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Problems for Chapter 2

For Section 2.3:

Prob. 2.3.1 Perfectly conducting plane parallel plates are shorted at z = 0 and driven by a distributed
current source at z = -Z, as shown in Fig. P2.3.1.

i(t)

Fig. P2.3.1

(a) Apply the normalization of Eq. 4b to Maxwell's equations used to represent the fields between the
plates. There is no material between the plates, so magnetization, polarization and conduction
between the plates are ignorable.

(b) Simplify these equations by assuming that " = E (Z,t)l and = H (z,t)i y

(c) The driving current is i(t) = Re I1 exp jut. Find E , H , the surface current and surface charge
on the lower plate to second order.

(d) Convert the results of (c) to dimensional expressions.

(e) Solve for the exact fields and expand in a to check the results of (d).

Prob. 2.3.2 The parallel plates of Prob. 2.3.1 are now driven along their left edges by a voltage
source v(t). They are open along their right edges. Carry out the steps analogous to those of
Prob. 2.3.1. A normalization that makes the EQS limit the zero order approximation is appropriate.

Prob. 2.3.3 Perfectly conducting plane parallel electrodes in the planes x = a and x = 0 "sandwich"
and make electrical contact with a layer of material having conductivity a and thickness a. These
plates are driven along their edges so that the surface current is Re K exp(jwt)_ in the lower plate
at z = -k and the negative of this in the upper plate. The edges of the plates at z = 0 are "open-
circuit." In the conductor, fields take the form Ex(z,t), H y(z,t).

(a) Show that all of Maxwell's equations are satisfied if

2
dfi dH

+k2H = 0; k/2o-o -1 dH
2 k 0 y -e JoW1 ; Ex (a + JWEo) dzdz

(b) Show that

S e-jkz ejkz jWt -jkz jkz Wt
H = tRe K e e e Re Kjk(e + e )eJE 
Y jk2 -jkP. x (+ jW+ e)(e - e )y e - e

o

(q) In Fig. 2.3.1, T -+ l/W and provided Te: Tm, there are two possibilities:

(i) WT << 1 and WT << 1. Show that in this case kk << 1 andem m

K ejt
E x KRe

Re ( + jo)

so that the system is equivalent to a capacitor shorted by a resistor (what values?).

(ii) WTem << 1, WTe << 1. Show that in this case k + (-1 + j)/6m, where the skin depth
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6 E/ 2/Wo, and that Hy is the superposition of "skin-effect" waves decaying in the direction of
phase propagation.

(d) Now, consider the EQS model from the outset. Under what conditions are the laws (Eqs. 23a - 27a)
valid? Show that the solution for Ex is consistent with part (c).

(e) Consider the magnetoquasistatic laws (Eqs. 23b - 27b) from the outset and show that the result is

consistent with part (c). For what conditions are these laws valid?

Prob. 2.3.4 Given the EQS laws, Eqs. 23a - 25a, together with conduction and polarization constituti

laws and the material motions, E, and pf can be determined. This is generally possible because the
constitutive laws do not typically involve H. Then, if ý is required, Eqs. 26a and 26b, together with
a magnetization constitutive law- can be used. It is clear that these relations uniquely define it,
because they stipulate both V x H and V * I. Consider now the analogous question of uniquely deter-
mining i in an MQS system. In such a system the conduction and magnetization constitutive laws
respectively take the form

Jf = (r,t)(E + vx1 H) ; M=(H,)

and Eqs. 23b - 25b together with a knowledge of the material motion can be used to find H and M.
Show that 1 is then uniquely specified and that recourse to Gauss' Law is made only to make an
"after the fact" evaluation of the charge density.

