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Prob. 5.3. 1 In cartesian coordinates (x,y) 

Thus, the characteristic equation, Eq. 5.3.4, becomes


cX _ 

The ratio o f these expressions is


-- (A, _ A0)

d1 (A-v o As)


which, multiplied out, becomes


If A and A are independent of time, the quantity A + bi, is a perfect


differential. That is,


A,+o A = l tcheel


is a solution to Eq. 5.3.4. Along these lines pi = constant. 
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I Prob. 5.3.2 In axisymmetric cylindrical coordinates (r,z), Eq. (h) of Table 2.18.1 

I can be used to represent the solenoidal E and v.


In terms of AE and Av, Eq. 5.3.4 becomes


r =- A-(Av A ) (2)' 

The ratio of these two expressions gives


---- _ _______ (4) 

•t V(Av+ AO 
and hence


Provided A and AE are independent of time, this is a perfect differential.


Hence 

Ay 1 As= Con (6) 

represents the characteristic lines along which pi is a constant.
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5.3


Prob. 5.4.1 Integration of the given electric field and flow velocity result in


AE=V%/d and - ('3/3) It follows from the result of-_.-(QU/4)to/i)ý . 

Prob. 5.3.1 that the characteristic lines are Av+bAE=constant, or the relation 

given in the problem statement. The characteristic originating at x=O reaches


the upper electrode at y=y1 where yl is obtained from the characteristics by


first evaluating the constant by setting x=O and y=0O (constant = 0) and then


evaluating the characteristic at x=d and y=y1 "


Because the current density to the upper electrode is nqbEx and all characteristics


reaching the electrode to the right of y=y1 carry a uniform charge density, nq,


the current per unit length is simply the product of the uniform current density


and the length (a-y1 ). This is the given result.


Prob. 5.4.2 From the given distributions of electric potential and velocity


potential, it follows that


---V R-Z -- ,C '-- ( 2 ) 

u i(3) 

From the spherical coordinate relations, Eqs. 5.3.8, it in turn is deduced that


Y.


ZV.-a ' 2 (5) 

so the characteristic lines are (Eq. 5.3.13b)


A+6A - +' VRZG_+Oz fo,~4(UR A conse (6) 

Normalization makes it evident that the trajectories depend on only one parameter.


r !(7)


The critical points are determined by the requirement that both the r and 9


components of the force vanish.
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Prob. 5.4.2(cont.) 

2 -- I =0 (8).. t 

From the first expression,


either or3 = / - -- (10) 

while from the second expression,


either 0 3I or ( - --- RU() (11) 

For V>0 and positive particles, the root of Eq. 10b is not physical. The roots 

of physical interest are given by Eqs. 10a and llb. Because r/R > 1, the


singular line (point.) is physical only if bV/RU > 3/2.


Because there is no normal fluid velocity on the sphere surface, the


characteristic lines have a direction there determined by i alone. Hence, the


sphere can only accept charge over some part of its southern hemisphere. Just


how much of this hemisphere is determined by the origins of the incident lines.


Do they originate at infinity where the charge density enters, or do they


come from some other part of the spherical surface? The critical point determines


the answer to this question.


Characteristic lines typical of having no critical point in the volume


and of having one are shown in the figure. For the lines on the right, bV/RU=l


so there is no critical point. For those on the left, bV/RU = 3 > 3/2.


If the critical point is outside the sphere (bV/RU > 3/2) then the "window" 

having area 1-R') through which particles enter and ultimately impact the sphere 

is determined by the characteristic line passing through the critical point 

3) 3- t (12) 

Thus, in Eq. 7, 

c 
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_ (13) 

I 



Prob. 5.4 .2 (cont.)


bv 
-

RL) LbV 

I!ii 
j 

In the limit r--v o , --T/t 

(14)


so, for bV/RU > 3/2, 

e%cl- 3~¶¶ u(a (bV -W (15)
.1 t TW ) 
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I 

Prob. 5.4.2(cont.) 

For bV/RU < 3/2, the entire southern hemisphere collects, and the window for 

collection is defined (not by the singular point, which no longer exists in 

the volume) by the line passing through the equator, n= /Z q= ~1 

(Y/R/R U (16) 

Thus, in this range the current is 

c"= %•V (17) 

In terms of normalized variables, the current therefore has the voltage dependence 

summarized in the figure. 
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5.7


Prob. 5.4.3 (a) The critical points form lines in three dimensions.


They occur where the net force is zero. Thus, they occur where the 9


component balances


and where the r component is zero


Because the first of these fixes the angle, the second can be evaluated


to give the radius


+ O_ _ S O 

Note that this critical point exists if charge and conductor have the same 

polarity ()O) at e =0 and if (V(o) at 8= . 

(b) It follows from the given field and flow that


and hence the characteristic lines are


AV+ ý Aa r-) /4--'_U (r• t9 
These are sketched for the two cases in the figure.


