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664 Radia/ion 

In low-frequency electric circuits and along transmission 
lines, power is guided from a source to a load along highly 
conducting wires with the fields predominantly confined to 
the region around the wires. At very high frequencies these 
wires become antennas as this power can radiate away into 
space without the need of any guiding structure. 

9-1 THE RETARDED POTENTIALS 

9-1-1 NoohomogeDeous Wave EquatioDs 

Maxwell's equations in complete generality are 

a8
VxE =-- (I)at 

(2) 

(3) 

(4) 

In our development we will use the following vector iden
tities 

V X(VV)~ O (5) 

V - (VXA)~O (6) 

VX(VXA) ~ V(V - A) - V' A (7) 
where A and V can be any functions but in particular will be 
the magnetic vector potential and electric scalar potential, 
respectively. 

Because in (3) the magnetic field has no divergence. the 
identity in (6) allows us to again define the vector potential A 
as we had for quasi-statics in Section 5-4: 

8 = V'xA (8) 

so that Faraday's law in (1) can be rewritten as 

VX(E+ ~~) = O (9) 
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Then (5) tells us that any curl.fret= vector can ~ written as the 
gradient of a scalar so that (9) becomes 

aA 
E+-~-VV (10)

al 
where we immduce the negative sign on the right·hand side 
so that V becomes the electric potential in a static situation 
when A is independent of time. We solve (10) for the electric 
field and with (8) rewrite (2) for linear dielectric media (D = 
EE,B=#,H): 

I [ (DV) a'A] • I 
V x (VxA)=~Jf+' -v - . , (II)-= 

c at at 
~-

." 
The vector identity of (7) allows us to reduce (11) to 

• [ I a~ I a'AV A-V V-A+,- -'-::Y=-ILJ, (12) 
cat cat 

Thus far, we have only specified the curl of A in (8). The 
Helmholtz theorem discussed in Senion 5-4:"1 told us that to 
uniquely specify the vector potential we must also specify the 
divergence of A. This is called setting the gauge. Examining 
(12) we see that if we set 

I DV 
V· A =- ,2 at ( 13) 

the middle term on the left·hand side of (12) becomes zero so 
that the resulting relation between A and J, is the non· 
homogeneous vector wave equation: 

(14) 

The condition of (13) is called the Lorentz gauge. Note that 
for static conditions, V . A:: 0, which is the value also picked 
in Section 5-4-2 for the magneto-quasi·static field. With (14) 
we can solve for A when the current distribution I, is given 
and then use (13) to solve for V. The scalar potential can also 
be found directly by using (10) in Gauss's law of (4) as 

V2V+~{V'A)= - PI (15)
al • 

The second term can be put in terms of V by using the 
Lorentz gauge condition of (13) to yield the scalar wave 
equation: 

(16) 



666 

Note again that for static situations this relation reduces to 
Poisson's equation. the governing equation for the quasi...static 
electric potential. 

9-1-2 SoIa:tioo.a to dae Wave Equ.ati0il 

We see that the three scalar equations of (14) (one equation 
for each vector component) and that of (16) are in the same 
form. If we can thus finil the general solution to anyone of 
th~ equations, we know the general solution to all of them. 

As we had earlier proceeded for quasi-static fields , we will 
find the solution to (16) for a point charge source. Then the 
solution for any charge distribution is obtai~ using super
positton by integrating the solution for a point charge over all 
incremental charge clements. 

In particular, consider a stationary point charge at r = 0 
that is an arbitrary function of time Q(I). By symmetry, the 
resulting potential can only ~ a function of .,. so that (16) 
becomes 

(17) 

where the right-hand side is zero because the charge density 
is zero everywhere except at r=O. By multiplying (17) 
through by r and realizing that 

1 t;( ,av)_ a' ( V)- r - -:-,r (18)
r ar ar ar 

we rewrite (17) as a homogeneow wave equation in the vari
able (rV):. 

at 1 at 
:-t(rV)-,. ::J(rV) =0 (19) 
ar c at 

which we know from Section 7-3-2 has solutions 

(20) 

We throw out the negatively traveling wave solution as there 
are no sources for r > 0 so that all waves emanate radially 
outward from the point charge at r - O. The arbitrary 
function f+ is evaluated by realizing that as r ... 0 there can be 
no prowgation delay effects 10 that the potential should 
approach the quasi-static Coulomb .potential of a point 
charge: 

(21) 
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The potential due to a point charge is then obtained from 
(20) and (21) replacing time t with the retarded time t - r/c: 

V(,.,)~Q(, - ,I<) (22) 
41TEr 

The potential at time t depends nOl on the present value of 
charge but on the charge value a propagation time r/c earlier 
when the wave now received was launched. 

The potential due to an arbitrary volume distribution of 
charge Pt(t> is obtained by replacing Q(I) with the differential 
charge element P/(t) dV and integrating over the volume of 
charge: 

V(r,t)=L PI(t-rQPIc)dV (23) 
Lehar.,. 41TErQP 

where rQP is the distance between the charge as a source at 
point Q and the field point at P. 

