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Appendix A

GLOSSARY OF
COMMONLY USED SYMBOLS

Section references indicate where symbols of a given significance are
introduced ; grouped symbols are accompanied by their respective references.
The absence of a section reference indicates that a symbol has been applied
for a variety of purposes. Nomenclature used in examples is not included.

Symbol Meaning Section
A cross-sectional area
A; coefficient in differential equation 5.11
(A;t, A7) complex amplitudes of components of sth
mode 9.2.1
A, cross-sectional area of armature conductor 6.4.1
a spacing of pole faces in magnetic circuit ~ 8.5.1
a, (a,, a;) phase velocity of acoustic related waves 13.2.1, 11.4.1
a, Alfvén velocity 1223
(a, b, c) Lagrangian coordinates 11.1
a; constant coefficient in differential equation 5.1.1
a, instantaneous acceleration of point p fixed
in material 2.2.1¢c
B, B,, B damping constant for linear, angular and
square law dampers 2.2.1b,4.1.1,5.2.2
B,B,, B, magnetic flux density 1.1.1a, 8.1, 6.4.2
B; induced flux density 7.0
(B,, B4, Byy, Bppy) radial components of air-gap flux
densities 4.14
[B,rs (Brplav] radial flux density due to field current 6.4.1
b width of pole faces in magnetic circuit 8.5
b half thickness of thin beam 11.4.2b
C contour of integration 1.1.2a
C,(C,, Cp), C, capacitance 2.1.2,7.2.1a, 5.2.1
C coefficient in boundary condition 9.11
C the curl of the displacement 11.4
c*, C) designation of characteristic lines 9.1.1

Al
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Glossary of Commonly Used Symbols

Symbol Meaning Section

¢y specific heat capacity at constant pressure 13.1.2
Cy specific heat capacity at constant volume  13.1.2
D electric displacement 1.1.1a
d length
da elemental area 1.1.2a
df, total elemental force on material in rigid

body 2.2.1c
dl elemental line segment 1.1.2a
dT, torque on elemental volume of material 2.2.1c
)4 elemental volume 1.1.2b
E constant of motion 5.21
E Young’s modulus or the modulus of

elasticity 9.1
E,E, electric field intensity 1.1.1a, 5.1.2d
E; magnitude of armature voltage generated

by field current in a synchronous

machine 4.1.6a
E; induced electric field intensity 7.0
€115 €4 strain tensor 9.1,11.2
€5 strain-rate tensor 14.1.1a
F magnetomotive force (mmf) 13.2.2
F force density 1.1.1a
F complex amplitude of f(¢) 5.1.1
F, amplitude of sinusoidal driving force 9.1.3
f equilibrium tension of string 9.2
f driving function 5.1.1
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force

arbitrary scalar function

scalar function in moving coordinate
system

three-dimensional surface

integration constant

a constant

shear modulus of elasticity

speed coefficient

conductance

air-gap length

acceleration of gravity

magnetic field intensity

specific enthalpy

electrical current

clectrical current

2.2.1,2.2.1c, 3.1,

5.1.2a,3.1.2b, 8.1,

9.1
6.1

6.1

6.2
11.4.2a
5.1.2c
11.2.2
6.4.1
3.1
5.2.1
5.1.2¢,12.1.3
1.1.1a
13.1.2

10.4.3, 12.2.1a, 4.1.2,

6.4.1

2.1,4.13,64.1,4.1.7,

6.4.1,4.1
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Symbol Meaning Section

i, unit vector perpendicular to area of

integration 6.2.1
i unit vector normal to surface of

integration 6.2.1
(i iys ), (G, 15, 13) unit vectors in coordinate directions 2.2.1c
5. Iy current density 7.0,1.1.1a
I T s Ty Tys I) moment of inertia 5.1.2b,4.1.1,2.2.1c
N U - products of inertia 2.2.1c
j V-1 4.1.6a
K loading factor 13.2.2
K K, surface current density 7.0,1.1.1a
K linear or torsional spring constant 2.2.1a
K; induced surface current density 7.0
k, kg, (ky, k) wavenumber 7.1.3,10.1.3, 10.0
k summation index 211
k maximum coefficient of coupling 4.1.6b
ky, nth eigenvalue 9.2
(L, Ly, Ly), (L, Ly), inductance 21.1,64.1,2.1.1,

Ly, (Ly, Ly), 4.2.1,4.1.1,4.24
(Lrs Lss Lar)’ Lss

L length of incremental line segment 6.2.1
) value of relative displacement for which  2.2.1a

spring force is zero
L1l length
M Hartmann number 14.2.2
M mass of one mole of gas in kilograms 13.1.2
M Mach number 13.21
M mass 2.2.1c
M number of mechanical terminal pairs 2.11
M, M, mutual inductance 4.1.1,4.24
M magnetization density 1.1.1a
m mass/unit length of string 9.2
N number of electrical terminal pairs 211
N number of turns 5.2.2
n number density of ions 12.3.1
n integer 7.1.1
n unit normal vector 1.1.2
P polarization density 1.1L1a
P power 12.2.1a
P number of pole pairs in a machine 4.1.8
r power per unit area 14.2.1
P pressure 5.1.2d and 12.1.4
PerPosPmsPr power 4.1.6a, 4.1.6b, 4.1.2,

4.1.6b

0 electric charge 7.2.1a
9915 Gx electric charge 1.1.3 and 2.1.2, 8.1,

R, Ry R,

radius

212
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Symbol Meaning Section
R, Ry, Ry, Ry, R, R, resistance
(R, Ry gas constant 13.1.2
R, electric Reynolds number 7.0
R, magnetic Reynolds number 7.0
r radial coordinate
r position vector of material 2.2.1c
r position vector in moving reference frame 6.1
center of mass of rigid body 2.2.1c
S reciprocal modulus of elasticity 11.5.2c
S surface of integration 1.1.2a
S normalized frequency 7.2.4
S membrane tension 9.2
S; transverse forcefunit length acting on string 9.2
s complex frequency 5.1.1
(S, Spup) slip 4.1.6b
53 ith root of characteristic equation, a 5141

natural frequency

T period of oscillation 5.2.1
T temperature 13.1.2
T,T,1°T,,, T, torque 2.2.1c, 5.1.2b, 3.11,
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surface force

mechanical stress tensor

the component of the stress-tensor in the
mth-direction on a cartesian surface with
a normal vector in the nth-direction

constant of coulomb damping

initial stress distribution on thin rod

longitudinal stress on a thin rod

transverse force per unit area on

membrane

transverse force per unit area acting on

thin beam
time

time measured in moving reference frame

gravitational potential

longitudinal steady velocity of string or

membrane

internal energy per unit mass

surface coordinate

unit impulse at = = =z,
transverse deflection of wire in z-direction
unit step occurring at ¢t = 0