(c) There are two ways to compute the current to the conductor when the


voltage is negative. First, the entire surface of the conductor collects


with a current density -pbErthat is uniform over its surface. Hence,


because the charge density is uniform along a characteristic line, and


all striking the conductor surface carry this density,


4.=0TrQXW)oýE'= ;Z7aO'W1V/ 0'sf(R./Col < 0111 

and i is zero for V > 0. Second, the window at infinity, y*, can be 

found by evaluating (const.) for the line passing through the critical point. 

This must be the same constant as found for r--co to the right. 

Co2t.= - uVj = b• ir/e.(1o4/,) 
It follows that i =(21L )p T , which is the same current as given above. 



5.8


Prob. 5.4.3 (cont.)


-WIND 

Positive Particle Trajectories for a Positive Conductor in

the Stationary Flow Case (Repelled Particles)


Negative Particle Trajectories for a Positive Conductor

in the Stationary Flow Case (Attracted Particles)




3 

5.9 1


Prob. 5.4.4 In terms of the stream function from Table 2.18.1, the


velocity is represented by 2Cxy. The volume rate of flow is equal to . 

times the difference between the stream function evaluated on the 

electrodes to left and right, so it follows that -4Ca 2s = QV. Thus, 

the desired stream function is


A, = - _(1) 2-Y 

The electric potential is = Voxy/a2 . Thus, E = -V(yi +xi )/a2 and 

it follows that the electric stream function is 

AE = V (ý -ýL '2C (2) 5 
(b) The critical lines (points) are given by


Thus, elimination between these two equations gives


Q_,_ _ L (4) 

so that the only lines are at the origin where both the velocity and the I


electric field vanish.


(c) Force lines follow from the stream functions as I

O Qv VO.t c1O (5) 

The line entering at the right edge of the throat is given by


-O xý + 6V0 GO-L)- cL + VYO (C.-AC) (6) 1 
and it reaches the plane x=O at


--v  (7)


Clearly, force lines do not terminate on the left side of the collection I 

electrode, so the desired current is given by 

. #•(o,• dA aaVoa t, (8) 3

0• 2 

where yl is equal to a unless the line from (c,a2/c) strikes to the left


of a, in which case yl follows from evaluation of Eq. 7, provided that it




5.10 

Prob. 5.4.4(cont.) 

I 
3 

is positive. For still larger values of bV , i=O. 

Thus, at low voltage, where the full width is collecting, i = ~bVo/2. 

This current gives way to a new relation as the force line from the 

right edge of the throat just reaches (0,a). 

bV = Q C0 ( ' +ci~c•• ~- o1) (9) 

Thus, as bVo is raised, the current diminishes until yl=0, 

at z I 

which occurs 

I 
I 
I 

r (Cg4 -oi 

For greater values of bV , i=0. 

_ _ _ 

I(C+ - 4) 

) 

_________ 

)(C4 -t 
bY0 



! 
5.11


I 
Prob. 5.5.1 With both positive and negative ions, the charging current is, 

in general, the sum of the respective positive and negative ion currents. 

These two contributions act against each other, and final particle charges 

other than zero and -q result. These final charges are those at which the 

two contributions are equal. The diagram is divided into 12 charging regimes 

by the coordinate axes q and Eo and the four lines 

Eo = o/b6 (1) 

ED =-U./b_ (2) I 
+ %P 1=CDR 3),Eao 

In each regime, the charging rate is given by the sum of the four possible
 I 
current components


•I l (5) 

where-I,=n b a• in'a the unipolar cases. 

In regimes (a), (b), (c) and (d), only 1. is acting, driving the particle


charge down to the -qc lines. Similarly, in regimes (m), (n), (o) and (p),
 1 
1+ + 

only .t is charging the particle, driving q up to the lower -qc lines.
 £In regimes (e), (i), (h) and (1), the current is C* . £, ; the 

equilibrium charge, defined by 

S + - (t) = 0, (6) I 
I 

I1- 1 IwhereP~ the u enr sign holds forlT \\} le the lower one holds for 

<I1<1 . In other words, the root of the quadratic which gives 1, I 
is taken. Note that 1, depends linearly on IE.1 ; the sign of I is that 

of IT.\-•T . This is seen clearly in the limit 1-T.-po or I . 1-PO 
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Prob. 5.5.1 (cont.)


In regime (j), L4 is the only current; in regime (g), C, is the only 

contribution. In both cases, the particle charge is brought to zero and 

respectively into regime (f) (where the current is l 4 ) or into 

regime (k) (where the current is '+ + ! ). The final charge in these 

regimes is I, given by 

C? 9,, 

)4 . 
+ 

(3g.) = 

which can be used to find q2
.


-+ 0 + ++2j 1 )A (9) 

Here, the upper and lower signs apply to regimes (k) and (f) respectively.


Note that q2 depends linearly on E and hence passes straight through the origin.