The vector potential in (14) is in the same direction as the 
current density I,. The solution for A can be directly obtained 
from (23) realizing that each component of A obeys the same 
equation as (16) if we replace pIE by ILk 

A(,. ')~L I"J[(I-'9'/<> dV (24) 
Leurnm. 41TTQP 

9-2 RAnIATlON FROM POINl' DIPOLES 

9-2-1 T'be Eledric Dipole 

The simplest building block for a transmitting antenna is 
that of a uniform current flowing along a conductor of 
incremental length dl as shown in Figure 9-1. We assume that 
this current varies sinusoidally with time as 

( I) 

Because the current is discontinuous at the ends, charge must 
be d~sited there being of opposite sign at each end [q(l) = 
Re (QeiM»: 

dIi(')~ ± ~~j~±jwQ. z=±- (2)
2 

This forms an electric dipole with moment 

p=qdl i. (3) 

If we can find the potentials and fields from this simple 
element, the solution for any current distribution is easily 
found by superposition. 
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Figur~ 9· J A point dipole: antenna is compmed of a very short uniformly distributed 
current<3rrying wire. Because the current is discontinuous at the ends, equal magni
tude but opposite polarity (;harges accumulate there forming an electric dipole . 

By symmetry, the vector potential cannot depend on the 
angle (j), 

_ A jolt
A, - Re [A,(,. 8), 1 (4) 

and must be in the same direction as the current: 

(5) 

Because the dipole is of infinitesimal length. the distance 
from the dipole to any field point is just the spherical radial 
distance T and is constant for all points on the short wire. 
Then the integral in (5) reduces to a pure multiplication to 
yield 

.. lLi dl _A.=--, jIw .
4",. 

where we again introduce the wavenumber It = wlc and 
neglect writing the sinusoidal time dependence pre~nt in all 
field and source quantities. The spherical components of A. 

(6) 
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are (i. = i~ cos 8 - i, sin 8): 

..t = ri, cos 8, A, = - A:. sin 8, (7) 

Once the vector potential is known, the electric and 
magnetic fields are most easily found from 

_ I _ 

H=-VXA, H(r, t) = Re rH(l', 8) ~j,oIl.. 
_ I _ (8) 

E:-VXH E(l', t) = Re [E(T, 8) ~ ..... }
;WE ' 

Before we find these fields , let's examine an alternate 
approach. 

9-2-2 Alternate Derivation U.ing the Scalar Potential 

It was easiest to find the vector potential for the point 
electric dipole because the integration in (5) reduced to a 
simple multiplication. The scalar potential is due solely to the 
opposite point charges at each end of the dipole, 

~ - Q (~-jA,+ ~-jA,-)
V------- (9) 

411'"£ r+ '"

where r+ and T_ are the distances from the respective dipole 
charges to any field point, as shown in Figure 9-1. Just as we 
found for the Quasi-static electric dipole in Section 3-1-1, we 
cannot let r + and r _ equal r as a zero potential would result. 
As we showed in Section 3-1-1, a first-order correction must 
be made, where 

dl 
r -1'--cos 8 

+ 2 
(10) 

so that (9) becomes 

Q- (j./I(.ut2)c.... ,
V _jAr c-"--;;-- -C- ( II)- -4,,-,-r ~ (1 -~ cos 8) 

Because the dipole length dl is assumed. much smaller than 
the field distance T and the wavelength, the phase factors in 
the exponentials are small so they and the I/ r dependence in 
the denominators can be expanded in a first-order Taylor 
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series to result in: 

lim V- Q ~ -jh[(]+/,dlCOS8\(I+dlCOS8)
i 41", 1 -hreT 2 J 2r 
~.« I 

QdI -;.. 1 .' =-42~ cosS( +JIIIT) (12) 

"'" 
When the frequency becomes very low 50 that the wavenum· 
ber also becomes small, (12) reduces to the quasi-static electric 
dipole potential (ound in Section ~·l-l with dipole moment 
p"" QdJ. However, we ~e that the radiation corr«tion terms 
in (12) dominate at higher frequencies (large.) rar from the 
dipole (iT» 1) so that the potential only dies off as liT rather 
than the Q1JMi-static 1/,.', Using the relationships Q-i/jcJ 
and c,. I/../ep., (12) CQuid have been obtained immediately 
from (6) and (7) with the Lorentz gauge condition of Eq. (13) in 
S«lion 9-1-1: 

,. _,2 ,. _C
2

( I at" I a A )

V =-.-V· A =-.- --(r Ar)+-.--(A.sin 8)
JW JW r 'l ar ,. sm (I iJ8 

. ,
IJ.ldLc (l+j.u) _ j6t

= 4 ' 2 ~ casS
"1"' r 

(13) 

Using (6), the fields are directly found f.-om (8) as 

• 1 • 
H= - vxA 

'" . l(a • ali,)=.",- -(rA.)-
p.r iJr iJS 

(14) 
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" I " 
E ~ -,- V x H 

]W£ 

1(1'" I .")~ -,- --,- -(H ." sin O)i, -- -(rH.,,)i, 
}W£ r Sin 0 iJO r iJr 

i dl k' 1,;1, [ ,,/ I I)]
= -4;'""""Y~l l . 2 cos V\(jllr)2+ (jkr)~ 

+1, [,In ~ -I +--+I --I )]1 ,-," ( 15)• s jkr (jkr)2 (jllr)3 

Note that even this s imple source generates a fairly 
complicated electromagnetic field . The magnetic field in (14) 
points purely in the tb direction as expected by the right-hand 
rule for a z-directed current. The term that varies as 1/,.2 is 
called the induction field or near field for it predominates at 
distances dose to the dipole and exists even at zero frequency. 
The new term, which varies as 1/ ,., is called the radiation field 
since it dominates at distances far from the dipole and will be 
shown to be responsible for time-average power How away 
from the source. The near field term does not contribute to 
power How but is due to the stored energy in the magnetic field 
and thus results in reactive power. 

