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Problems for Chapter 10

For Section 10.2:

Prob. 10.2.1 The region between two planes, at x = A and x = 0, is filled with a material having
uniform thermal properties that sustains fully developed flow with velocity v = v(x)ly. The surfaces
are at the respective constant temperatures (Ta, TS). In the volume, there is an arbitrary dissipation

Yd(x).

(a) Determine the temperature distribution T(x).

(b) What is the thermal flux at the boundaries? Note that this is one of a group of "fully developed"
heat conduction configurations, playing a role in heat transfer analogous to the fluid mechanics
relations of Table 9.3.1.

For Section 10.3:

Prob. 10.3.1 The magnetically excited layer considered in this section is embedded in a system in
which the surroundings are relatively thermally insulating. The temperature of the layer rises to a
sufficient extent that the steady dissipation is accommodated by the steady heat flux. However, insofar
as the time-varying part of the heat flux is concerned, the layer surfaces are bounded by thermal insula-
tors. What are the temperatures at the layer surfaces?

Prob. 10.3.2 The moving slab of Fig. 10.3.1 is now a semi-insulating dielectric having uniform elec-

trical conductivity a and permittivity E. Potential distributions at the a and B surfaces are

respectively Re$O expj(wt-ky) and ReV expj(wt-ky).

(a) Write the electrical dissipation density in the form of Eq. 10.3.6.

(b) Find the temperature distribution throughout the slab and the heat fluxes at its surfaces. Assume

that at the a and B surfaces the respective temperatures are

T + ReT expj(w 2 t-k 2y) and T + ReTexpj(w2t-k2y).

For Section 10.4:

Prob. 10.4.1 A ferrofluid has a permeability that has the temperature dependence 1 = a[1-a (T-T ),
where •a and uP are constant parameters. In the channel of Fig. 10.4.1, the fluid is subjected to a

uniform transverse magnetic field intensity Ho . The object is to pump the fluid by imposing the temper-

atures Ta and Tb on the grids, and hence producing a variation in the permeability in the direction of

the heat flux. Assume that the boundary layer thickness is small compared to the channel cross section,

so that the velocity is uniform across the channel. Determine the pressure-velocity relation that is

analogous to Eq. 10.4.7 and the temperature distribution and heat flux.

For Section 10.5:

Prob. 10.5.1 The rotor described by Eqs. 10.5.16 - 10.5.18 is in the state of steady rotation described

by Eqs. 10.5.23.

(a) Show that this stationary state is overstable if R exceeds

4
(l+f) pT+ (l+f)

2a =T f pT- (l+f)

(b) Show that the frequency of oscillation at the onset of this instability is

1/ [pT+(l+f)]
2= 2PT(l+f) [pT (l+f)l

Prob. 10.5.2 The rotor of Fig. 10.5.1 is heated from the side rather than from below. Thus the exter-

nal temperature distribution is given by Eq. 10.5.1 with sine + cose.

(a) Deduce the equations of motion, similar to Eqs. 10.5.16 - 10.5.18.

(b) Use a graphical solution similar to that pictured by Fig. 10.5.3 to determine the steady angular

velocity. Explain qualitatively the direction of rotation.

10.37 Problems for Chap. 10



For Section 10.6:

Prob. 10.6.1 Implicit to Eq. 10.6.17 is the principle of exchange of stabilities. That is, as Ram is
raised, each temporal mode becomes unstable with sn = 0. If it is only the condition for onset of
instability that is of interest, it can be assumed at the outset that sn = 0 and Ram can be treated
as an eigenvalue. Thus (Ram)n is the value of Ram that reduces the frequency of the nth mode to zero.

(a) Use Eqs. 10.6.8 and 10.6.9 with the boundary conditions that T = 0 and v = 0 on the boundaries
x = 0, x = 1 to show that, provided Ram > 0, the principle of exchange of stabilities holds.
(See the Temporal Modes subsection of Sec. 8.18.)

(b) Set w = 0 in Eqs. 8 and 9 and solve the eigenvalue problem for Ram. The result should be
Eq. 10.6.18 and hence 10.6.19.

Prob. 10.6.2 For the thermal-hydromagnetic layer between the planes a and a as treated in this
section, determine the transfer relations

ri8

_p [Cij] v-x
pýcl -x

L7

Prob. 10.6.3 Consider the layer of Fig. 10.6.2, but with viscosity.