velocity
volume
voltage
potential energy

4.1.6b, 4.1.1, 6.4.1,
6.4.1

8.4

13.1.2

8.1

4.1.1
9.1.1
9.11

9.2

11.4.2b
111
6.1
12.1.3

10.2

13.1.1
11.3

9.2.1
10.4.3
5.1.2b
7.0, 13.2.3
1.1.2

5.2.1
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Symbol Meaning Section
v, ¥ velocity
U, 00,005 Up) voltage 2.1.1
v, (05 Ugy Ug)s voltage
g, Vogs Uy
Uy, velocity of surface in normal direction 6.2.1
v, initial velocity distribution on thin rod 9.1.1
v, phase velocity 9.1.1 and 10.2
\d relative velocity of inertial reference frames 6.1
v v fim for a string under tension f and 10.1.1
having mass/unit length m
v longitudinal material velocity on thin rod  9.1.1
v transverse deflection of wire in y-direction 10.4.3
(W, W) energy stored in electromechanical
coupling 3.1.1
Wy, w,, W' coenergy stored in electromechanical 3.1.2b
coupling
w" hybrid energy function 5.2.1
w width 522
w energy density 11.5.2¢
w’ coenergy density 8.5
X equilibrium position 5.1.2a
(x, 31, &g, . .., %) displacement of mechanical node 2.11
x dependent variable 5.11
x, particular solution of differential equation 5.1.1
(21, %9, 23), (x,¥y,2)  cartesian coordinates 8.1,6.1
@y, ) cartesian coordinates of moving frame 6.1
(x, ) constants along C* and C- characteristics,
respectively 9.1.1
(o, B) see (10.2.20) or (10.2.27)
o transverse wavenumber 11.43
(«, B angles used to define shear strain 11.2
(o, ) constant angles 4.1.6b
o space decay parameter 7.14
% damping constant 5.1.2b
o equilibrium angle of torsional spring 2.2.1a
o ratio of specific heats 13.1.2
v piezoelectric constant 11.5.2¢
Yy Voo V' angular position
Ay slope excitation of string 10.2.1b
A amplitude of sinusoidal slope excitation 10.2.1b
Ar distance between unstressed material
points 11.2.1a
As distance between stressed positions of
material points 11.2.1a
8( ) incremental change in () 8.5
8,6,,9, displacement of elastic material 11.1,9.1,11.4.2a
0 thickness of incremental volume element  6.2.1

] torque angle 4.1.6a
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Glossary of Commonly Used Symbols

Meaning

Section

ra N
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(lar’ }'as' }‘br’ }'bs)
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Ha

Ho

Hs

v

v
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£,(2)

Kronecker delta
wave components traveling in the
+z-directions

linear permittivity
permittivity of free space

efficiency of an induction motor
second coefficient of viscosity

angular displacement

power factor angle; phase angle between

current and voltage
equilibrium angle

angular velocity of armature
maximum angular deflection

magnetic flux linkage

Lamé constant for elastic material

wavelength

linear permeability

mobility

coefficient of viscosity

coefficient of dynamic friction

permeability of free space

coefficient of static friction
Poisson’s ratio for elastic material

damping frequency
continuum displacement
initial deflection of string

amplitude of sinusoidal driving deflection

nth eigenfunctions

amplitudes of forward and backward

traveling waves

initial velocity of string

mass density

free charge density
surface mass density
surface of discontinuity

conductivity

free surface charge density
surface mass density of membrane

surface charge density
surface conductivity
surface charge density

surface traction

diffusion time constant

relaxation time

8.1

9.1.1

1.1.1b

1.1.1a

4.1.6b

14.1.1¢
2.1.1,3.1.1,5.2.1

4.1.6a
5.2.1

6.4.1

5.2.1

2.1.1,64.1,4.1.7,
4.13,4.1

11.23
7.14
1.1.1a
12.3.1,1.1.1b
14.1.1
2.2.1b
1.1.1a
2.2.1b
11.2.2
10.1.4
8.5
9.2
9.2
9.2.1b

9.2

9.2
2.2.1c
1.1.1a
11.3
6.2
1.i.1a
1.1.1a
9.2
7.2.3
1.1.1a
723
8.2.1
7.1.1,7.1.2a
7.2.1a
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Symbol Meaning Section

T, electrical time constant 5.2.2
T time for air gap to close 5.22
T, time constant 513
T traversal time 7.1.2a
¢ electric potential 7.2
¢ magnetic flux 2.1.1
¢ cylindrical coordinate 211
¢ potential for H when J; = 0 8.5.2
¢ flow potential 12.2
Xe electric susceptibility 1.1.1b
Lm magnetic susceptibility 11.1a
¥ the divergence of the material

displacement 114
Y angle defined in Fig. 6.4.2 6.4.1
P angular position in the air gap measured

from stator winding (a) magnetic axis 4.1.4
y electromagnetic force potential 12.2
Y angular deflection of wire 10.4.3
Q equilibrium rotational speed 5.1.2b
Q rotation vector in elastic material 11.2.1a
Q, real part of eigenfrequency (10.1.47) 10.1.4
w, (w,, ;) radian frequency of electrical excitation 4.1.6a,4.1.2
o) natural angular frequency (Im s) 5.1.2b
W, 0, angular velocity 2.2.1c,4.1.2
W, cutofl frequency for evanescent waves 10.1.2
Wy driving frequency 9.2
W, nth eigenfrequency 9.2
W, natural angular frequency 5.1.3
(w0, 0;) real and imaginary parts of w 10.0
v nabla 6.1
Vs surface divergence 6.2.1






Appendix B

REVIEW OF
ELECTROMAGNETIC THEORY

B.1 BASIC LAWS AND DEFINITIONS

The laws of electricity and magnetism are empirical. Fortunately they can
be traced to a few fundamental experiments and definitions, which are re-
viewed in the following sections. The rationalized MKS system of units is
used.

B.1.1 Coulomb’s Law, Electric Fields and Forces

Coulomb found that when a charge g (coulombs) is brought into the vicinity
of a distribution of charge density p,(r') (coulombs per cubic meter), as shown
in Fig. B.1.1, a force of repulsion f (newtons) is given by

f=gE, (B.1.1)

where the electric field intensity E (volts per meter) is evaluated at the position

f=¢gE

Fig. B.1.1 The force f on the point charge q in the vicinity of charges with density pe(l")
is represented by the electric field intensity E times q, where E is found from (B.1.2).

Bl



B2 Review of Electromagnetic Theory

r of the charge g and determined from the distribution of charge density by
Er) = —— J pur) E= gy, (B.12)
47ey Jv Ir — r'|
In the rationalized MKS system of units the permittivity ¢, of free space is
€ =8.854 x 107~ L x 10~ F/m. (B.1.3)
36n

Note that the integration of (B.1.2) is carried out over all the charge dis-
tribution (excluding ¢), hence represents a superposition (at the location r
of q) of the electric field intensities due to elements of charge density at the
positions r'.

As an example, suppose that the charge o
distribution p,(r’) is simply a point charge / T Gmeg| P
Q (coulombs) at the origin (Fig. B.1.2); 7
that is, r

p. = 0 o(r'), (B.1.4) Q
where d(r') is the delta function defined by
o) =0, r 0, Fig. B.1.2 Coulomb’s law for point
charges Q (at the origin) and g (at
f 8r)dv’' = 1. (B.1.5)  the position r).
-

For the charge distribution of (B.1.4) integration of (B.1.2) gives

Em = —& (B.1.6)

4me, [r? '

Hence the force on the point charge ¢, due to the point charge Q, is from
(B.1.1)

qQrx

4me, |r|? )

(B.1.7)

This expression takes the familiar form of Coulomb’s law for the force of
repulsion between point charges of like sign.