The l (r3 terms in (15) are just the electric dipole field terms 
present even at zero frequency and so are often called the 
electrostatic solution . They predominate at distances close to 
the dipole and thus are the near fields. The electric field also 
has an intermediate field that varies as 1/,.2, but more 
important is the radiation field term in the i, component, 
which varies as l IT. At large distances (liT» I) this term 
dominates. 

In the far field limit (II,.» I), the electric and magnetic fields 
are related to each other in (he same way as for plane waves: 

" " '~ I' £",= "H".,,=-Eo. , -Sln 8e, - jh £" Idlk '" 1m ~- 0=---
.... I £ Jkr 417' f 

( 16) 

The electric and magnetic fields are per~icular and their 
ratio is equal to the wave impedance TJ = J",/E. This is because 
in the far field limit the spherical wavefronts approximate a 
plane. 

9-2-4 Eiectric Field Lioes 

Outside the dipole the volume charge density is zero, which 
allows us to define an electric vector potential C: 

v· E =O~ E= VxC ( 17) 
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Because the electric field in (15) only has rand 8 components, 
C must only have a 4> component, C.(r. 8): 

l a, ,til
E :=: ve - -(rC.)i. (18)x =-.- -(Sin 8C.)lT~

rsm fJ a8 r ar 
We follow the same procedure developed in Section 4.4·3b, 
where the electric field lines are given by 

~8 (sin (JC.)
dT E. a 
-=-=- (19)
rd8 E, a 

sin 8- (rC.)

" which can be rewritten as an exact differential, 

~(r sin 8e",) dr +...!.(r sin Be.) dB = O~d(r sin 8e.) = 0 
iJT a8 

(20) 

so that the field Jines are just Jines of constant stream-function 
r sin BC.". C. is found by equating each vector component in 
(18) to the solurion in (15): 

I ' . 
-.- - (sin BC.) 
rSIn (J a8 

, idl.' fP.[ d I I l] -. 
= E. = -4:;;-V~ 2 cos \(j/trf+ (jIlT)3 l! jJt 

I a • 
-- -(..c.), a, 

which integrates to 

• _ idl fP. sin8( j l - ;>0C.--V';:-- 1-- , (22) 
41T E r (kr) 

Then assuming i is real, the instantaneous value of C. is 
Jooooc.= Re{C. e ) 

i dI~ sin B( ( .) sin (wt - kT»)
~- - -- cos Wl-"T +="'::'--"'" (23)

41'1'" E T kT 

so that, omitting the constant amplitude factor in (23), the 
field lines are 

. . ttl sin (wt - Air»)
rC.sm 8:const~sm ,,\COs(wl-Air)+ Air =const 

(24) 
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Figure 9-2 T he elC(lric field lines for a point electric dipole al wi = 0 and wi = 7r1'2 . 
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These field lines are ploued in Figure 9-2 at two values of 
time. We can check our resu lt with the sta tic field lines for a 
dipole given in Section ~- l-l. Remembering that Ie = wIt, at 
low frequencies, 

> {COS (wl - ler) = I
lorn (25) 
.,' ~si.:.:n -"(w,,,I:-'-,'::..!.') ,(1,-'-;'''/':1.) 1- =- =-- 1 

Icr ric r/c 

so thal. in (he low-frequency limit at a fixed time, (24) 
approaches the result of Eq. (6) of Section 3- 1- 1: 

I> >, ~")1m Sin - = const (26)
...... 0 r 

Note that the field lines near the dipole are those of a static 
dipole field, as drawn in Figure 3-2. In the far field limit 

lim sin"l (J cos (wt - ler) "" const (27) 
~n.. 1 

the field lines repeat with period A= 2·7J/1c. 

9-2·5 Radiation Resistance 

Using the electric and magnetic fields of Section 9-2-3, the 
time-average power density is 

(28) 

where Eo is defined in (16). 
Only the far fields contributed to the time-average power 

Row. The near and intermediate fields contributed only 
imaginary terms in (28) representing reactive power. 

The power density varies with the angle (J, being zero along 
the e lectric dipole's axis «(J = 0, 1T) and maximum at right 
angles to it «(J= 1T/2), illustrated by the radiation power 
pauern in Fig. 9-3. The strength of the power density is 
pl"Oportional to the length o f the vector from the origin t(. the 
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Figure 9·:J The strength of tM electric field and power density due to a l-directed 
point dipole as a function of angle 9 is proportional to the length of the vector from 
the origin to the radiation pilttem. 

radiation patkm. These directional proper~ are useful in 
~am sterring, where the directions of power flow can ~ 
contl'"OlIed. 

The total time-average power radiated by the electric 
dipole is found by integrating the Poynting vector over a 
spherical surface at any radius r: 

<p>= f." J.'" <S.>r2sin8d(J~.-0..,.-0 
. (4)' f."=ll/dll' 4". '1 2". '000 sin'8d8 

--s-'lA:lI[-icos B(sin!: 8+2)]lid/I' '" 
I " • 

(29) 
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As far as the dipole is concerned, this radiated power is lost 
in the same way as if it were dissipated in a resistance R, 

<P>=~l iI 2R (30) 

where this equivalent resistance is calted the radiation resis
tance: 

2" 
, ~- (31)

A 

In free space "10 = J~oho= 12071, the radiation resistance is 

Ro = 801T2(~l) 2 (free space) (32) 

These results are only true fOT point dipoles, where dl is 
much less than a wavelength (dl/A « I). This verifies the vali
dity of the quasi-static approximation fOT geometries much 
smaller than a radiated wavelength, as the radiated power is 
then negligible. 