(a) Show that the normalized equations replacing Eqs. 10.6.8 and 10.6.9 are

2_2 j j  2_ 2 2 H 2 =
[(D2-k2 - (D -k2) - 2 D2]V = -RT A]- 

p m x a

--(D2_k2 ) = -v
x

where

=KT/A 2A ^
T = TADT

x = xA vx =v xKT/A

k = k/A E = pAb2 /K•2P

and the conventional Rayleigh, Prandtl and Hartmann numbers are

ap gA DT n T IA2 c2 H
0 s T 2 oo

R -=p ; H
a KTfl PT PKT T v m 71

(b) Outline a scheme to determine the transfer relations expressing the surface stresses and
heat flux (S, Sxx Sa 5̂ , x, Px) in terms of the surface velocities and temperatures
(0x, , , , TO). The motions may be assumed to be independent of z, so kz = 0.

For Section 10.7:

Prob. 10.7.1 A thin metal cylinder-having radius R is charged by unipolar ions having the density

po at the radius a from the cylinder's center. Assume that at a given instant the charge per unit

length on the cylinder is X and that the self fields of the ions in the volume are negligible com-

pared to those due to the charge on the cylinder.

(a) Determine the ion charge density as a function of radial distance r.

(b) What is the current per unit length collected by the cylinder as a function of the voltage

of the cylinder relative to that at r = a?

(c) If the cylinder is allowed to charge up, what is X(t) given that when t = 0, X = 0?
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electric f eld on a homogeneous layer of liquid bounded from above (at x = 0) by air. Model the liquid
as devoid f all but one positive species of electrical carriers with charge density p+. Agsume that
charge in heneighborhood of the interface shields the field from the liquid bulk so that E = Eoix
at x = 0 a d E + 0 as x W-m. Hence, self fields of the ions are included.

(a) With negligible net current through the air, and hence in the liquid, show that the electric field
and charge density comprising the monolayer of surface charge for x< 0 are

Ex = Eo/(l-x/d) ; + = (E o/ad)/(l-x/ad)2 ; d = 2K+/bEo

(b) For E = 10 v/m, what is a typical value of d ?

For Section 10.8:

Prob. 10.8.1 An electrolyte is bounded by plane parallel boundaries, each having the potential -5.
They are positioned at x = 0 and x = A.

(a) Under the assumption that i << 1, what is the distribution of M? What is the potential D E= at
- -c

the midplane?

(b) For arbitrary magnitude of 0, show that in terms of normalized variables the potential distribution
is S d!

2 coshý - coshic

where again Ic is the potential at the midplane.

(c) Given the normalized spacing A E A/6 , describe a numerical procedure for finding ( and hence
determining the potential distribution.

(d) For A = 2 and 5 = 3, what is ý' ? Plot the potential distribution.

For Section 10.9:

Prob. 10.9.1 The boundaries of a planar duct, such as pictured in Table 9.3.1, have a spacing A that
is not necessarily large compared to Sd"

(a) Used Eq. a from Table 9.3.1 to express the velocity distribution in terms of the potential distrib-
ution.

(b) Show that this expression reduces to Eq. 10.9.5 in the case where the Debye length is short compared

to the channel width.

(c) In Prob. 10.8.1, a procedure is developed for finding the potential distribution with arbitrary wall

spacing. Show that the velocity distribution can be written in the normalized form

2 6
v = kTy • - D + ((x) +

2CE kT 3y - AA 
y

where v = veE kT/nq and x = x6 and where O(x) follows from Prob. 10.8.1.
- y - D

Prob. 10.9.2 A two-dimensional channel having width A has walls with potentials A = -ý . The current

density in the y direction is "fully developed" and hence the total current through the channel is given

by Eq. 10.9.13.

(a) Show that the current is related to the imposed E and the pressure gradient 2p/9y by

2P 4256
o D E A_ 3p'

i = a + E
n(kT/q) y n l y

(b) For an "open-circuit" channel (i = 0) having a length 9 and pressure difference Ap = -Z8p/9y, what

is the streaming potential v -E £?
Y
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For Section 10.10:

Prob. 10.10.1 Following Eq. 10.10.2, it is argued that the shear stress induced surface current is
ignorable compared to that driven by the imposed field. Approximate the shear stress contribution usin
the velocity U that was determined and justify this approximation.

Prob. 10.10.2 The particle considered in this section is fixed on a "stinger" which does not distort
the field or impede the flow but does constrain the particle to a fixed position relative to the fluid
at infinity. What is the force imparted by the electric field to the stinger?