We know that electric charge occurs in integral multiples of the electronic
charge (1.60 X 10** C). The charge density p,, introduced with (B.1.2), is
defined as

.1
A1) =1lm — 3 q,, B.1.8
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where 8V is a small volume enclosing the point r and Y, ¢, is the algebraic
sum of charges within 6V. The charge density is an example of a continuum
model. To be valid the limit 7 — 0 must represent a volume large enough to
contain a large number of charges ¢;, yet small enough to appear infinitesimal
when compared with the significant dimensions of the system being analyzed.
This condition is met in most electromechanical systems.

For example, in copper at a temperature of 20°C the number density of
free electrons available for carrying current is approximately 10% electrons/
cm?. If we consider a typical device dimension to be on the order of 1 cm,
a reasonable size for 6V would be a cube with 1-mm sides. The number of
electrons.in 4V would be 10?0, which certainly justifies the continuum model.

The force, as expressed by (B.1.1), gives the total force on a single test
charge in vacuum and, as such, is not appropriate for use in a continuum
model of electromechanical systems. It is necessary to use an electric force
density F (newtons per cubic meter) that can be found by averaging (B.1.1)
over a small volume.

25
F = fim = fim 2 9
w-0 6V sv-0 OV

Here g, represents all of the charges in 6V, E, is the electric field intensity
acting on the ith charge, and f; is the force on the ith charge. As in the charge
density defined by (B.1.8), the limit of (B.1.9) leads to a continuum model if
the volume ¥ can be defined so that it is small compared with macroscopic
dimensions of significance, yet large enough to contain many electronic
charges. Further, there must be a sufficient amount of charge external to the
volume 0¥ that the electric field experienced by each of the test charges is
essentially determined by the sources of field outside the volume. Fortunately
these requirements are met in almost all physical situations that lead to useful
electromechanical interactions. Because all charges in the volume 6V ex-
perience essentially the same electric field E, we use the definition of free
charge density given by (B.1.8) to write (B.1.9) as

F = p,E. (B.1.10)

Although the static electric field intensity E can be computed from (B.1.2),
it is often more convenient to state the relation between charge density and
field intensity in the form of Gauss’s law:

(B.1.9)

jgeoE-nda =f p, dv. (B.1.11)
S vV

In this integral law nis the outward-directed unit vector normal to the surface
S, which encloses the volume V. It is not our purpose in this brief review to
show that (B.1.11) is implied by (B.1.2). It is helpful, however, to note that
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Er

Fig. B.1.3 A hypothetical sphere of radius r encloses a charge Q at the origin. The integral
of ¢E, over the surface of the sphere is equal to the charge Q enclosed.

in the case of a point charge Q at the origin it predicts the same electric
field intensity (B.1.6) as found by using (B.1.2). For this purpose the surface
S is taken as the sphere of radius r centered at the origin, as shown in Fig.
B.1.3. By symmetry the only component of E is radial (E,), and this is con-
stant at a given radius r. Hence (B.1.11) becomes

4nr2E ey = Q. (B.1.12)

Here the integration of the charge density over the volume V enclosed by S
is the total charge enclosed Q but can be formally taken by using (B.1.4) with
the definition provided by (B.1.5). It follows from (B.1.12) that

E. = Q

- ’
dme,rt

(B.1.13)

a result that is in agreement with (B.1.6).

Because the volume and surface of integration in (B.1.11) are arbitrary,
the integral equation implies a differential law. This is found by making use
of the divergence theorem*

§A~nda=fV-AdV (B.1.14)
8
to write (B.1.11) as 7
f (V-¢E — p,)dV=0. (B.1.15)
v

* For a discussion of the divergence theorem see F. B. Hildebrand, Advanced Calculus for
Engineers, Prentice-Hall, New York, 1949, p. 312.
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Since the volume of integration is arbitrary, it follows that
V. ¢E = p, (B.1.16)

From this discussion it should be apparent that this differential form of
Gauss’s law is implied by Coulomb’s law, with the electric field intensity
defined as a force per unit charge.

B.1.2 Conservation of Charge

Experimental evidence supports the postulate that electric charge is con-
served. When a negative charge appears (e.g., when an electron is removed
from a previously neutral atom), an equal positive charge also appears (e.g.,
the positive ion remaining when the electron is removed from the atom).

We can make a mathematical statement of this postulate in the following
way. Consider a volume V enclosed by a surface S. If charge is conserved, the
net rate of flow of electric charge out through the surface S must equal the
rate at which the total charge in the volume V' decreases. The current density
J (coulombs per square meter-second) is defined as having the direction of
flow of positive charge and a magnitude proportional to the net rate of flow
of charge per unit area. Then the statement of conservation of charge is

ff; J-nda=—£f p. dV. (B.1.17)
s dt Jv

Once again it follows from the arbitrary nature of .S (which is fixed in space)
and the divergence theorem (B.1.14) that

V~J+%=O. (B.1.18)
ot
It is this equation that is used as a differential statement of conservation of
charge.

To express conservation of charge it has been necessary to introduce a
new continuum variable, the current density J. Further insight into the relation
between this quantity and the charge density p, is obtained by considering a
situation in which two types of charge contribute to the current, charges
g, with velocity v, and charges g_ with velocity v_. The current density J,.
that results from the flow of positive charge is

J.=lim iEquH. (B.1.19)
o =0 1

If we define a charge-average velocity v__ for the positive charges as
Z_ iV

=i (B.1.20)
lz L/

Vi
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and the density p, of positive charges from (B.1.8) as

= lim i B.1.21
v-00 V2 s ( )
we can write the current density of (B.1.19) as
J.=p.v,. (B.1.22)

Similar definitions for the charge-average velocity v_ and charge density p_ of
negative charges yields the component of current density

J_=pv.. (B.1.23)
The total current density J is the vector sum of the two components
J=J,+J. (B.1.24)

Now consider the situation of a material that contains charge densities p,
and p_ which have charge-average velocities v, and v_ with respect to the
material. Assume further that the material is moving with a velocity v with
respect to an observer who is to measure the current. The net average
velocities of positive and negative charges as seen by the observer are v, + v
and v_ + v, respectively. The current density measured by the observer is
then from (B.1.24)

J = (ps¥i + pv) + po¥, (B.1.25)
where the net charge density p, is given by
pe = P+ t p_. (B.1.26)

The first term of (B.1.25) is a net flow of charge with respect to the material
and is normally called a conduction current. (It is often described by Ohm’s
law.) The last term represents the transport of net charge and is conven-
tionally called a convection current. It is crucial that net flow of charge be
distinguished from flow of net charge. The net charge may be zero but a
current can still be accounted for by the conduction term. This is the case in
metallic conductors.

B.1.3 Ampére’s Law, Magnetic Fields and Forces

The magnetic flux density B is defined to express the force on a current
element i dl placed in the vicinity of other currents. This element is shown in
Fig. B.1.4 at the position r. Then, according to Ampére’s experiments, the

force is given by f—idlxB (B.1.27)

=&f &_;)dvc (B.1.28)
Az v |r —r'|

where
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J@)

Fig. B.1.4 A distribution of current density J(r') produces a force on the current element
id]l which is represented in terms of the magnetic flux density B by (B.1.27) and (B.1.28).