If the current on a dipole is not constant but rather varies 
with t over the length, lh~ only term that varies with .t for the 
vector potential in (5) is l(z); 

where, because the dipole is of infinitesimal length, the dis
tance TQI' from any point on (he dipole to any field poim far 
from the dipole is essentially r, independent of z. Then, all 
further results for the electric and magnetic fields are the 
same as in Section 9-2-3 if we replace the actual dipole length 
dl by its effective length, 

(34) 

where io is the terminal currem feeding the center of the 
d ipole . 

Generally the current is zero at the open circuited ends, as 
for the linear distribution shown in Figure 9-4, 

hz) = Jlo(l - 2z/dl), OS zsdl/2 
(35)1/0(1 + 2z/dl), -dl!2sz sa 

so that the effective length is half the actual length: 

1 i+dl/'~ dlA 

dI"u = - l(z)dz =-2 (36) 
10 - <1.112 
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Figure 9-4 (a) H a point el«lric dipole has a nonuniform current distribution, the 
solutions arc of the same form if we replace the actual dipole length til by an eff«tive 
length dl.,,_ (6) For a triangular current dislributton the effective length is half the true 
length. 

BecauSt: the fields are reduced by half, the radiation resis
tance is then reduced by t: 

(37)R - 2~(dltfr:: 201f!~(¥f 
In free space the relative permeability J.l.r and relative 
permittivity e. are unity_ 

Note also that with a spatially depe:ndent current dis
tribution, a line charge distribution is found over the whole 
length of the dipole and not just on the ends: 

I diA---  (38)
jwd< 

For the linear curnnt distribution described by (35), we see 
that: 

(39) 

9-%-6 Raylei,b Scattering (or why i. the .lcy blue?) 

If a plane wave el«tric field R~ {Eo t' .... i~J is incident upon an 
atom that is much small~r than the wavelength. the induc~d 
dipole mom~nt also contributes to the r~suhant field. as illus
trated in Figur~ 9-5. Th~ scauer~d pow~r is perpendicular to 
the induced dipole mom~nt. Using the dipole model 
d~veloped in Section '-1-4. wh~re a n~gativ~ sph~rical electron 
cloud or radius Ro with total charge -Q surrounds a fixed 
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'" 
Figure g·S An incident decuic field polarizes dipoles thai then re-radiate their 
energy primarily perpendicular to the polarizinS electric field. The time-average 
scattered power increases with the fourth power of frequency 50 shorter wavelengths 
of light are scattered more than longer wavelengths. (a) During the daytime an earth 
~rver sees more of the blue scatteRd light so the sky looks blue (shon wavelengths). 
tb) Near sunset the light reaching the observer lacks blue 10 the sky appcan reddish 
(long wavelength). 

678 
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positive point nucleus. NeWlon 's law for the charged cloud 
wilh mass m is: 

d~x:! (QEo ""')----:; + WoX = Re -- , . (40)
dt m 

T he resulting dipole moment is then 

1'. = ~",Q"2EoIm 
y~'" "2 ~ (4 1) 

wo- w 

where we neglect damping effects. T his d ipole Ihen re-radi
a tes with solutions give n in Sections 9-2- 1-9-2-5 using the 
d ipole mome lll o f (4 1) ( j dl ...... jwfi ). T he total time-average 
powe r radiated is then found from (29) as 

w"l fi l~ '1 w 4 Tj(Q'l Eo/mf" 
< p>= ., '" 'l ~ ~~ (42) 

I 21TC- 121Tc (410 w) 

To ap p roximately compu le wo, we use the approximate 
radius of the electron fou n d in Section 3-8-2 by eq uati ng the 
ene rgy sto red in Ei nstein's rela tivistic fo rmu la rela ting mass 
to energy: 

2 3Q'l 3Q:! ( . " 
me = => R o= .,- 1.6yxIO . m (43)

20n-E Ro 201Tf"1nC 

T hen from (40) 

J5i3 201TEmc~ "2 3 .41,, = 3Q'l - 2.3x I O · radian/sec (44) 

10 ' 5is much b>Tea ter tha n ligh t freq uencies (w "'" ) so that (42) 
becomes app roxi mately 

Q'E ' 0OW),. "( , (45)Itm < P> ""'-
"'0"'''' 1211 mcwo 

This resu lt was o r iginall y de rived by Rayleigh 10 explain the 
blueness of lhe sky. Since the sca llered powe r is proportional 
to w 4 

, shorter wavelength light do minates. However, lIear 
sunse t the light is sca Hered parallel to the earth rathe r tha n 
towa rds it. The blue lig ht received by an observer at the eart h 
is di minished su that the longer ..... avelengths do minate and 
the sky appears redd i.~h. 

9-2-7 Radiation from a POln( Magnetic Dipole 

A closed sin usoida ll y varyi ng cu rre nt loop of very small size 
Aowing in Ihe z : O plane also generates radia ting waves. 
Because the loop is closed . the current has no d ive rge nce so 
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that there is no charge and the scalar potential is zero. The 
vector potential phasor amplitude is then 

(46) 

We assume the dipole to be much smaller than a wavelength, 
A:(TQI'-r)« I. so that the exponential factor in (46) can be 
linearized to 

lim II!' - il'Q" = e- jlr.r 1I!' - j/l(Tqr- T) "'e-}tr[l- jk(rQP- T)] 
l(rQ..-r)« I 

(47) 

Then (46) reduces to 

A(r)=f ~i e-ib(1 +jltr"-j/c) dI 
4-rr rQP 

~f"i(l+jkT )==e-ro ' - ---jlc di 
47T TQP 

~.l':-,-"(I + jkT) f i dl_ j• f i dI)
4'lT TQP 

(48) 

where a1l terms that de~nd on ,. can be taken outside the 
integrals because T is inde~ndent of dl. The second integral 
is zero because the vector current lias constant magnitude 
and Rows in a dosed loop so that its average direction 
integrated over the loop is zero. This is most easi[y seen with a 
rectangular loop where opposite sides of the loop contribute 
equal magnitude but opposite signs to the integral, which 
thus sums to zero. If the loop is circular with radius 4, 

idl=ii.ad4/1:::}"br'"i.~=1"(-sin t/Ji,,+cos tjJi,) d4J=O 
(49) 

the integra1 is again zero as the average value of the unit 
vector i. around the loop is zero. 