In summary, as a function of time the particle charge, q, goes to ql 

for Eo <-./,b or Eo>U,/6. and goes to q2 for - (./ < E < ,/ 6/ .o 

In the diagram, a shift from the vertical at a regime boundary denotes a


change in the functional form of the charging current. Of course, the


current itself is continuous there.
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5.14 

Prob. 5.5.2 (a) In view of Eq. (k1)of Table 2.18.1 

I 

lye M- U a' 3 e 

and it follows by integration that 

Thus, because A remains Eq. 5.5 .4, it follows that the characteristic 

lines, Eq. 5.3.13b, take the normalized form 

I (h7-0 tc+-LL i s;hE(Q -+3jýcos G= covis4 . 

(2) 

( 

(4) 

I 

I 
I 

where as in the text, 3 \Z1(oA E , and 6 = /R/•rE E /tV and =E / 

Note that E /0 C is independent of E and, provided U > 0, is 

always positive. Without restricting the analysis, U can be taken as 

positive. Then, E can be taken as a normalized imposed field and 4 (which 

is actually independent of E. because L/' is independent of E) can be taken 

as a normalized charge on the drop. 

(b) Critical points occur where 

. 

_+ bE =o (5) 

The components of this equation, evaluated using Eq. 5.5.3 for 

Eqs. 1 and 2 for 1) , are 

j and 

S 3 Co (6) 

-'(7) 

5 

I 

One set of solutions to these simultaneous equations for (r, e 

by recognizing that Eq. 7 is satisfied if 

) follows 

I 



3 5.15 


Prob. 5.5.2 (cont.)


s:ie=o( 0) o 9-4 (8) 

Then, Eq. (6) becomes an expression for r. 

J {_ (X-"-i) ±+E (2 - + ')] ±C3 3 0} (9) 

3
This cubic expression for r has up to three roots that are of interest. 


These roots must be real and greater than unity to be of. physical interest.


Rather than attempting to deal directly with the cubic, Eq. 9 is solved


for the normalized charge, q, 
 g

9-[ ('-- r E--•J)42- (10)
3I


The objective is to determine the charging current (and hence current of


mass) to the drop when it has some location in the charge-imposed field 
 3

plane (q, E). Sketches of the right-hand side of Eq. 10 as a function of 

r, fall in three categories, associated with the three regimes of this 

plane E~<-z--iE i <•i as shown in Fig. P5.5.2a. 3 
The sketches make it possible to establish the number of critical


points and their relative positions. Note that the extremum of the curves


comes at 1S+ «<i W-) 

For example, in the range I<E this root is greater than unity and it is


clear that on the 0=
O axis


)itl(L2)
< mvro vis c<2 I 
where 7 

•
S(13) 

(-2- 1)12-0• E <

With the aid of these sketches, similar reasoning discloses critical points on the 

z axis, as shown in Fig. P5.5.2b. Note that P= E ~ - i" 

http:P5.5.2a
http:P5.5.2b
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Fig. P5.5.2b Regimes of charging and critical points for 

positive ions. 
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SProb. 5.5.2 (cont.) 

Any possible off-axis roots of Eqs. 6 and 7 are found by first considering 

solutions to Eq. 7 for s;h 9 * . Solution for r then gives 

i _ (is t- s-u 	 (14) 

I 	 This expression is then substituted into Eq. 6, which can then be solved


for c ase 

Ico 	 (15)


I A sketch if Eq. 14 as a function of E


shows that the only possible roots that


I 	 are greater than unity are in the regimes 

where I<E . Further, for there to be 

a solution to Eq. 15, it is clear that 

3 	 I.l < I ql •. This means that off-

axis critical points are limited to 
m 
I regime h in Fig. 5.5.2b. I 

Consider how the critical points evolve for the regimes where 1 < 

as I is lowered from a large positive value. First, there is an on-axis 

I 	 critical point in regime c. As I is lowered, this point approaches the


drop from above. As regime g is entered, a second critical point comes


I 	 out of the north pole of the drop. As regime h is reached, these points


coalesce and split to form a ring in the northern hemisphere. As the


charge passes to negative values, this ring moves into the southern


I 	 hemisphere, where as regime i is reached, the ring collapses into a


point, which then splits into two points. As regime I is entered,


one of these passes into the south pole while the other moves downward.


I 
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Prob. 5.5.2 (cont.)


There are two further clues to the ion trajectories. The part of the


particle surface that can possibly accept ions is as in the case considered


in the text, and indicated by shading in Fig. 5.5.2b. Over these parts of


the surface, there is an inward directed electric field. In addition, if 

I< • , ions must enter the neighborhood of the drop from above, while 

if < 1 they enter from below. 

Finally, the stage is set to sketch the ion trajectories and determine 

the charging currents. With the singularities already sketched, and with 5

the direction of entry of the characteristic lines from infinity and from


the surface of the drop determined, the lines shown in Fig. 5.5.2b follow. I


In regions (a), (b) and (c), where there are no lines that reach the


drop from the appropriate "infinity", the charging current is zero.