Hence the flux density at the position r of the current element i dlis the super-
position of fields produced by currents at the positions r’. In this expression
the permeability of free space y, is

po = 4w x 1077 H/m. (B.1.29)
As an example, suppose that the distribution of current density J is com-

posed of a current I (amperes) in the z direction and along the z-axis, as shown
in Fig. B.1.5. The magnetic flux density at the position r can be computed

1
idl
R
*
R4
I{ r
s //F
|
¢ TN B,

Fig.B.1.5 A current I (amperes) along the z-axis produces a magnetic field at the position
r of the current element idl.
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from (B.1.28), which for this case reduces to*

4o 2 ot
B=,LL_OIJ‘ i, x (r ZIZ)dz/,

4 e Jr — 2P

(B.1.30)

Here the coordinate of the source current I is 2, as shown in Fig. B.1.5,
whereas the coordinate r that designates the position at which B is evaluated
can be written in terms of the cylindrical coordinates (r, 6, z). Hence (B.1.30)
becomes

iy (" singy/(z — 2/ + 1
B =‘ﬂ’——"f n - ) J;r dz, (B.1.31)
dr J-w  [(z — 2" 4+ ri]?

where, from Fig. B.1.5, sin y = r//(z — 2')® + r% Integration on z' gives
the magnetic flux density

I
B = Lol (B.1.32)

2mr
It is often more convenient to relate the magnetic flux density to the current
density J by the integral of Ampére’s law for static fields, which takes the form

3(; B-dl=y0f J-nda. (B.1.33)
C S

Here C is a closed contour of line integration and § is a surface enclosed by
C. We wish to present a review of electromagnetic theory and therefore we
shall not embark on a proof that (B.1.33) is implied by (B.1.28). Our purpose
is served by recognizing that (B.1.33) can also be used to predict the flux
density in the situation in Fig. B.1.5. By symmetry we recognize that B is
azimuthally directed and independent of 0 and z. Then, if we select the
contour C in a plane z equals constant and at a radius r, as shown in Fig.
B.1.5, (B.1.33) becomes

27rBy = wol. (B.1.34)

Solution of this expression for B, gives the same result as predicted by (B.1.28).
[See (B.1.32).]

The contour C and surface S in (B.1.33) are arbitrary and therefore the
equation can be cast in a differential form. This is done by using Stokes’
theorem ¥,

35 A-dl =f n-(V x A)da, (B.1.35)
C S

* Unit vectors in the coordinate directions are designated by i. Thus i, is a unit vector in
the z-direction.

1 See F. B. Hildebrand, Advanced Calculus for Engineers, Prentice-Hall, New York, 1949,
p- 318.
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to write (B.1.33) as

f (VxB—puyd) nda =0, (B.1.36)
8
from which the differential form of Ampére’s law follows as

V x B = ugd. (B.1.37)

So far the assumption has been made that the current J is constant in time.
Maxwell’s contribution consisted in recognizing that if the sources p, and
J (hence the fields E and B) are time varying the displacement current ,0E/0t
must be included on the right-hand side of (B.1.37). Thus for dynamic fields
Ampere’s law takes the form

V xB=pud +,uoa€a—°tE. (B.1.38)
This alteration of (B.1.37) is necessary if conservation of charge expressed
by (B.1.18) is to be satisfied. Because the divergence of any vector having the
form V x A is zero, the divergence of (B.1.38) becomes

v.y+ 8B _ (B.1.39)
ot
Then, if we recall that p, is related to E by Gauss’s law (B.1.16), the con-
servation of charge equation (B.1.18) follows. The displacement current in
(B.1.38) accounts for the rate of change of p, in (B.1.18).

We shall make considerable use of Ampere’s law, as expressed by (B.1.38),
with Maxwell’s displacement current included. From our discussion it is
clear that the static form of this law results from the force law of interaction
between currents. The magnetic flux density is defined in terms of the force
produced on a current element. Here we are interested primarily in a con-
tinuum description of the force, hence require (B.1.27) expressed as a force
density. With the same continuum restrictions implied in writing (B.1.10),
we write the magnetic force density (newtons per cubic meter) as

F=JxB. (B.1.40)

In view of our remarks it should be clear that this force density is not some-
thing that we have derived but rather arises from the definition of the flux
density B. Further remarks on this subject are found in Section 8.1.

B.1.4 Faraday’s Law of Induction and the Potential Difference

Two extensions of static field theory are required to describe dynamic fields.
One of these, the introduction of the displacement current in Ampére’s
law, was discussed in the preceding section. Much of the significance of this
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generalization stems from the apparent fact that an electric field can lead to
the generation of a magnetic field. As a second extension of static field theory,
Faraday discovered that, conversely, time-varying magnetic fields can lead
to the generation of electric fields.

Faraday’s law of induction can be written in the integral form

3§E-dl=—ifn-nda, (B.1.41)
c dt Js

where again C is a contour that encloses the surface S. The contour and
surface are arbitrary; hence it follows from Stokes’ theorem (B.1.35) that
Faraday’s law has the differential form

VXE=——. (B.1.42)

Note that in the static case this expression reduces to V x E = 0, which is,
in addition to Gauss’s law, a condition on the static electric field. That this
further equation is consistent with the electric field, as given by (B.1.2), is
not shown in this review. Clearly the one differential equation represented by
Gauss’s law could not alone determine the three components of E.

In regions in which the magnetic field is either static or negligible the electric
field intensity can be derived as the gradient of a scalar potential ¢:

E = —V3§. (B.1.43)

This is true because the curl of the gradient is zero and (B.1.42) is satisfied.
The difference in potential between two points, say a and b, is a measure of
the line integral of E, for

f:E rd= - va"‘ dl= ¢, — ¢y (B.1.44)

The potential difference ¢, — ¢, is referred to as the voltage of point a with
respect to b. If there is no magnetic field B in the region of interest, the
integral of (B.1.44) is independent of path. In the presence of a time-varying
magnetic field the integral of E around a closed path is not in general zero,
and if a potential is defined in some region by (B.1.43) the path of integration
will in part determine the measured potential difference.

The physical situation shown in Fig. B.1.6 serves as an illustration of the
implications of Faraday’s law. A magnetic circuit is excited by a current
source I(t) as shown. Because the magnetic material is highly permeable, the
induced flux density B(t) is confined to the cross section A which links a
circuit formed by resistances R, and R, in series. A cross-sectional view of the
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Highly permeable
magnetic
material

).

()

Fig. B.1.6 (a) A magnetic circuit excited by I(f) so that flux 4B(¢) links the resistive loop
(b) a cross-sectional view of the loop showing connection of the voltmeters.

circuit is shown in Fig. B.1.6b, in which high impedance voltmeters v, and
v, are shown connected to the same nodes. Under the assumption that no
current is drawn by the voltmeters, and given the flux density B(), we wish
to compute the voltages that would be indicated by v, and v,.

Three contours of integration C are defined in Fig. B.1.6b and are used with
Faraday’s integral law (B.1.41). The integral of E around the contour C, is
equal to the drop in potential across both of the resistances, which carry the
same current . Hence, since this path encloses a total flux 4B(t), we have

iR, + Ry) = — dit [AB()). (B.1.45)

The paths of integration C, and C, do not enclose a magnetic flux; hence for
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these paths (B.1.41) gives

R d
v, = —iR, = ——=——[AB(t)] for C,, B.1.46
i R+ R, dt[ 0) ( )
b, = iR, = —R_ 4 14B5)] for C, (B.1.47)
R, + R, dt

where the current i is evaluated by using (B.1.45). The most obvious attribute
of this result is that although the voltmeters are connected to the same nodes
they do not indicate the same values. In the presence of the magnetic induction
the contour of the voltmeter leads plays a role in determining the voltage
indicated.