The remaining integral is the same as for quasi-statics 
except that it is multiplied by the factor (I + j"r) t - iM. Using 
the results of Section 5-5-1 , the quasi-static vector potential is 
also multiplied by this quantity: 

.. ~m . 1 .• ) -~.
A =

4", 
9( +,,,r e I.., (50)--~sm 
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The electric and magnetic fields are then 

H = -;VXA = - 4~jA' e -jA~{ i r [ 2cos ~(j;r)2+ (jLf') ] 

l+i.[sin ~l~r+(jAr)2+ (jAlr)i)J} (51) 

~ I • mjA~ _ ·kr • J I I)" 
E =jWE VXH = 41t TI e J smv\(jAr)+(jllr)~ I. 

The magnetic dipole field solutions are the dual to those of 
the electric dipole where the electric and magnetic fields 
reverse roles if we replace the electric dipole moment with the 
magnetic dipole moment: 

p qdl Idl 
-~--~-.-~ m (52) 
E E JWE 

9-3 POINT DIPOLE ARRAYS 

The power density for a point electric dipole varies with the 
broad angular distribution sin2 8. Often it is desired that the 
power pattern be highly directive with certain angles carrying 
most of the power with negligible power density at other 
angles. It is also necessary that the directions for maximum 
power flow be controllable with no mechanical motion of the 
antenna. These requirements can be met by using mure 
dipoles in a periodic array. 

9-3-1 A Simple Two Element Array 

To iJlusrrale the basic principles of antenna arrays we 
consider the two element electric dipole array shown in 
J.:igure 9

A 
"6. We assume each element C"drries uniform currents 

II and 12 and has lengths dl1 and dl2• respectively. The ele
ments are a distance 2a apart. The fields at any point Pare 
given by Ihe superposition of fields due to each dipole alone. 
Since we are only interested in the far field radiation pattern 
where 81= 82 = 8, we use the solutions of Eq. (16) in Section 
9-2-3 to write: 

A A £1 sin 8e- ;1r, E2sin 8e-jI<r~ 
E,=."H.= . + . (I)

JArl Jltr2 

where 
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,~ .. [,2 +,,2 - :z."COS(,. _ (jl,,2 .. r+nin 8COSf/J 

,"'\Yt::::--::\~'[r'
I 

y 
I 
I cos~ = i , . i, .. . in8c:os¢ 

................. I 

, ,I 

,~ 

Figure 9-6 The neld at any poim P due 10 two-poi nt dipoles is juSt the sum o f {he 
fields duc to each dipole alone taking into account the difference in distances to each 
dipolf'. 

Reme mber, we ca n superpose the field s but we cannO[ 
superpose the power flows. 

From the law of cosines (h e distances rl and '"2 arc related 

where t is the angle between the unit rad ial vector i . and the x 
aXIs: 

cos ~ = ir· i~ =sin () cos ¢ 

Since we arc inte rested in the far fie ld pattern , we linea rize (2) 
to 

I ("' 2.. ) 1 .r'2"," 1+'2 r~+-;:-sLnOcos!JI =r+ asln8cosq;.{ 

1 (3) 
, ?rl"'1 1 +~(:~--raSiI18COSq,) =r-asinOcoscPI

In this fa r fi e ld limit , the cort"CClion terms have little e ffect in 
the de nominators of ( I) but can have significant e ffect in the 
exponential phase factors if a is com parable to a wavelength 
so thaI ka is ncar or greater than unity. In {his spirit we 
include the fir st-orde r correction terms of (3) in the phase 
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factors of ( I). but not anywhere else. so that (I) is rcwrincn as 

_ jkTJ . 8 _}h( /' II j/o""n>l" .. 4>+ I'dl - IM"" 8",,ob)- -- Sill I' ,( If' 2 ~(! (4) 
~ , 

The first faclOr is called the clement faclOr beca use it is the 
radiation field per unit current e lement (j dl) due lO a sin gle 
dipole al the origin . The secolld factor is called the array 
factor because it on ly depends on thc geome try a nd excita
tions (magnitude and phase) of each dipole cleme nt in the 
array. 

To examine (4) in greater detail. we assume the two dipoles 
are iden tical in length and that the currents ha ve the sa me 
mag nitude but can differ in phase x: 

dl , =(1I2~dl 

j~= j e}X~ r:,= En, (5) 

so that (4) ca n be wrincn as 

(6) 

Now the far field s also depend on q,. In particular, we focus 
atlcntiOiI o n the (J = "Tr/2 pIa nco Then {he power Aow , 

. ' /,., 2/£,,/' .,( X)11m < 5,>=- £81-=---2 cos' kacosf/, -- (7) 
8 w .,n 2TJ '1{kr) 2 

d epe nds strongly all the dipole spacing 26 and current phase 
diffe rence X. 