For Section 2.4:

Prob. 2.4.1 A material suffers a rigid-body rotation about the z axis with constant angular velocity
0. The particle at the position (ro, 0) when t = 0 is found at

(ro,6o,t) = r cos(t O+ 6)i + r sin(Gt + o)iy

at a subsequent time t. This Lagrangian description is pictured in Fig. P2.4.1. Use Eqs. 2.4.1
and2.4.2 to show that the velocity and acceleration are respectively

÷t -t
v r= ~ [-sin(t + eo)i x + cos(Qt + eo) y]

- _ 22
a = -_ Q

Y Y
Fig. P2.4.1. Specific example

in which rigid-
body steady
rotation is
represented in
(a) Lagrangian
coordinates and
I- LE 1 i X

k ) u er an
coordinates. (a)

Prob. 2.4.2 One incentive for using an Eulerian representation is that motions which are time

dependent in Lagrangian coordinates can become independent of time. To illustrate, consider the

alternative representation of the rigid body rotation of Prob. 2.4.1.

The material velocity at a given point (r,6) or (x,y) is

v = ir =  (-r sin ei + r cos 6iy) Q(-yi + xi y
0 x y x y

i.e., the velocity is independent of time. Clearly the acceleration is not obtained by taking the

partial derivative with respect to time, as might be suggested by the misuse of Eq. 2.4.2. Use

Eq. 2.4.4 to find a and compare to the result of Prob. 2.4.1.
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For Section 2.5:

Prob. 2.5.1 A scalar function takes the traveling-wave form 1 = ReO(x,y) expj(At-kz) in the frame
of reference (T,t). The primed frame moves in the z direction relative to the unprimed frame with
the velocity U. Use the convective derivative to find the rate of change of 0 for an observer moving
with the velocity Ui . Compute this same time rate of change by expressing ( = O(x',y',z',t') and
finding 3/Dt'. Usezthese results to deduce the transformation W' = W - kU. If W' = 0, W = kU.
Explain in physical terms.

Prob. 2.5.2 A vector function A(x,y,z,t) can also be evaluated as A(x',y',z',t') where the prime
coordinates are related to the unprimed ones by Eq. 2.5.1. Show that Eq. 2.5.2b holds.

For Section 2.6:

Prob. 2.6.1 The one-dimensional form of Leibnitz' rule pertains to taking an integral between end-
points (b) and (a) which are themselves a function of time, as sketched in Fig. P2.6.1.

Fig. P2.6.1. One-dimensional form of db do
Leibnitz' rule specifies how derivative dt
can be taken of the integral between I X
time-varying endpoints. b(t) a(t)

Define A = f(x,t)i and use Eq. 2.6.4 with a suitable surface to show that, for the one-
dimensional case, Leibnitz' rule becomes

a(t) a

-d ) f(x,t)dx a dx + f(a,t)ý - f(b,t)ddt fat dt dt
b(t) b

Prob. 2.6.2 The following steps lead to a derivation of the generalized Leibnitz rule, Eq. 2.6,4
where S is pictured as $2, and S, at the times t + At and t, respectively. The vector function A
depends on both space and time. However, for convenience, the spatial dependence is not explicitly
indicated in the following. By definition:

d 4.+ +
A-n da = lim ( A(t+At)nda - A(t)'nda (1)

S Lt+0- S2 S

so the first integral in brackets on the right must be evaluated to first order in At. To that end,

(a) Apply Gauss theorem to the volume V swept out by S during the time At. Note that n is the normal
to the open surface S and show that to first order in At,

SV.AdV = JA(t)_nda - A(t)*nda - At A 4v x dt (2)

V S2 SiI C1

(b) Argue that also "to first order in At, Fig. P2.6.2

4-
4+ (DA ...A (3A(t+At).nda A(t)nda + t)tda + ** (3)+

S2 S2 S1

(c) Finally, show that the volume element dV, called for in evaluating the left side of Eq. 2, is
dV = Atv'nda.