The situation shown in Fig. B.1.6 can be thought of as a transformer with a
single turn secondary. With this in mind, it is clear that Faraday’s law plays
an essential role in electrical technology.

The divergence of an arbitrary vector V x A is zero. Hence the divergence
of (B.1.42) shows that the divergence of B is constant. This fact also follows
from (B.1.28), from which it can be shown that this constant is zero. Hence
an additional differential equation for B is

V-.B=0. (B.1.48)
Integration of this expression over an arbitrary volume V and use of the
divergence theorem (B.1.14) gives

4;3 -nda =0. (B.1.49)
S

This integral law makes more apparent the fact that there can be no net
magnetic flux emanating from a given region of space.

B.2 MAXWELL’S EQUATIONS

The generality and far-reaching applications of the laws of electricity and
magnetism are not immediately obvious; for example, the law of induction
given by (B.1.42) was recognized by Faraday as true when applied to a con-
ducting circuit. The fact that (B.1.42) has significance even in regions of
space unoccupied by matter is a generalization that is crucial to the theory of
electricity and magnetism. We can summarize the differential laws introduced
in Section B.1 as

V:¢E = p,, (B.2.1)
ap,

V-J+ 5 =0 (B.2.2)
V x B = ud + pg aea"tE, (B.2.3)
VxE=—_28, (B.2.4)

ot

V-B=0. (B.2.5)
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Taken together, these laws are called Maxwell’s equations in honor of the
man who was instrumental in recognizing that they have a more general
significance than any one of the experiments from which they originate. For
example, we can think of a time-varying magnetic flux that induces an electric
field according to (B.2.4) even in the absence of a material circuit. Similarly,
(B.2.3) is taken to mean that even in regions of space in which there is no
circuit, hence J = 0, a time-varying electric field leads to an induced magnetic
flux density B.

The coupling between time-varying electric and magnetic fields, as pre-
dicted by (B.2.1 to B.2.5), accounts for the existence of electromagnetic
waves, whether they be radio or light waves or even gamma rays. As we might
guess from the electromechanical origins of electromagnetic theory, the
propagation of electromagnetic waves is of secondary importance in the
study of most electromechanical phenomena. This does not mean that
electromechanical interactions are confined to frequencies that are low
compared with radio frequencies. Indeed, electromechanical interactions of
practical significance extend into the gigahertz range of frequencies.

To take a mature approach to the study of electromechanics it is necessary
that we discriminate at the outset between essential and nonessential aspects
of interactions between fields and media. This makes it possible to embark
immediately on a study of nontrivial interactions. An essential purpose of
this section is the motivation of approximations used in this book.

Although -electromagnetic waves usually represent an unimportant con-
sideration in electromechanics and are not discussed here in depth, they are
important to an understanding of the quasi-static approximations that are
introduced in Section B.2.2. Hence we begin with a brief simplified discussion
of electromagnetic waves.

B.2.1 Electromagnetic Waves

Consider fields predicted by (B.2.3) and (B.2.4) in a region of free space in
which J = 0. In particular, we confine our interest to situations in which the
fields depend only on (z, t) (the fields are one-dimensional) and write the
y-component of (B.2.3) and the z-component of (B.2.4)

9B, OE,
oz = Koo ot ’ (B26)
OE, _ _ 9B, (B2.7)
ox ot

This pair of equations, which make evident the coupling between the dynamic
electric and magnetic fields, is sufficient to determine the field components
B, and E,. In fact, if we take the time derivative of (B.2.6) and use the resulting
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expression to eliminate B, from the derivative with respect to = of (B.2.7),
we obtain

E, 13,
92 o’

(B.2.8)

where

c= =3 x 10®* (m/sec).

1
\/:“ofo

This equation for E, is called the wave equation because it has solutions in the
form of

E,x, 1) =E (x — ct) + E_(z + ct). (B.2.9)

That this is true may be verified by substituting (B.2.9) into (B.2.8). Hence
solutions for E, can be analyzed into components £, and E_ that represent
waves traveling, respectively, in the +x- and —=-directions with the velocity
of light c, given by (B.2.8). The prediction of electromagnetic wave propaga-
tion is a salient feature of Maxwell’s equations. It results, as is evident from
the derivation, because time-varying magnetic fields can induce electric
fields [Faraday’s law, (B.2.7)] while at the same time dynamic electric fields
induce magnetic fields [Ampere’s law with the displacement current included
(B.2.6)]. 1t is also evident from the derivation that if we break this two-way
coupling by leaving out the displacement current or omitting the magnetic
induction term electromagnetic waves are not predicted.

Electromechanical interactions are usually not appreciably affected by the
propagational character of electromagnetic fields because the velocity of
propagation c¢ is very large. Suppose that we are concerned with a system
whose largest dimension is /. The time //c required for the propagation of a
wave between extremes of the system is usually short compared with charac-
teristic dynamical times of interest; for example, in a device in which/ = 0.3 m
the time //c equals 10~® sec. If we were concerned with electromechanical
motions with a time constant of a microsecond (which is extremely short
for a device characterized by 30 cm), it would be reasonable to ignore the
wave propagation. In the absence of other dynamic effects this could be done
by assuming that the ficlds were established everywhere within the device
instantaneously.

Even though it is clear that the propagation of electromagnetic waves has
nothing to do with the dynamics of interest, it is not obvious how to go about
simplifying Maxwell’s equations to remove this feature of the dynamics. A
pair of particular examples will help to clarify approximations made in the
next section. These examples, which are considered simultaneously so that
they can be placed in contrast, are shown in Fig. B.2.1.
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Fig. B.2.1 Perfectly conducting plane-parallel electrodes driven at z = —/: (e) i(t) =
i, cos wt; (b) v(t) = v, cos wt.

A pair of perfectly conducting parallel plates has the spacing s which is
much smaller than the z-z dimensions / and 4. The plates are excited at
z = -/ by

a current source a voltage source

i(t) = i, cos ot (amperes). (B.2.10a) v(t) = v, cos wt (volts). (B.2.105)

At z = 0, the plates are terminated in

a perfectly conducting short circuit
plate.

an open circuit.

If we assume that the spacing s is small enough to warrant ignoring the
effects of fringing and that the driving sources at z = —/ are distributed
along the z-axis, the one-dimensional fields B, and E, predicted by (B.2.6)
and (B.2.7) represent the fields between the plates. Hence we can think of
the current and voltage sources as exciting electromagnetic waves that propa-
gate along the z-axis between the plates. The driving sources impose con-
ditions on the fields at z = —/. They are obtained by

integrating (B.1.33) around the
contour C (Fig. B.2.2a) which en-
closes the upper plate adjacent to the
current source. (The surface S en-
closed by C is very thin so that neg-
ligible displacement current links the

loop).

BA—1, 1) = —~poK = — ”—;@

(B.2.11a)

integrating the electric field between
(@) and (b) in Fig. B.2.2b to relate
the potential difference of the volt-
age source to the electric field
intensity E,(—1, ).

f °E, dy = —sE,(—1, ) = u(2).