Prob. 10.10.3 The particle is fixed on a stinger, as in Prob. 10.10.2, but both a uniform electric
field and a uniform flow velocity are imposed at infinity. Because the flow is now forced, the contrib
utions of the shear stress to the surface current can be significant. In view of Eq. 10.9.12, represen
the surface current as

K8 = OsE 8 + BS6r

where for 4 < kT/q, a = 2po6D2/n(kT/q) and determine the potential distribution around the particle
as a function of E and U. What is the potential if E = 0? What is f ?

For Section 10.11:

Prob. 10.11.1 A clean interface is modeled as having a surface tension Yo at the voltage vd = Od,
the tension being independent of the area A, and a Helmholtz double layer consisting of a plane paralle
capacitor having spacing A, permittivity E and zero double layer charge at vd = *d. Determine Cd, ad
and Ws, and compare to Fig. 10.11.1.

Prob. 10.11.2 A hemisphere of mercury submerged in an Pa
electrolyte is shown in cross section in Fig. P10.11.2.
The interface between liquids forms a double layer of -- ------- -----1
thickness A, pictured here as being a "Helmholtz"
layer. (Prob. 10.11.1) jte

(a) Write an expression for static equilibrium using aP
!

the control volume shown to balance the pressure
forces against those due to the combined surface
tension and Maxwell stresses. Show that the

-------- 

resulting expression is as would be deduced t- - I 

from Eq. 10.11.1, where the electrocapillary
surface tension is found in Prob. 10.11.1.

(b) Now suppose that, by means of an orifice at the center Fig. P10.11.2
of the hemisphere, a small additional amount of mercury
is introduced, so that the interface expands from R to R + 6S. Use the result of (a) to compute
the incremental change in pressure implied by the electrocapillary model.

(c) An alternative model might depict the double layer as composed of a film of insulating fluid.
In that case, the equilibrium would take the same form as found in (a). But, suppose that with
the addition of an increment of mercury the surface expands in such a way that the insulating
layer of fluid preserves its volume. Find an expression for the change in pressure associated
with an incremental change in radius 6 . Compare the result to that found in (b) and explain
the difference.

For Section 10.12:

Prob. 10.12.1 With the objective of determining the mobility b = U/Eo of the mercury drop in an
electrolyte, consider a drop that is highly conducting, with a surrounding electrolyte permeated by an
electric field which is Eoiz far from the drop. Following steps paralleling those in this section, sho
that the mobility is

b = R/(- + (2 + 3 )

A mercury drop in an electrolyte is the configuration of a dropping mercury electrode, widely
used to study electrochemical double layers because the surface is constantly renewed by continual
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Prob. 10.12.1 (continued)

generation of drops.1 The dropping mercury electrode is used in analytical chemistry as a sensitive
means of measuring trace constituents of the electrolyte.2

Prob. 10.12.2 A linear volume rate of flow is secured in the configuration of Fig. P10.12.2 by
exploiting the double layer shearing surface force density. An electrolyte is bounded from above by
insulating walls and from below by alternate sections of insulator and pools of mercury, each having
length Z >> a or b.

elecTr
e tylo i ns ulat ing con d t

Electrodes fixed adjacent to the
pool edges are driven by an external
current source and cause a "standing
wave" of current with the distribution
sketched. Hence, the ideally polarized
double layer experiences a shearing sur-
face force density tending to carry the
liquid in one direction, while the insu-
lating sections prevent backward motion
where that force density would be
reversed.

(a) Model the system as quasi-one-
dimensional, assuming fully Fig. P10.12.2
developed plane flow in each
of the sections and using mass and momentum conservation to piece these flows together at the pool
edges. Assume that gravity holds the interface flat and that the system is closed on itself.
Assume that the electrolyte is sufficiently highly conducting that charge convection at the
interface can be ignored and the interface can beregarded as essentially uniformly polarized
(even with the driving current producing a voltage drop in the interfacial plane).

(b) Find the volume rate of flow of the electrolyte as a function of the driving current.

1. An extensive treatment of the subject is given by V. G. Levich, Physicochemical Hydrodynamics,
Prentice-Hall, Englewood Cliffs, N.J., 1965, pp. 493-551.

2. J. Heyrovski and K. Jaroslav, Principles of Polarography, Academic Press, New York, 1966.
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