In regions (d) and (e) there are no critical points in the region of I


interest. The line of demarcation between ions collected by the drop as


they come from below and those that pass by is the line reaching the drop I

where the radial field switches from "out" to "in". Thus, the constant in


Eq. 4 is determined by evaluating the expression where V= and 

cose = = -i/E and hence 1 = 1-C os l -(/ . Thus, I 

the constant is 

E1 I-- (16) 

Now, following this line to R-wr , where coS9-+1 and "S;-hO gives 5

-s 1E "I) (17) 

Thus, the total current being collected is


CI = - T7 61E (18) 

I

I
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Prob. 5.5.2 (cont.)


The last form is written by recognizing that in this regime E <0, and 

hence 4 is negative. Note that the charging rate approaches zero as the 

charge approaches I\ I. 

In regime f, the trajectories starting at the lower singularity end


at the upper singularity, and hence effectively isolate the drop from


trajectories beginning where there is a source of ions. To see this


note that the constant for these trajectories, set by evaluating Eq. 4


where S;h9= O and cos 09= is const. = -3q. So, these lines are 

L )s i9 (-3 ý cco&e= -3ý (19) 

Under what conditions do these lines reach the drop surface? To see,


evaluate this expression at the particle surface and obtain an expression


for the angle at which the trajectory meets the particle surface.


3 E i = 3 (cos 9 -1) (20) 

Graphical solution of this expression shows that there are no solutions


if E)o and >o . Thus, in regime f, the drop surface does not collect


ions.


In regime i, the collection is determined by first evaluating the 

constant in Eq. 4 for the line passing through the critical point at 9=1 

It follows that const. = 3 and that 

(21)


Thus, the current is

1+ z - Z 

(22)


Note that this is also the current in regimes k, 1 and m.


In regime g, the drop surface is shielded from trajectories coming
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Prob. 5.5.2 (cont.)


from above. In regime h the critical trajectories pass through the critical


points represented by Eqs. 14 and 15. Evaluation of the constant in Eq. 4 

then gives I3 
4. (23) 

and it follows that


* = (Z -)1--31 (24) 

Thus, the current is evaluated as 

Z3 IT 6E +og·il (25) 

Note that at the boundary between regimes g and h, where , this I 
expression goes to zero, as it should to match the null current for 

regime g. I 

As the charge approaches the boundary between regimes h and j, :-~ 3 
and the current becomes •- IZ-IZ1R~ . This suggests that the 

current of regime m extends into regime j. That this is the case can be 5 
seen by considering that the same critical trajectory determines the 

current in these latter regimes. I 

To determine the collection laws for the negative ions, the arguments 

parallel those given, with the lower signs used in going beyond Eq. 10. 

I

I

I

I 
I

I




5.22


Prob. 5.6.1 A statement that the initial total charge is equal to


3 that at a later time is made by multiplying the initial volume by the 

initial charge density and setting it equal to the charge density at time 

Stmultiplied by the volume at that time. Here, the fact that the cloud 

remains uniform in its charge density is exploited. 

4 eA+1 1 t 

0 

I I i •"•- '.  +',3f1 iv're- t4 
I t 

I 
I 
I 

I 
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Prob. 5.6.2 a) From Sec. 5.6, the rate of change of charge density for an


observer moving along the characteristic line


is given by 

= 1)÷ ,E (1) 

(2) 

Thus, along these characteristics, 

S4L/r f 

where throughout this discussion the charge density is presumed positive. 

The charge density at any given time depends only on the original density (where 

the characteristic originated) and the elapsed time. So, at any time, points 

from characteristic lines originating where the charge is uniform have the same 

charge density. Therefore, the charge-density in the cloud is uniform. 

b) The integral form of Gauss' law requires that 

I 

3(3) 

I 

and because the charge density is uniform in the layer, this becomes 
iV 

The characteristic lines for particles at the front and back of the layer are 

represented by 

U+&E (6) 

These expressions combine with Eq. 5 to show that 

-- 3 

Integration gives 

b-(?.-ti) 

and hence it follows that 

fIdk/r (8) 

I 

I

I
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Prob. 5.6.2(cont.) 

3 
Given the uniform charge distribution in the layer, it follows from Gauss' 

law that the distribution of electric field intensity is 

From this it follows that the voltage, V, is related to Ef and Eb by


V -- I (11) 

From Eqs. 5 and 9,
1E'6a (12)


e-2- (13) 

Substitution for E and z -z as determined by these relations into Eq. 11 

Sthen gives an expression that can be solved for Ef. 

E-V-4 -7- - :2 "L (14)

2 72 E 

-21 T (15)ld) In view of Eq. 6a, this expression makes it possible to write


Solutions to this differential equation take the form


I The coefficients of the particular solution, B and C, are found by substituting


5 Eq. 16 into Eq. 15 to obtain


T - R S * (17)


I IV
1 - • _~, (18) 

5 The coefficient of the homogeneous solution follows from the initial condition 

I that when t=0, zf=zF. 

1 -- (19) 

I 
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Prob. 5 . 6.2(cont.) 