(B.2.11b)
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Surface current

é_._ —_— + \Nb
=
B, y u(t) ,C
L,z Iy

x= -1 |
(a) x= =1

(b)
Fig. B.2.2 Boundary conditions for the systems in Fig. B.2.1

Similar conditions used at = 0 give the boundary conditions
EQ,1)=0 (B.2.12a) | B,0,:)=0 (B.2.12b)

It is not our purpose in this chapter to become involved with the formalism
of solving the wave equation [or (B.2.6) and (B.2.7)] subject to the boundary
conditions given by (B.2.11) and (B.2.12). There is ample opportunity to
solve boundary value problems for electromechanical systems in the text,
and the particular problem at hand forms a topic within the context of trans-
mission lines and waveguides. For our present purposes, it suffices to guess
solutions to these equations that will satisfy the appropriate boundary con-
ditions. Then direct substitution into the differential equations will show that
we have made the right choice.

E — —j sin wt sin (wz/c) E = _ Pa©0s wt cos (wz/c)
Y ° degc cos (wlfc) ’ Y s cos (wl/c) ’
(B.2.13qa) (B.2.13b)
__ Moi,COS 01 COs(wa/c) B = _ Y sin wt sin (wz/c)
: d cos (wlfc) ’ i ¢s cos (wl/c)
(B.2.14a) (B.2.14b)
Note that at # = —/ the boundary conditions B.2.11 are satisfied, whereas at

xz = 0 the conditions of (B.2.12) are met. One way to show that Maxwell’s
equations are satisfied also (aside from direct substitution) is to use tri-
gometric identities* to rewrite these standing wave solutions as the super-
position of two traveling waves in the form of (B.2.9). Our solutions are
sinusoidal, steady-state solutions, so that with the understanding that the
amplitude of the field at any point along the z-axis is varying sinusoidally with
time we can obtain animpression of the dynamics by plotting the instantaneous
amplitudes, as shown in Fig. B.2.3. In general, the fields have the sinusoidal
distribution along the z-axis of a standing wave. From (B.2.13 to B.2.14) it

* For example in (B.2.13a) sin wt sin (wz/c) = 3{cos [w(t — x/c)] — cos [w( + z[c)]}.
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Perfectly
conducting plate

Open
circuit

Fig. B.2.3 Amplitude of the electric field intensity and magnetic flux density along the
z-axis of the parallel-plate structures shown in Fig. B.2.1 For these plots wl/c = 3x/4.

is clear that as a function of time the electric field reaches its maximum am-
plitude when B, = 0 and vice versa. Hence the amplitudes of E, and B,
shown in Fig. B.2.3 are for different instants of time. The fields near = 0
do not in general have the same phase as those excited at z = —/ If, however,
we can make the approximation that times of interest (which in this case are
1/w) are much longer than the propagation time //c,

(B.2.15)

The sine functions can then be approximated by their arguments (which are
small compared with unity) and the cosine functions are essentially equal to
unity. Hence, when (B.2.15) is satisfied, the field distributions (B.2.13) and
(B.2.14) become

Ey ~_ 1, SIn wt(@) , (8216a) E,” ~ — Yo cos wf, (B216b)
degc \ ¢ §
Bz ~ — Mol, COS , (32170) Bz ~ Y sin wt(—a-)f) . (B217b)
d cs 4

The distribution of field amplitudes in this limit is shown in Fig. B.2.4. The
most significant feature of the limiting solutions is that

the magnetic field between the the electric field between the open-

short-circuited plates has the same
distribution as if the excitation
current were static.

circuited plates has the same dis-
tribution as if the excitation voltage
were constant,
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Perfectly
conducting plate

x==1 x= -

Fig. B.2.4 The distribution of field amplitudes between the parallel plates of Fig. B.2.1 in
the limit in which (wl//c) < 1.

Note that the fields as they are excited at # = —/retain the same phase every-
where between the plates. This simply reflects the fact that according to the
approximate equations there is no time lag between an excitation at z = —/
and the field response elsewhere along the z-axis. It is in this limit that the
ideas of circuit theory are applicable, for if we now compute

the voltage v(t) at x = —/ the current i(t) at 2 = —/

(t) = —sE (-1, 1) (B.2.18a) i() = —B,(~1,1 4 (B.2.18b)
Ho

we obtain the terminal equation for we obtain the terminal equation for

an inductance a capacitance

v= Ldit (i, cos mt), (B.2.19a) iy=C % (v, cos wt),  (B.2.19b)

where the inductance L is where the capacitance C is
L=t c =4
d s

A comparison of the examples will be useful for motivating many of the
somewhat subtle ideas introduced in the main body of the book. One of the
most important points that we can make here is that even though we have
solved the same pair of Maxwell’s equations (B.2.6) and (B.2.7) for both
examples, subject to the same approximation that wl//c < 1 (B.2.15), we
have been led to very different physical results. The difference between these
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two examples arises from the boundary condition at x = 0. In the case of

a short circuit a static excitation
leads to a uniform magnetic field
but no electric field. The electric
field is generated by Faraday’s law
because the magnetic field is in fact
only quasi-static and varies slowly

an open circuit a static excitation
results in a uniform electric field
but no magnetic field. The magnetic
field is induced by the displacement
current in Ampere’s law because
the electric field is, in fact, only

with time. quasi-stqtic and varies slowly with

time.

B.2.2 Quasi-Static Electromagnetic Field Equations

As long as we are not interested in phenomena related to the propagation
of electromagnetic waves, it is helpful to recognize that most electromechanical
situations are in one of two classes, exemplified by the two cases shown in
Fig. B.2.1. In the situation in which the plates are short-circuited together
(Fig. B.2.1a) the limit w//c « 1 means that the displacement current is of
negligible importance. A characteristic of this system is that with a static
excitation a large current results; hence there is a large static magnetic field.
For this reason it exemplifies a magnetic field system. By contrast, in the case
in which the plates are open-circuited, as shown in Fig. B.2.1b, a static
excitation gives rise to a static electric field but no magnetic field. This
example exemplifies an electric field system, in which the magnetic induction
of Faraday’s law is of negligible importance. To emphasize these points
consider how we can use these approximations at the outset to obtain the
approximate solutions of (B.2.19). Suppose that the excitations in Fig. B.2.1
were static. The fields between the plates are then independent of x and given
by
(B2.20a) | E,= —°

¥ .
N

(B.2.20b)

B, = — ' (B2.21a) | B, =0.

: ; B.2.21b
y ( )
Now suppose that the fields vary slowly with time [the systems are quasi-
static in the sense of a condition like (B.2.15)]. Then 7 and » in these equations
are time-varying, hence

B, is a function of time.
From Faraday’s law of induction as

E, is a function of time.
From Ampeére’s law, as expressed

expressed by (B.2.7) by (B.2.6)
Ok, _todi (B.2.22a) 0B; _ thoso dv. (B.2.22b)
dx ddt oz s dt
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Now the right-hand side of each of these equations is independent of z;
hence they can be integrated on x. At the same time, we recognize that

E(0,1) =0, (B.2.23a) | B,0,t) =0, (B.2.23b)

so that integration gives

E, =24l (B2.24a) | B, =tz d (B.2.24b)
d dt s dt

Recall how the terminal voltage and current are related to these field quantities
(B.2.18) and these equations become
di . dv

u(t) Ldt , (B.2.25a) im=cC 5
where again the inductance L and capacitance C are defined as following
(B.2.19). Hence making these approximations at the outset has led to the
same approximate results as those found in the preceding section by computing
the exact solution and taking the limits appropriate to wl/c K 1.