(a) Broadside Array 
Consider the case where the currems a re in phase (X = 0) 

but {he dipole spacing is it half wavelength (2a = A/2). Then. 
as illu strated by the radiation pauern in Figure 9·7n. the field 
stren gths cancel along the x axis whi le they add along the y 
axis. This is because alon g the y axis r , = r~. so Ihe fields due to 
each dipole add, while along the x axis the distances differ by 
a half wavelength so that lhe d ipol e fields c.ancel. Wherever 
the array factor phase (ka cos f/, - X/2) is an in teger multiple of 
"Tr, the power de nsity is maximum, whi le wherever it is an odd 
integer muhiple of rr/2 , the power density is ze ro. Bec<mse 
this radiation pattern is maximum in the direction pe rpend ic. 
ular to lhe.array. it is called a broadside pauel"ll . 
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Figure 9-7 The power radiation paltern due to two-point dipoles depends strongly 
on the dipole spacing and current phases. With a half wavelength dipole spacing 
(2a " A/2), the radiation pattern is drawn for various valuel of current phase difference 
in the 8 .. 'fr/2 plane. The broadside array in (a) with the currents in phase IX os 0) has 
the power lobe in the direction perpendicular to the array while the end-fire array in 
(e) has o\tt-of-phase currents (X = 1'1") with the power lobe in the direction along the 
array. 
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(b) End-fire Array 
If. however, for the same half wavelength spacing the cur

rents are out of phase (x = 'JT), the fields add along the x axis 
but cancel along the y axis. Here. even though the path 
lengths along the y axis are the same for each dipole, because 
the currents are out of phase the fields cancel. Along the x 
axis the extra 'JT phase because of the half wavelength path 
difference is just canceled by the CUTTent phase difference of 
'JT so that the fields due to each dipole add. The radiation 
pattetn is caUed end.fire because the power is maximum in 
the direction along the array, as shown in Figure 9-7~. 

(e) Arbitrary C~Dt Phase 
For arbitrary current phase angles and dipole spacings, a 

great variety of radiation patterns can be obtained, as illus
trated by the sequences in Figures 9-7 and 9-8. More power 
lobes appear as the dipole spacing is increased. 

If we have (2N+ I) equally spaced dipoles, as shown in 
Figure 9-9, the nth dipole's distance to the far field point is 
approximately, 

lim r.. ""' r-nasin8 cos¢ (8)
·-1-1 

so that the array factor of (4) generalizes to 
. N 

AF:::: L i .. dl,,~jIm4·in'coo" (9) 
- N 

where for symmetry we assume that there are as many dipoles 
to the left (negative n) as to the right (positive n) of the z axis. 
including one at the origin (n = 0). In the event that a dipole is 
not present at a given location, we simply let its current be 
zero, The array factor can be varied by changing the current 
magnitude or phase in the dipoles. For simplicity here, we 
assume that all dipoles have the same length dl. the same 
current magnimde 10 • and differ in phase from its neighbors 
by a constant angle Ko so that 

i :::: I, ~ -i<'Ito -NSn s N (10)" 	 . 
and (9) becomes 

.N 
AF==/odl 	L eJto(... ·in'coo .. -xO> (11) 

- N 
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Figure 9-~ Wilh a fu ll wavelengdl dipole spacing (26 = A ) there are four main power 
looes. 
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Defining the parameter 
fJ == ei("" tin' ......- ".,> (12) 

the geometric series in (11) can be written as 

.N 
S: L P" = (rN +p-NH +... +p-2+p -J + 1+p +p2+ . .. 

-N 
(13) 

lfwe multiply this series by p and subtract from (13), we have 

5(1 - {J) = p -N - pN+1 (14) 

which allows us to write the series sum in dosed form as 

p - CN+II2) _ p(N-+- 112) 

p 112 pll2 

_ sin [(N +~)(ka sin (I cos 4> - Xo)] 
(15) 

- sin [!(Aa sin 8 cos tP Xo)] 

In particular, we again focus on the solution in the 8 = 11/2 
plane so that the array factor is 

AF= 10 dl sin [(N +~)(ka cos tP - Xo)) (16)
sin [i(ka .cos tP Xo)) 

The radiation pauern is proportional to the square o£ the 
array factor. Maxima occur where 

ka cos tP - Xo = 2n'7t n=0,1.2, ... (17) 

The principal maximum is for n = 0 as illustrated in Figure 
9-10 for various values of ka and XO. The larger the number 
of dipoles N, the narrower the principal maximum with 
smaller amplitude side lobes. This allows for a highly direc
tive beam at angle tP controlled by the incremental current 
phase angle XO. so that cos tP = xollto., which allows for elec
tronic beam steering by simply changing XO. 

9-4 WNG DIPOLE ANTENNAS 

The radiated power. proportional to (dl/A)2, is small for 
point dipole antennas where the dipole's length dl is. much 
less than the wavelength A. More power can be radiated if the 
length of the antenna is increased . Then however, the fields 
due to each section of the antenna may not add construc
tively. 
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Figure 9-9 	 A linear poin! dipole aTTay with 2N + I equally spaced dipoles. 

9-4-1 Far Field Solution 

Considtr the long dipole antenna in Figure 9·11 carrying a 
current /(%). For simplicity we restrict ourselves 10 the rar 
field pattern where T» L. Then, as we found for dipole 
arrays, the differences in radial distance for each incremental 
current element of length dz. arc only important in the 
exponential phase factors and not in the l IT dependences. 