The position of the back edge of the charge layer follows from this 

expression and Eq. 9. 

?L = Z - CI +)(1 r) 

Normalization of these last two expressions in accordance with 

t - /r , v - rbV/• = cr/( Vl/j) 

(20) 

(21) 

I 
I 
I
3 

I 

results 
results in 

in 

I 

and 

Vh t 

I 
The evolution of the charge layer is illustrated in the figure. 

rF-

V, = 

=O., 

0.2 

1 
I 
I 
II£ 
IIi 

0 ... 

I 
II. 
I 



f 5.26


Prob. 5.7.1 The characteristic equations are Eqs. 5.6.2 and 5.6.3, written 

as 

(1) 

I •= U+kE (2) 

It follows from Eq. 1 that 

_____ E (3) 

I of 1 6 p* I + & ob 
Charge conservation requires that 

S= f(Lb+IU) = (4) 

I where i/A is a constant. This is used to evaluate the right hand side of 

Eq. 2, which then becomes 

=I + ) (5) 

where Eq. 3 has been used. Integration then gives 

!W0 
!Thus, 0 

+ jt -ý-i  (7) 

Finally, substitution into Eq. 3 gives the desired dependence on z. 

I 

II. IP ~ e-
I 
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Prob. 5.9.1 For uniform distributions, Eqs. 9 and 10 become


ý.-. = P. _1o./÷

cit 

Subtraction of Eq. 1 and 2 shows that


A 
I+- (tioo e+ 0 

and given the initial conditions it follows that


Note that there being no net charge is consistent with E=0 in Gauss' law.


(b) Multiplication of Eq. 3 by q and addition to Eq. 1, incorporating


Eq. 5, then gives


The constant of integration follows from the initial conditions.


14++-+nh = -hC 

Introduced into Eq. 3, this expression results in the desired equation for 

n(t). _I 7. 
S= -. = ti + L( to- ) (8) 

Introduced into Eq. 1 it gives an expression for ~i).


(c) The stationary state follows from Eq. 8


=(hh 13 - h (10) 

(d) The first terms on the right in Eqs. 8 and 9 dominate at early times 

making it clear that the characteristic time for the transients is I- =-/1. 
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Prob. 5.10.1 With A(t6,10) defined as the charge distribution when t=0, 

the general solution is 

on the lines


a= U.t +1o (2)


Thus, for <(0O, F=0 and /;=o on


wo= ?-and t (3) 

while for to0a /P and qxpf fl) on 
III
I 

tod (J > 0 (4) 

s so 
u 

on 
s s own P.. 

14,P(XZO 
in the ficure. 

pictorially. . . . ... . . . j ... 

I-A 

m 

1[r, ý. 
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Prob. 5.10.2 With the understanding that time is measured along a characteristic 

line, the charge density is - (t- i)/r 

p =,,..(t =t..,-ao) e ', -36la- (1) 
where ta is the time when the characteristic passed through the plane z=0, as 


shown in the figure. The solution to the characteristic equations is


XA or ,• ,- (2)


Thus, substitution for t -t in Eq. 1 gives the charge density as 

SS ; B < t/J (4) 

The time varying boundary condition at z=0, the characteristic lines and the


charge distribution are illustrated in the figure. Note that once the wave-front


has passed, the charge density remains constant in time.


I 
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Prob. 5.10.3 With it understood that


V 
the integral form of Gauss' law is 

S *-Fi :=(2) 

and conservation of charge in integral form is 

I 

I 

Because E and Cr are uniform over the enclosing surface, S, these 

combine to eliminate E and require 

di a-

Thus, the charge decays with the relaxation time. 

(4) 

I 

I 
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Prob. 5.12.1 (a) Basic laws are


The first and second are substituted into the last with the conduction cu rrent


as given to obtain an expression for the potential


(4) 

With the substitution of the complex amplitude form, this requires of the


potential that


,k -,00 (5) 

where


Although I is now complex, solution of Eq. 5 is the same as in Sec. 2.16, 

except that the time dependance has been assumed. 

A d , . A. .Adf, 

d> ~fL prr--u~ ox ~~ ~ a (x - P) 

is14ý 'CA 

from which it follows that


A3 ,,. Y• 6_^•P 
'- -' -I 

Evaluation at the (d,3) surfaces, where x = 4 and x = O , respectively, 

then gives the required transfer relations 
4X|


'- C'Ot Y&~ 
I 

(~3~ D+' 

- I 
A,-Q4Z
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I 	 Prob. 5.12.1(cont.) 

(b) In this 	limit, the medium might be composed of finely dispersed wires


extending in the x direction and insulated from each other, as shown in


the figure. With 0 and - ,
'o 


I
CMS CJ-*O. 