The simple example in Fig. B.2.1 makes it plausible that Maxwell’s
equations can be written in two quasi-static limits appropriate to the analysis
of two major classes of electromechanical interaction:

(B.2.25b)

Magnetic Field Systems Electric Field Systems
V x B = ygJ, (B.2.26a) V x B = uod + toso aa—l;: , (B.2.26b)
VxE=— %3 , (B.2.27a) VxE =0, (B.2.27b)
V:-B=0, (B.2.28a) V.gE = p,, (B.2.28b)
V-J=0, (B.2.2%q) V-J+ -af =0. (B.2.29b)

Here the displacement current has been omitted from Ampére’s law in the
magnetic field system, whereas the magnetic induction has been dropped from
Faraday’s law in the electric field system. Note that if the displacement
current is dropped from (B.2.26a) the charge density must be omitted from
the conservation of charge equation (B.2.294) because the latter expression
is the divergence of (B.2.264).

We have not included Guass’s law for the charge density in the magnetic
field system or the divergence equation for B in the electric field system
because in the respective situations these expressions are of no interest. In
fact, only the divergence of (B.2.26b) is of interest in determining the dynamics
of most electric field systems and that is (B.2.295).
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It must be emphasized that the examples of Fig. B.2.1 serve only to motivate
the approximations introduced by (B.2.26 to B.2.29). The two systems of
equations have a wide range of application. The recognition that a given
physical situation can be described as a magnetic field system, as opposed to
an electric field system, requires judgment based on experience. A major
intent of this book is to establish that kind of experience.

In the cases of Fig. B.2.1 we could establish the accuracy of the approxi-
mate equations by calculating effects induced by the omitted terms; for
example, in the magnetic field system of Fig. B.2.1a we ignored the dis-
placement current to obtain the quasi-static solution of (B.2.21a) and
(B.2.244). We could now compute the correction B,° to the quasi-static
magnetic field induced by the displacement current by using (B.2.6), with E
given by (B.2.244). This produces

dB,’ _ oo ‘_1_2£'

. it (B.2.30)

Because the right-hand side of this expression is a known function of =z,
it can be integrated. The constant of integration is evaluated by recognizing
that the quasi-static solution satisfies the driving condition at x = —I;
hence the correction field B,* must be zero there and

_ @ = Py i

B° =
* 2d dr

(B.2.31)

Now, to determine the error incurred in ignoring this field we take the ratio
of its largest value (at x = 0) to the quasi-static field of (B.2.21a):

B _ I |dtijdr’

B2 i (B.2.32)

If this ratio is small compared with 1, the quasi-static solution is adequate.
It is evident that in this case the ratio depends on the time rate of change of
the excitation. In Section B.2.1, in which i = i, cos wt, (B.2.32) becomes

c 2
'I’;—“I' - %(“’7’) &1, (B.2.33)

which is essentially the same condition given by (B.2.15).

Once the fields have been determined by using either the magnetic field or
the electric field representation it is possible to calculate the effects of the
omitted terms. This procedure results in a condition characterized by (B.2.33).
For this example, if the device were 30 cm long and driven at 1 MHz (this
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is an extremely high frequency for anything 30 cm long to respond to electro-
mechanically) (B.2.33) becomes

1/wl 1/2:7-10%-0.3\2
-[—) =-(—F———=) =22 x 10°« 1, B.2.34
2(c) 2( 3 x 10° ) 7 ( )

and the quasi-static approximation is extremely good.

It is significant that the magnetic and electric field systems can be thought
of in terms of their respective modes of electromagnetic energy storage. In
the quasi-static systems the energy that can be attributed to the electro-
magnetic fields is stored either in the magnetic or electric field. This can be
seen by using (B.2.26 to B.2.27) to derive Poynting’s theorem for the con-
servation of electromagnetic energy. If the equations in (B.2.27) are multi-
plied by B/u, and subtracted from the equations in (B.2.26) multiplied by
E/u,, it follows that

E—:-VxB—-E-VxE=E-J E-VxB—-E-VxE=E-J
Mo Mo Mo Mo
+B.B  gri3se +eE-%E  (B2.35h)
u, Ot ot

Then, because of a vector identity,* these equations take the form

—V-(EX—B—)=E.J _v.(ExE)=E.J

Mo Ho
2/1B.-B d/1
—{- . (B.2.36 —[(-¢E-E). (B.2.36b
at(Z ‘uo) ( a) +at(2€° ) ( )

Now, if we integrate these equations over a volume ¥ enclosed by a surface
S, the divergence theorem (B.1.14) gives

—fﬁE"B-nda=fE-JdV+3J.de, (B.2.37)

S Mo v otJv

where

w=1B-B (B2.38a) | w=_lcE-E. (B.2.38b)
2w 2

The term on the left in (B.2.37) (including the minus sign) can be interpreted
as the flux of energy into the volume ¥ through the surface S. This energy
is either dissipated within the volume V, as expressed by the first term on
the right, or stored in the volume V, as expressed by the second term. Hence

*V.AxC)=C-VxA—A-VxC.
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(w) can be interpreted as an electromagnetic energy density. The electro-
magnetic energy of the magnetic field system is stored in the magnetic field
alone. Similarly, an electric field system is one in which the electromagnetic
energy is stored in the electric field.

The familiar elements of electrical circuit theory illustrate the division of
interactions into those defined as magnetic field systems and those defined
as electric field systems. From the discussion in this and the preceding section
it is evident that the short-circuited plates in Fig. B.2.1 constitute an inductor,
whereas the open-circuited plates can be represented as a capacitor. This
fact is the basis for the development of electromechanical interactions
undertaken in Chapter 2. From this specific example it is evident that the
magnetic field system includes interactions in which we can define lumped-
parameter variables like the inductance, but it is not so evident that this model
also describes the magnetohydrodynamic interactions of a fluid and some
plasmas with a magnetic field and the magnetoelastic interactions of solids
in a magnetic field, even including electromechanical aspects of microwave
magnetics.

Similarly, the electric field system includes not only the electromechanics
of systems that can be modeled in terms of circuit concepts like the capaci-
tance but ferroelectric interactions between solids and electric fields, the
electrohydrodynamics of a variety of liquids and slightly ionized gases in an
electric field, and even the most important oscillations of an electron beam.
Of course, if we are interested in the propagation of an electromagnetic
wave through an ionospheric plasma or through the slightly ionized wake
of a space vehicle, the full set of Maxwell’s equations must be used.

There are situations in which the propagational aspects of the electro-
magnetic fields are not of interest, yet neither of the quasi-static systems is
appropriate. This is illustrated by short-circuiting the parallel plates of Fig.
B.2.1 at z = 0 by a resistive sheet. A static current or voltage applied to the
plates at x = —I then leads to both electric and magnetic fields between
the plates. If the resistance of the sheet is small, the electric field between the
plates is also small, and use of the exact field equations would show that
we are still justified in ignoring the displacement current. In this case the
inductance of Fig. B.2.1a is in series with a resistance. In the opposite ex-
treme, if the resistance of the resistive sheet were very high, we would still be
justified in ignoring the magnetic induction of Faraday’s law. The situation
shown in Fig. B.2.15 would then be modeled by a capacitance shunted by a
resistance. The obvious questions are, when do we make a transition from the
first case to the second and why is not this intermediate case of more interest
in electromechanics ?