From Section 9-2-3 , the incremental current ele ment at 
position z generates a rar electric field : 

- - dH- _ik." ht) dz. iJ - jl {, - . ws61) ( I ) dE,-11 . - ----Slnl7t
4". , 

where we again assume that in the rar field the angle 8 is the 
same for all incremental current elements. 

The total far electric field due to the entire current dis
tribution is obtained by integration over all current dements: 

U2
·k I+ill=TJiI. =	 }TJsinO e -I~' i(z) eil<' coo II dz. (2)

4m - U2 

If the current distribution is known, the integral in (2) can 
be directly evaluated. The practical problem is difficult 
because the current distribution along the antenna is deter
mined by (he near fields through the boundary cond itions. 
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Figure 9-10 The radiation pattern for an N dipole linear array for various values of 
N, dipole spacing 24, and relative current phase Xo in the 8 "" Tr/2 plane. 

Since the fields and currents are coupled, an exact solution is 
impossible no matter how simple the antenna geometry. In 
practice. onc gu~ a current distribution and ca1culatn the 
resultant (near and far) fields . If all boundary conditions 
along the antenna aTe satisfied. then the solution has been 
found. Unfortunately, this never happens with the first guess. 
Thus based on the field solution obtained from the originally 
gue15ed CUfTent, a corrected current distribution is used and 
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Figure 9-10 

the resulting fields are again calculated. This procedure is 
numerically' iterated until convergence is obtained with self
consistent fi elds and currents . 

9·4·2 Unifonn Current 

A panicularly simple case is whe n i(z) = io IS a constant. 
T hen (2) becomes: 

(3) 



The time-average power density is then 

1 Iiol2 tan2 (Jsin2 [(W2)cos 9]- 12<5.> = 21) 1E, = 21l(,kr)2(kU2)2 (4) 

where 

- ,iooL="",':..'Eo = - (5)
4~ 

This power density is plotted venus angle (J in Figure 9-12 
for various lengths L. The principal maximum always 
appears at (J = .,,/2. becoming sharper as L increases. For 
L > A. zero power density occurs at angles 

2n7r nA 
c058 =-- =  n= 1,2, .. . (6)

kL L' 

Secondary maxima then occur at nearby angles but at much 
smaller amplitudes compared to the main lobe at 8 = 17/2. 

9-4-3 Radiation Resistance 

The total time-average radiated power IS obtained by 
integrating (4) over all angles: 

<P>= f.'· f." < S.> r 2 sin fJd8d4> 
. -0 ' _0 

_ JEoI2
.". f.- sin~ 8 . 2('L " 

- ,t211(.IIU2)2 . _ o W !\! 8 s m "2 C05 8) dfJ (7) 

If we introduce the change o f variable. 

,L 'L. dv =-cos(J dv=--sm 8 8 (8)2 ' 2 

the integral of (7) becomes 

Ii~ I!.". f. -' U'2 2 'l kL sin
2 V) - vdv---- dv< p> - ,-<-"''''''''' ( sin 

- Ic 'lTJ(IcU 2)'l +llJ'l ·kL 2 v 2 

(9) 

The first term is easily integrable as 

Jsin2 ;! dv =iv - ! sin2v (10) 

The second integral results in a new tabulated function Si(x) 
called the sine integral . defined as : 

~ sin t 
Si(x) = - ,u ( II)I, , 
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• 
Figure 9-11 (a) For a long dipole a<nlenna. each incremental current clement at 
coordi nate % is at a slightly different distance (Q an y field point P. (b) The simplen case 
study has the current uniformly distributed o,'cr the length of the dipole. 

which is plotted in Figure 9-13. Then the second integral in 
(9) ca n be expanded and integrated by parts: 

. , 
sm tid _ J(l -COS2v)d 
,v- 2' vJ v v 

= -~- Jcos 2v dV
2v 2v 2 

= _....!....+ cos 2v+J sin 2 vd(2v) 
2v 2v 2v 

J cos 2v . 
=--+--+Sl(2v) ( 12)

2v 2v 

Then evaluating the integrals of (10) and (12) III (9) at the 
upper and lower limits yields the time-average power as: 

liol~ '7T (SinkL )
< p> = k2T/(kL/2)2 ---u:-+cos kL - 2 + kLSi(kL) ( 13) 

where we used the fact that the sine illlegral IS an odd 
function Si(x) = - Si(x) . 

Using (5), the radiation resistance is then 

2<P> 71 (Sin kL , )
R ""~I ( 14) 1:1:=- --+cos kL-2 + kLS1(kL) 

10 211" kL 
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figure 9-12 Th~ radiation patt~rn fOT a long dipole for various val u~s of iu length . 
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Figure 9-13 The si ne integral 5i(x) Increases linead y for small argu me nts and 
approaches 7T/2 for large argumenUi oscillating about this value for intermediate 
arguments. 