That this factor is complex means that 

the entries in Eq. 8 are complex. Thus, 13 condu.. r$ 

there is a phase shift (in space and/or - S it- 

in time depending on the nature of the 

excitations) of the potential in the bulk 

relative to that on the boundaries. The

amplitude of ' gives an indication of the extent to which the potential 

£ penetrates into the volume. As co-.O,6--O , which points to an "infinite" 

penetration at zero frequency. That is, regardless of the spatial distribu

tion of the potential at one surface, at zero frequency it will be reproduced 

,t 	 at the other surface regardless of wavelength in the directions y and z.


Regardless of k, the transfer relations reduce to


S(9)-I 	 I


The "wires" carry the potential in the x direction without loss of spatial


Sresolution.

(c) With no conduction in the x direction but finely dispersed conducting 

sheets in y-z planes, \ ' · ~oJ E) . Thus, the fields do not penetrate 

t in the x direction at all in the limit CJ-0 . In the absence of time vary

ing excitations, the y-z planes relax to become equipotentials and effectively

I 	 shield the surface potentials from the material volume.


I 
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i 

Prob. 5.13.1 a) Boundary conditions are QI 
(1) I 

/ 

(2)


Charge conservation for the sheet requires thaLt I
=0 
F' 

where


In terms of complex amplitudes,


)-0 (3)


Finally, there is the boundary condition
 I

(4) 

Transfer relations for the two regions follow from Table 2.16.2. They are written


with Eqs. 1,2,and 4 taken into account.
 I

= •[m (, C) ~ ,(q,•) (5)

fi~J (6) 
Substitution of Eqs. 5b and 6a into Eq. 3 give


" § + i ( W• -n• ) •o 1 4 6 0(7)O v,,.4 

(8) 1

h, SeI ewR) ,q)]R(m, -T,.(6 

I
where S. =6:'(W IXIR/a-

I
|
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I 
Prob. 5.13.1 (cont.)


b) The torque is


-r A !E (9) 

AA
Because w•,/R and because of Eq. 5b, this expression becomes 

- I , AA,,) V 0 b (10)oIE. m2 

Substitution from Eq. 8 then gives the desired expression


A ( )11) 

Prob. 5.13.2 With the (9,f)coordinates defined 

as shown, the potential is the function of 9 

i shown to the right. This function is 

represented by 

A.  V" 

31tIzeThe multiplication of both sides by


and integration over one period then gives


. i _ _


01 \G • e (2) 

which gives (n -- m)


I Looking ahead, the current to the upper center electrode is


AS h (=F (4) 

. II e ** 

It then follows from Eqs. 6b and 8 that


t CJWEe 56 __ (5)_ 

where =~(WE- .L)TR•,/d,


I 
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Prob. 5.13.2 (cont.) I 
If the series is truncated at m=±1, this expression becomes one 

analogous to the one in the text. 

+ (6) 

_ s.-i 1 1 

I 

Prob. 5.14.1 Bulk relations for the two regions, with surfaces designated


as in the figure, are

U 

F (1) 

P  I 
and


Integration of the Maxwell stress


I!
over a surface enclosing the rotor


U
amounts to a multiplication of the


the surface area, and then to obtain a torque, by the lever arm, R.


b ^ b 
Because •-- +~-' , introduction of Eq. lb into Eq. 3 makes it possible to write 

this torque in terms of the driving potential :- Vo and the potential 

on the surface of the rotor. 

I 
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Prob. 5.14.1(cont.)


iT71 c, 6?Al(1!= V.(4) 

There are two boundary conditi.ons at the surface of the rotor. The potential


5 must be continuous, so 

(1 (5) 

and charge must be conserved.


Substitution of Eqs. lb and 2, again using the boundary condition V= and


Eq. 5, then gives an expression that can be solved for the rotor surface potential.


A = A (7) 

Substitution of Eq. 7 into Eq. 4 shows that the torque is


-rr Fj1 (8) 

f where Se '-

Rationalization of Eq. 8 show that the real part is


-T ~ (Er O4E12 N (O~ Se (9)CI V. 

Note that f (0,R) is negative, so this expression takes the same form as 
q m 

Eq. 5.14.11. 

I

I


I 
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Prob. 5.14.2 (a) Boundary conditions at the rotor surface require


continuity of potential and conservation of charge.


(1)


T r(2) 

where Gauss'law gives GC EE. - 6 r 

Potentials in the fluid and within the rotor are respectively


. E(t)'Cco e + D (3)-case 

These are substituted into Eqs. 1 and 2, which are factored according to 1 

whether terms have a sin 9 or cos 9 dependence. Thus, each expression 1 

gives rise to two equations in P., Py, Qx and Qy. Elimination of Qx 

and Qy reduces the four expressions to two. 

C1 +(E ) E I+C"1 CE ~-~4crP=-b(( 

(6)


To write the mechanical equation of motion, the electric torque per unit


length is computed.


rr 6 (7) 

o r

Substitution from Eq. 3 and integration gives 

'T= (8)r 

Thus, the torque equation is


'I J (I - -; Iec 9 'F- (9) 

The first of the given equations of motion is obtained from this one by using S 
the normalization that is also given. The second and third relations follow f 
by similarly normalizing Eqs. 5 and 6.
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Prob. 5.14.2(cont.)