(d) Combine these results to evaluate the right-hand side of Eq. 1 and deduce Eq. 2.6.4.
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Prob. 2.6.3 It is sometimes necessary to evaluate the time rate of change of a line integral of a
vector variable having time-varying end points. The problem is to evaluate the derivative

b(t) A(t + At) b(t)
-d Ad = Atlim 0 A(t + At).d - A(t).

a(t) a(t + At) a(t)

At

Here a and b denote time-dependent vector positions in space. What is meant by the line integration
is indicated by Fig. P2.6.3.

nt,(-A÷+1 b(tt-At)
Fig. P2.6.3. Time-varying
contour of line integration.

ni

The contour of integration at the time t is instantaneously sketched. At that instant each point on
the contour has a velocity vs so that in a time At the contour has moved by an amount vAt. By defin-
ition, the velocity of the end point is vs evaluated at the end point.

The theorem to be derived shows how the integration can be carried out after the time derivative
has been taken. Thus it is analogous to the generalized Leibnitz rule for differentiation of a surface

integral having time-varying geometry. The desired theorem states that

b(t) b(t) b
d ý A 4* 4 . 4. 

Adt d d + A(b,t)'vs(b,t) - A(a,t)'v s(a,t) + (VxA)xv dt

a(t) a(t)
a

Show that this rule can be derived following steps motivated by those used in the derivation of the
generalized Leibnitz rule for a time-varying surface integration.

For Section 2.8:

Prob. 2.8.1 To illustrate how the steady-state motion of dipoles results in a J and hence an induced
magnetic field, consider a slab of material extending to infinity in the y and z directions between
infinitely permeable surfaces at x = ±a. The slaj has a thickness 2a, moves in the y direction with
uniform velocity U and supports the polarization P = -(Poa/i)sin(7rx/a)ix, where po is a given con-
stant. Fields are in the steady state and there is no free current density.

(a) Observe that Ampere's law, Eq. 2.2.2, and the boundary conditions are satisfied by making =
x v. What is A?

(b) Compute Jp and then use Ampere's law to find H in much the same way as if Jp were a free current
density.

4.

(c) Find pp and show that in this case Jp is simply the result of polarization charge in motion

For Section 2.9:

Prob. 2.9.1 To someone not appreciating the importance of keeping field transformations consistent
with the fundamental laws, it might appear that Faraday's law written in the Chu formulation
(Eq. 2.2.1) would imply that a magnetized and conducting material set into motion would automatically
support an electric field that would drive a free current density. In fact, there is an E, but no Jf.
Consider as a specific case a magnetized slab, having M =-(poa/Trpo)sin (rrx/a)ix, extending to infinity
in the y and z directions, having boundaries at x = ±a in the x direction and suffering a uniform y-
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Prob. 2.9.1 (continued)

directed translation with velocity U. Perfectly conducting walls bound the slab at x = ±a. Steady
state conditions prevail.

(a) Find the H induced by the given magnetization.

(b) Use Faraday's law to deduce E.

(c) Now, if the material also has a conductivity a, so that an observer at r st in the conductor can
jpply Om's law in the form = E', 4ecause f = 

:f but ' = E + vj 0  (Eqs. 2.5.11 and 2.5.12),
Jf = a(E + vx1oH). Show that in fact Jf = 0.

For Section 2.11:

Prob. 2.11.1 A plane parallel capacitor with a
electrodes at potentials v1 and v2 is used to VI1
impose a field on a third electrode that is
grounded and free to move either longitudinally

4+
or transversely with displacements (51' E2)*
The electrodes, shown in Fig. P2.11.1, have .- -1 IV2
depth d into paper. Ignore fringing fields
and find the capacitance matrix relating the
charges (ql,q2) to the voltages (vl,v2).

Fig. P2.11.1

For Section 2.12:

Prob. 2.12.1 A pair of perfectly conducting coaxial
one-turn coils have the shape of circular cylinders
of radius a and 5, each with a length d >> a.
Currents il and 12 are fed to the coils through
parallel electrodes having a spacing that is
negligible compared to other dimensions of
interest. Determine the inductance matrix,
Eq. 2.12.5, relating (il, X2) to (ili 2).

Fig. P2.12.1

For Section 2.13:

Prob. 2.13.1 For the system of Prob. 2.11.1, find the total coenergy storage w'(vl,v2,1 t, 2) by
integrating Eq. 2.13.10.

