence ric is invariant under a rigid
body rotation.
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Example: Two-dimensional motion

X2 0 ~ timel+::;U

time'O D rigid body motion,
~ rotation of 90°

time t

X1

Jx = [1.5 .~] HatX = [ -.5 -1 ]
- .5 0_ 1.5 .2

Jc = [2.5 .8 ] HatC _ [2.5 .8 ]
- .8 1.04 0_ - .8 1.04

The Green-Lagrange strain ·tensor
measures the stretching deformations. It
can be written in several equivalent
forms:

1) JE = ~ (ric - I)

From this,

• JE is symmetric.

• For a rigid body motion between
times t and t+ ~t, H~E = JE .

• For a rigid body motion between
times 0 and t, JE = Q.



• ~~ is symmetric because ~C is
symmetric

~~ = ~ (~C -1)

• For a rigid body motion from t to
t+~t, we have

t+~tx = R tv
0- - 0 0

t+~tc = to j.. t+4t E t
0_ 0 ." 0- =o~

• For a rigid body motion

~C = 1 =* ~~ = 0

t _ 1 (t t t t )
2) aEi} - 2 ,aUi,}:- aU}.~ +, aUk,i ,aUk,} .

UNEAR IN NONUNEAR IN
DISPLACEMENTS DISPLACEMENTS
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where

Important point: This strain tensor is exact and
holds for any amount of
stretching.



3·20 Lagrangian Continuum Mechanics Variables

Transparency
3-35

Transparency
3-36

Example: Uniaxial stJlain

tA 1 (tA)2
J£11 = 0[ + 2 0[

1
engi:~ring 87
1.o+----+-+-

t~

-~1-.0--~~--1+-.0°L

Example: Biaxial straining and rotation

X2 rigid body motion,

O
rotation of 45°

~ I>------l~
time 0;7' time t? time t+~t~

+---------X1

IX = [1.5 0]
0_ 0.5

ric = [2.25 0 ]
- 0 .25

riE = [.625 0 ]
- 0 -.375

l+Jllx = [1.06
0_ 1.06

IHric = [2.25
- 0

IHriE = [.625
- 0

-.354]
.354

.~5]

-.3~5]



Example: Simple shear

t~ 1.0
I' 'I" "

X1

For small displacements, dE is
approximately equal to the small strain
tensor.

The 2nd Piola-Kirchhoff stress tensor
and the Green-Lagrange strain tensor
are energetically conjugate:

t'Ti.j- ~hei.j- = Virtual work at time t per unit
current volume

Js~ ()JE~ = Virtual work at time t per unit
original volume

where dSij is the 2nd Piola-Kirchhoff
stress tensor.
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0tX t'T °tXT
- MATRIX NOTATION

o t 0
tXi,m 'Tmn tX!-n - INDICIAL NOTATION
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The 2nd Piola-Kirchhoff stress tensor:

t 0p
OSi~ =-t

P
o

ts = ---.e0_ tp

Solving for the Cauchy stresses gives
t

t _ P t ts t
'Ti~ - op OXi,m 0 mn oXj.n - INDICIAL NOTATION

t
t P tx ts txT'T = op 0_ 0_ 0_ - MATRIX NOTATION

Properties of the 2nd Piola-Kirchhoff stress
tensor:

• cis is symmetric.

• cis is invariant under a rigid-body
motion (translation and/or rotation).

Hence cis changes only when the
material is deformed.

• cis has no direct physical
interpretation.
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Example: Two-dimensional motion
Transparency
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Cauchy stresses
at time t

Xi lim\Or~... '__--.. ~
..... rigid body

motion, rotation
of 60°

Cauchy stresses
at time t+ dt

At time t +Llt, Transparency
At time t, 3-42

tx = [1 .2] t+~tx = [.5 -1.20 ]
0_ 0 1.5 0_ .866 .923

t [0 1000] t+ ~t'T = [ 634 -1370]
1: = 1000 2000 - -1370 1370

ts _ [ -346 733 ] t+~ts = [ -346 733]
0_ - 733 1330 0_ 733 1330
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