I 	 (b) Steady rotation with E=l reduces the equations of motion to


5~P 	 (12) 

Elimination among these for .Q. results in the expression 

Hez( 4 )f (4')CL 	 (13) 

One solution to this expression is the static equilibrium = O . 

Another is possible if H2 exceeds the critical valuee

I 	 1 
in which case L is given by " 

0+ ;= A2-	 (15) 

Prob. 5.15.1 From Eq. 8 of the solution to Prob. 5.13.8, the temporal modes


i are found by setting the denominator equal to zero. Thus,


Solution for 	C then gives


cI= MXLI+ 'ERtrýI Jl ,R)- ý.b,R)2	 (2) 

I 	 where J,(q4. and (t(6,R)<O so that the imaginary part of t represents 

decay. 

I Prob. 5.15.2 The temporal modes follow from the equation obtained by setting


I the denominator of Eq. 7 from the solution to Prob. 5.14.1 equal to zero.


LnTh) 	 ))=0csji'n~ )- "b*(O1 h)+&(c) . i)lE O~ - 6b (o, rI, (1) 

Solved for J , this gives the desired eigenfrequencies. 

SNote that while 	 the frequencies represent decay.(2) 

I 	 Note that .(ik%))O while (01)<O , so the frequencies represent decay. 
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Prob. 5.15.3 The conservation of charge boundary condition takes


the form


where the surface current density is 
 5 
S=Y E~)+ ((2) ~ 

Using Eq. (2) to evaluate Eq. (1) and writing E in terms of the potential, • ,


the conservation of charge boundary condition becomes


With the substitution of the solutions to Laplace's equation in spherical


coordinates 
 I


- Aa• (4) I 
the boundary condition stipulates that


_Q,, A.(5) 

By definition, the operator in square brackets is


S1" (6) 

and so the boundary condition becomes simply


-; (V+) + .( - n =o (7) 

In addition, the potential is continuous at the boundary r = R. 

T2 =1(8) 

Transfer relations representing the fields in the volume regions are 

Eqs. 4.8.18 and 4.8.19. For the outside region 9-o.(a) while for the I 
insiCe region, O-, (b). Thus, Eq. (7), which can also be written as 

I 
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I 	 Prob. 5.15.3 (cont.) 

(+ 	 (9) 

becomes, with substitution for -r and , and use of Eq. (8), 

A 

This expression is homogeneous in the amplitude ', (there is no drive) 

5 and it follows that the natural modes satisfy the dispersion equation 

= ._.n( _____ _, __) (11) 

f 
where (n,m) are the integer mode numbers in spherical coordinates. 

In a uniform electric field, surface charge on the spherical surface 

6I 	
would assume the same distribution as on a perfectly conducting sphere.... 

a cos 9 distribution. Hence, the associated mode which describes the 

build up or decay of this distribution is n = 1, m = 0. The time constant 

for charging 	or discharging a particle where the conduction is primarily on


j the surface is therefore


I 
/Y Ice +CLW )ay (12)


I 
I

I 
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Prob. 5.15.4 The desired modes of charge relaxation are the homogeneous


response. This can be found by considering the system without excitations.


TIlus, for Lthe eXLerior region, 

S6b .6 

while for the interior region,


I 
1 (2 

At the interface, the potential
 I 
must be continuous, so


- (3)=.b 

The second boundary condition


combines conservation of charge and


Gauss' law. To express this in terms of complex amplitudes, first observe


that charge conservation requires that the accumulation of surface charge


either is the result of a net divergence of surface current in the region of I

surface conduction, or results from a difference of conduction current from


the volume regions.


where


3For solutions having the complex amplitude form in spherical coordinates, 


I__L_ (,/;,., ) _ -1,-• -/ =-(5) 

so, with the use of Gauss' law, Eq. 4 becomes


Substitution of Eqs. 1-3 into this expression gives an equation that is homogeneous 

in . The coefficient of must therefore vanish. Solved for jW, the 

resulting expression is 

9I 
? (7) 
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I Prob. 5.15.5 (a) With the potentials in the transfer relations of 

3 Prob. 5.12.1 constrained to zero, the response cannot be finite unless 

the determinant of the coefficients is infinite. This condition is met if 

5 Y&0O . Roots to this expression areT( nT, n = i, 2, ..... andSini 

it follows that the required eigenfrequency equation is the expression for


I Y with = 

IV + (1Yj 
(b) Note that if T-=- a m , this expression reduces to -O-/C regard

less of n. The discrete modes degenerate into a continuum of modes represent

ing the charge relaxation process in a uniform conductor. (c) For --WO 

g and -'o. , Eq. 1 reduces to 

- - rrr - h 2)n t 

Thus, the eigenfrequencies as shown in Fig. P5.15.5a depend on k with


I the mode number as a parameter.


aI%


Ik


I, -A~


o i 2 3 4 5 

i 
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 a 

Prob. 5.15.5(cont.) I 

(d) With C,=T mO - = 0 o ,Eq. 1 reduces to 

and the eigenfrequencies depend on k as shown in Fig. P5.15.5b.