2..HI'I 

"" 
n, 
100 

90 

80 

50 

" 

30 

20 

10 

2 J 

" Figure 9- 14 The rad ia tion resistance for a dipole antenna carrying a un iformly 
distributed current increases with the square of iUi length when it is shon (!..JA« I) and 
only linearly wit h ils le ngth when it is long (l-lA» I). Fo.. shon lengths. the rad iation 
resis tance approximates that of a point dipole. 
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which is ploucd vcrsus kL in Fig. 9~ 1 4. T his rcsult can be 
chcckcd in the limit as L becomes very small (kL« I) si nce the 
rad iation resistancc sho uld <l pproach Ihat of a poin! dipole 
givc n in Section 9-2-5. In this shorl d ipo le limit the bracketed 
tcrms in ( 14) are 

si n kL (kL)t 
--~ I ---

'L 6 
lim 
u."' ) (k L )'.l

coskL = 1--
( 15) 

2 

kLSi(kL ) =(kL )~ 

so Ihal ( 14) red uces lO 

. " (.L I' 2'"1(L)' ,(L)' r;;.hmR =------ - = M011 - ,, --:- ( 161 
lVc) 211 3 3 A A c, 

which agrecs wi lh thc resu ll s in Sectio n 9-2-5. Note Ihal for 
large dipoles (kL» I ). the sine integraltcrm dominates with 
Sie hL) approachin g a ml!st,lIlI va lue o f 1112 so that 

( 171 

PROBLEMS 

Section 9- 1 
I . We wish to find the propcnics of wavcs propagatin g 
with in a linear dielectr ic mcdi um that also has an Oh mic 
conductivity u. 

(a) Whal are Maxwcll"s equations in this medium? 
(b) Defining vector and scalar pOIc mials. what gauge 

conditio n decouples these pote ntials? 
(c) A point cha rge at r = 0 varies sinusoid ally with time as 

Q(t) = Re (Q e""' ). Whal is the scalar pote ntial ? 
(d ) Repeat (a)-(cl for waves in a plasma medium wi th 

constitutive law 

aJ, 'l 
- = w,.c E 

"' 2. An inflllile curren t sheet a t z = 0 va nes as 
Rc rKo eJ( ....- l ,.><) iI I. 

(a) Fi nd the vector a nd scalar potentials. 
(b) What arc the electric and magnetic fields? 
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(e) Repeat (a) and (b) if the current is uniformly dis
tributed oyer a planar slab of thickness 20:

_110 eijM-l....Jin -0 < %< a 
J/- 0, 1,1 >a 

3. A sphere of radius R has a uniform surface charge dis
tribution rTl = Re (ao ,;...) where the time varying surface 
charge is due to a purely radial conduction current. 

(a) Find the scalar and vector potentials, inside and outside 
the sphere. (Hint: r~p=r2+R2-2TRcos(J; rQPdrQp= 
rR si n 8d8.) 

(b) What are the electric and magnetic fields everywhere? 

Section 9.2 
4. Find the effective lengths. radiation resistances and line 
charge distributions for each of the following current dis
tributions valid for 1:1 <dI!2 on a point electric dipole with 
short length dJ: 

(a) i(z) = 10 cos az 
(b) hr.)= lot'-" I ~l 
(e) i(z) = 10 cosh az 

5. What is the time-average power density, total time-average 
power, and radiation resistance of a point magnetic dipole? 

6. A plane wave electric field Re (Eo e1w<) is incident upon a 
perfecdy conducting spherica1 particle of radius R that is 
much smaller than the wavelength. 

(a) What is the induced dipole moment? (Hittt: See 
Section 4-4-3.) 

(b) If the small particle is, instead, a pure lossless dielectric 
with permittivity E, what is the induced dipole moment? 

(c) For both of these cases, what is the time-average scat
tered power? 

7. A plane wave magnetic field Re (110 eiM ) is incident upon a 
perfectly conducting particle that is much smaller than the 
wavelength. 

(a) What is the induced magnetic dipole moment? 
(HiDt: See Section 5-7-2ii and 5-5-1.) 

(b) Whalare the re-r:tdiated electric and magnetic fields? 
(c) What is the time-average scattered power? How does it 

vary with frequency? 

8. (a) For the magnetic dipole, how are the magnetic field 
lines related to the vector potential A? 

(b) What is the equation of these field lines? 

Section 9.3 
9. Two aligned dipoles i l dI and it til are placed along the % 

axis a distance 24 apart. The dipoles have the same length 
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while the currents have equal magnitudes but phase 
difference x' 

(a) What are the far electric and magnetic fields? 
(b) What is the time-average power density? 
(e) At what angles is the power density zero or maximum? 
(d) For 20 .... A/2, what values of X give a broad side or 

end-fire array? 
(el Re~at (a)-(e) for 2N + 1 equally spaced aligned dipoles 

along the % axis with incremental phase difference Ko

10: Three dipoles of equal length til are placed along the % 

ax». 

• 

t 13.t1 

•t~.t-------~ y 

(a) Find the faT electric and magnetic fields . 
(b) What is the time average power density? 
(e) For each of the following cases find the angles where 

the power density is zero or maximum. 

(i) {1 =.{, - lo.b=2Jo 
(ii) {I = Is:= lo. 12~-21o 

(iii) 11 =-1,- 10. 1,= 21'10 
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II. Many closely spaced point dipoles of length dl placed 
along the x axis driven in phase approximate a t -direct<.--d 
cu rrent sheet Re (Ko e.....'i, ) of length L. 

, 

Suriece cu' .... n! RelKot ' '''' )i, 

~ 
dI 

, t 

(a) Find the far fields from this current sheer. 
(b) At what angles is the power density minimum or 

maximum? 

Section 9.4 
12. Find the far fields and time-average power density for 
each o f the following current distributions on a long dipole: 

~ JI o( I - 2z} L ). 0 < z < 1./2 
(a) I(t) = llo(l +2zIL), - U2 < z< O 

Hint: 

f 
G. e'" 

It dz ::o a ~ (az- l ) 

(b) i (z) = locos m/L, - L/2 < z < L/2 

Hint: 

f ... ... (acos pz+psinpz) 
e cospzdz = e (' ' ) a +p 

(e) For these cases find the radiation resistance when 
kL « J. 
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