Prob. 2.13.2 The dielectric slab shown in Fig. P2.13.2 a
is composed of material having the constitutive law D =
o0 + ~/al V-T + E2 . The slab has depth d into the S··: .*.··· . . ..*. . . . . . . . Vr

paper. Under the assumption that Pf=O in the dielectric
and that its edges remain well removed from the fringing
fields, find the dependence of the coenergy on (v,E).

Fig. P2.13.2

For Section 2.14:

Prob. 2.14.1 For the system described in Prob. 2.12.1,

(a) Find the energy, w = w(XA1l', ), (b) the coenergy w' = w'(il^i2Z).

For Section 2.15:

Prob. 2.15.1 Show that the Fourier coefficients given by Eq. 2.15.8 follow from the procedure
outlined in the paragraph following Eq. 2.15.7.
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Prob. 2.15.2 A function O(z,t) is a square-wave function of z with magnitude Vo(t). That is,
D = Vo(t), -V/4 < z < £/4 and D = -Vo(t), £/4 < z < 3p/4. Show that the Fourier coefficients are

ki
Dm = 0, m even and Dm = (  4Vo(t)sin )/(km ), m odd

Prob. 2.15.3 A function O(z,t) is zero except in the interval -k/2 < z < k/2, where it is Vo(t).
Show that its Fourier transform is ý(k,t) = kVo(t) sin(-)/(kk/2).

2

Prob. 2.15.4 Carry out the spatial average of the product of two Fourier series, as called for in
completing Eq. 2.15.17.

For Section 2.16:

Prob. 2.16.1 Start with Eq. 2.16.14 and the relation between potential and flux, Eq. 2.16.5 and

deduce the transfer relations of Table 2.16.1 for a planar layer.

Prob. 2.16.2 Start with Eqs. 2.16.20, 2.16.21 and 2.16.25 and deduce the transfer relations of

Table 2.16.2. Use the properties of the Bessel functions as r-* 0 and r-*- to deduce the limiting case

of Eqs. c and d.

Prob. 2.16.3 Start with Eq. 2.16.36 and deduce the transfer relations of Table 2.16.3. Evaluate the

appropriate limits to arrive at Eqs. c and d.

Prob. 2.16.4 A region of free space is bounded by fictitious parallel planes at x = A and x = 0, as
shown in Fig. P2.16.4.

- a z Fields take the formX
B - za - E = Re E(x) ej(wt-kz);

'" '// ///4 +/t -,', H = Re &(x) ej(wt-kz)

---.Z
so that there is no dependence on y and the time

dependence is explicitly taken as exp (jwt). The

objective is to obtain transfer relations between

tangential and perpendicular field components at
z, z

/I/~ ~ the a and 8 surfaces without the quasistatic

approximation.

Fig. P2.16.4

(a) With fields taking the given form, show that all components of ý and ý can be written in terms

of E and Hz. (This follows from Ampere's and Faraday's laws). Also showof the axial components z 

that E and Hz satisfy the wave equation.

(b) Write E, and Hz in terms of the amplitudes Ez, z and H defined as evaluatez , H these quantities 

on the respective surfaces.

(c) Show that the transfer relation for the layer is

"a -Ek 1
CE j- coth(yA) 0
x Jy sinh(yA) zY

•.k 1 .Ek
cE E-3- coth(yA) 0
x Sy sinh(yA) zY

"a _k 1jk pHIx 0 coth(yA)
zY

-j- coth(yA)

jpk 1
0 sinh(yA) zY L Hx y 

4.
where the other components of E and H are found from

we I -WP -
= , E = , and Y /k/2k 2

k x y k x

Chap. 2
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Prob. 2.16.4 (continued)

(d) Show that in the quasistatic limit the relation reduces to the electroquasistatic and magnetoquasi-
static transfer relations of Table 2.16.1 with appropriate identification of variables for the
electric and magnetic relations.