-A. 
&i


IE 

·I

I

I


I 
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Prob. 5.17.1 In the upper region, solutions to Laplace's equation take


the form


_ b s: P.(x-a) 
z 11, %94,4 sn I 4, (X 

It follows from this fact alone and Eqs. 5.17.17-5.17.19 that in region I,


where 	 =O


_(__-_)_ _ _ -'_ s;k ~S (x-d) 
a4--.'.A -- # sinb F&, 

Similarly, in region II, where " 
A -00 ký%-(31_j• 

; C ( e ,s ihbh 

as' n=
(3) 

+ 	 (CJ-(&U)e sigh (S(x-A) 

0 ( () sn kIpdc.4 
Q nk~ 

lith,+- (hw-tUý e (K-4) eC 
C'A 

+6EV 
1 - Rt, -(3 ) 1,(Ci. 41, s,'oa 

and in region III, where 1 - O 

a;s I ( i%,-e) o'(cz hd 
n.l 	 • •'S;" Q 

In the lower region, ' 0 throughout, so 

StK 1, (x+4)b,=~ 
sinh fkd 

and in region I	 "Td 

61~e NV2-)0 (O-B~IeaS~kI 
a.( 4c1) 

I1= -I ( F IDV,-es ,1ý. )( 	 - ý-t*. 

in region II
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Prob. 5.17.1 (cont.)


6A6i (cn)Le S-(. 

--O____________1 ( Cx_ (7) 

and in region III 
 J 

-'1 1? (8) 

Prob. 5.17.2 The relation between Fourier transforms has already been


determined in Sec. 5.14, where the response to a single complex amplitude 
 S 
was found. Here, the single traveling wave on the (a) surface is replaced


by 3

V(it e, 1 (, - (- p wt -() & a 

where


V. j(2) 

Thus, the Fourier transform of the driving potential is

& d t = = O (3) 

It follows that the transform of the potential in the (b) surface is given

A A 

by Eq. 5.14.8 with V0 , and a=b=d. 

1 + (4) 

where • is given by Eqs. 1 and 2. The spatial distribution follows by taking


the inverse Fourier transform. 
 U 
I 
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Prob. 5.17.2(cont.)


I Aror . ',, (5) 

With the transverse coordinate, x, taken as having its origin on the moving sheet, 

II " >°<A (8) 

j Thus, the n # 0 modes, which are either purelly growing or decaying with an 

exponential dependence in the longitudinal direction, have the sinusoidal


exponential dependence in the longitudinal direction, have the sinusoidal


transverse dependence sketched. Note that


these are the modes expected from Laplace's


equation in the absence of a sheet. They


have no derivative in the x direction at n= o


the sheet surface, and therefore represent 

modes with no net surface charge on the , 

sheet. These modes, which are uncoupled from the sheet, are possible because 

of the symmetry of the configuration obtained by making a=b. The n=O mode 

is the only one involving the charge relaxation on the sheet. Because the 

wavenumber is complex, the transverse dependence is neither purelly exponential


or sinusoidal. In fact, the transverse dependence can no longer be represented


by a single amplitude, since all positions in a given z plane do not have the
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Prob. 5.17.2(cont.)


By the cLC•V 4same phase. using identity ,AC- (CIkV0 4-A 

the magnitude of the transverse dependence in the upper region


can be shown to be


RC.J tIAI" 4r n/c~ d ~S'~,d ~L'chd -V 

where the real and imaginary parts of k are given by Eq. 7b.


In the complex k plane, the poles of Eq. 5 


are as shown in the sketch. Note that k= /a is 

not a singular point because the numerator 

contains a zero also at k= . In using 

the Residue theorem, the contour is 

closed in the upper half plane for z < 0 

and in the lower half for z ) ". 

For the intermediate region, II, the term 

given by Eq. 8


(n I 
I 

r i 
I 

-

I I 
multiplying exp jk(R -z) must be closed from above while that multiplying exp -jkz
 I
is closed from below. Thus, in region I, z< 0,


I'e- V. -C3 + (10) 

U 
in region II, the integral is split as described and the"pole"at k= P is now 

Iactually a singularity, and hence makes a contribution.0< <
<

See-, 

I 
4- .C-o U) 

U 
pC 

Ci~(;~:r:,Ie~o3(~f+~e } 
Finally in region III, z >
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5I · Prob. 5.17.2(cont.) 

IIl


4-Eo 0. 16O- ) e (12)e 

The total force follows from an evaluation of +t


Use of Eqs. 5.14.8and 5.14.9 for and results in 

A r (14) 

The real part is therefore simply


I C (c-,u7cCOX, (15) 

where the square of the driving amplitudes follows from Eq. 3.


'A ,__, , (1 6 ) 

I


I

I

I


I

I