(e) To make a connection with TE and TM modes in a plane parallel plate waveguide, let the % and 6
surfaces be perfectly conducting electrodes. Thus, the boundary conditions are

a = E = 0 TM modes
z z

B = B = 0 TE modes
x x

where the transverse magnetic and transverse electric modes can be separated because of the
form taken by the transfer relations. Use these relations to argue that fields within that
satisfy these homogeneous boundary conditions must also satisfy the dispersion equations

2  2 n. 2
2 pe = k + ( ; n = 1, 2, 3...

Prob. 2.16.5 A planar region, shown in Table 2.16.1, is filled by an inhomogeneous dielectric, with
a permittivity that depends on x:

E(x) = E6 exp2nx, -E q n(s /E6 )/2A

The free charge density is zero.

(a) Show that the potential distribution is

~ e-n(x-A) sinh x -"x sinhX(x-A)
sinhAA sinhXA

where

22 

(b) Show that the transfer relations are

Dx cothA)e2

xX sinhXA

D -eA + cothXA
x sinhXA X

Prob. 2.16.6 A planar region, shown in Table 2.16.1, is filled by an anisotropic material having the
constitutive law Di = cijEj. The permittivity coefficients are uniform throughout. Determine the
transfer relations in the form of Eqs. (a) of Table 2.16.1.

For Section 2.17:

Prob. 2.17.1 In developing conditions on coefficients in the transfer relations with the potentials
expressed as functions of the "flux" variables, it is natural to use the energy function as exemplified
in this section. The coenergy function is more convenient in dealing with the potentials as the inde-
pendent variables. For the transfer relations of Sec. 2.16 written in the form

D
n

D
n

derive conditions analogous to those of Eqs. 2.17.10 and 2.17.12.
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Prob. 2.17.2 Use the reciprocity condition, Eq. 2.17.10 to show

kx[H (jkx) J'(jkx) - J (jkx) H'(jkx)] = constantm m m m

Use Eqs. 2.16.22 and 2.16.23 to establish that the constant is 2/fr. Thus, the numerators of the

functions gm and Gm in the cases k 4 0 of Table 2.16.2 are considerably simplified from what is obtained

by direct evaluation.

Prob. 2.17.3 With Eq. 2.17.7, it is assumed that the excitations on the a and B surfaces are in
spatial phase, and that the Aij are real. By allowing the excitations to have arbitrary phase, it is
possible to learn more about these coefficients. In general, the expression replacing Eq. 2.17.7 in
Cartesian or cylindrical geometry is

6w= C Re[-at 6  + a)6(D ) ]
2n n

Because Re u 6V = u 6V + u 6V., this expression becomesr r i 1

6w = C[-aa a a~ - 6 + a 6b +a2 r nr i ni r nr i ni

That is, the real and imaginary.parts of the excitations on each surface gre independent variables.

Use the fact that the energy is a state variable: w = w(D , ., D , D .) and show thatnr ni nr ni

3w _w a •B w aO5• O w
-a -a a a. = , a = , a =-

r 1 r 1

From these relations, derive reciprocity relations between the derivatives of (0 , 4., , .,) with
-a a r 1 r 1

respect to (D , D D , D .). Assume that the Aij can have real and imaginary parts, and show from

these reciprocity relations iat All and A22 must be real and that aAl1 2 = aOA*21.

Prob. 2.17.4 Use the results of Prob. 2.17.1 to show that the transfer relations of Prob. 2.16.5

satisfy the reciprocity relations.

For Section 2.18:

Prob. 2.18.1 For the axisymmetric cylindrical case of Table 2.18.1, show that Eq. (h) follows from

Eq. (g) and that Eq. 2.18.2 can be used to deduce the expression for the total flux, Eq. (i).

Prob. 2.18.2 Show that Eq. (k) of Table 2.18.1 follows from Eq. (j).

For Section 2.19;

Prob. 2.19.1 Derive Eqs. (e) and (f) of Table 2.19.1.
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