The purpose of practical electromechanical systems is either the conversion
of an electromagnetic excitation into a force that can perform work on a
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mechanical system or the reciprocal generation of electromagnetic energy
from a force of mechanical origin. From (B.1.10) and (B.1.40) there are two
fundamental types of electromagnetic force. Suppose that we are interested
in producing a force of electrical origin on the upper of the two plates in
Fig. B.2.1. We have the option of imposing a large current to interact with
its induced magnetic field or of using a large potential to create an electric
field that would interact with induced charges on the upper plate. Clearly,
we are not going to impose a large potential on the plates if they are termin-
ated in a small resistance or attempt to drive a large current through the
plates with an essentially open circuit at x = 0. The electrical dissipation in
both cases would be prohibitively large. More likely, if we intended to use the
force J x B, we would make the resistance as small as possible to minimize
the dissipation of electric power and approach the case of Fig. B.2.1a. The
essentially open circuit shown in Fig. B.2.15 would make it possible to use a
large potential to create a significant force of the type p,E without undue
power dissipation. In the intermediate case the terminating resistance could
be adjusted to make the electric and magnetic forces about equal. As a
practical matter, however, the resulting device would probably melt before
it served any useful electromechanical function. The power dissipated in
the termination resistance would be a significant fraction of any electric
power converted to mechanical form.*

The energy densities of (B.2.38) provide one means of determining when
the problem shown in Fig. B.2.1 (but with a resistive sheet terminating the
plates at x = 0) is intermediate between a magnetic and an electric field
system. In the intermediate case the energy densities are equal

1e.,E-E=1B'B. (B.2.39)
2 2 o
Now, if the resistive sheet has a total resistance of R, then from (B.2.18q)
applied at = = 0 E;s = —iR. (B.2.40)

The current can be evaluated in terms of the magnetic field at x = 0 by using
(B.2.18b):

E;s = B, dR . (B.2.41)
Ko
Substitution of the electric field, as found from this expression into (B.2.39),
gives . 2
Cop e (R—d) 1B (B.2.42)
2 SHo: 2 po

* It is interesting that for this particular intermediate case the electric force tends to pull
the plates together, whereas the magnetic force tends to push them apart. Hence,
because the two forces are equal in magnitude, they just cancel.
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Hence, if the energy densities are equal, we obtain the following relation
among the physical parameters of the system:

dR _ (/ﬂ)’ﬁ (B.2.43)

§ €
It would be a digression to pursue this point here, but (B.2.43) is the con-
dition that must be satisfied if an electromagnetic wave launched between the
plates at x = —/is to be absorbed, without reflection, by the resistive sheet*;
that is, the intermediate case is one in which all the power fed into the system,
regardless of the frequency or time constant, is dissipated by the resistive
sheet.

B.3 MACROSCOPIC MODELS AND CONSTITUENT RELATIONS

When solids, liquids, and gases are placed in electromagnetic fields, they
influence the field distribution. This is another way of saying that the force
of interaction between charges or between currents is influenced by the
presence of media. The effect is not surprising because the materials are
comprised of charged particles.

Problems of physical significance can usually be decomposed into parts
with widely differing scales. At the molecular or submolecular level we may
be concerned with the dynamics of individual charges or of the atoms or
molecules to which they are attached. These systems tend to have extremely
small dimensions when compared with the size of a physical device. On
the macroscopic scale we are not interested in the detailed behavior of the
microscopic constituents of a material but rather only a knowledge of the
average behavior of variables, since only these averages are observable on a
macroscopic scale. The charge and current densities introduced in Section B.1
are examples of such variables, hence it is a macroscopic picture of fields and
media that we require here.

There are three major ways in which media influence macroscopic electro-
magnetic fields. Hence the following sections undertake a review of mag-
netization, polarization, and conduction in common materials.

B.3.1 Magnetization

The macroscopic motions of electrons, even though associated with
individual atoms or molecules, account for aggregates of charge and current

* The propagation of an electromagnetic wave on structures of this type is discussed in
texts concerned with transmission lines or TEM wave guide modes. For a discussion of
this matching problem see R. B. Adler, L. J. Chu, and R. M. Fano, Electromagnetic
Energy Transmission and Radiation, Wiley, New York, 1960, p. 111, or S. Ramo, J. R.
Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, Wiley, New
York, p. 27.
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(when viewed at the macroscopic level) that induce electric and magnetic
fields. These field sources are not directly accessible; for example, the equiv-
alent currents within the material cannot be circulated through an external
circuit. The most obvious sources of magnetic field that are inaccessible in
this sense are those responsible for the field of a permanent magnet. The
earliest observations on magnetic fields involved the lodestone, a primitive
form of the permanent magnet. Early investigators such as Oersted found
that magnetic fields produced by a permanent magnet are equivalent to
those induced by a circulating current. In the formulation of electromagnetic
theory we must distinguish between fields due to sources within the material
and those from applied currents simply because it is only the latter sources
that can be controlled directly. Hence we divide the source currents into
free currents (with the density J,) and magnetization currents (with the
density J,,). Ampere’s law then takes the form

Vv x (5) =3, 417, (B.3.1)
Mo

By convention it is also helpful to attribute a fraction of the field induced by

these currents to the magnetization currents in the material. Hence (B.3.1) is

written as

Vv x (9- - M) =3, (B3.2)
Ho

where the magnetization density M is defined by
VxM=1J,. (B.3.3)

Up to this point in this chapter it has been necessary to introduce only two
field quantities to account for interactions between charges and between
currents. To account for the macroscopic properties of media we have now
introduced a new field quantity, the magnetization density M, and in the
next section similar considerations concerning electric polarization of media
lead to the introduction of the polarization density P. It is therefore apparent
that macroscopic field theory is formulated in terms of four field variables.
In our discussion these variables have been E, B, M, and P. An alternative
representation of the fields introduces the magnetic field intensity H, in our
development defined as

H= (/BTO - M). (B.3.4)

From our definition it is clear that we could just as well deal with B and H
as the macroscopic magnetic field vectors rather than with B and M. This is
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particularly appealing, for then (B.3.2) takes the simple form
VxH=J, (B.3.5)

When the source quantities J, and M are specified independently, the
magnetic field intensity H (or magnetic flux density B) can be found from the
quasi-static magnetic field equations. A given constant magnetization density
corresponds to the case of the permanent magnet. In most cases, however,
the source quantities are functions of the field vectors, and these funtional
relations, called constituent relations, must be known before the problems
can be solved. The constituent relations represent the constraints placed on
the fields by the internal physics of the media being considered. Hence it is
these relations that make it possible to separate the microscopic problem
from the macroscopic one of interest here.

The simplest form of constituent relation for a magnetic material arises
when it can be considered electrically linear and isotropic. Then the per-
meability u is constant in the relation

B = uH. (B.3.6)

The material is isotropic because B is collinear with H and a particular
constant (u) times H, regardless of the direction of H. A material that
is homogeneous and isotropic will in addition have a permeability x4 that does
not vary with position in the material. Another way of expressing (B.3.6)
is to define a magnetic susceptibility X, (dimensionless) such that

M=7H, (B.3.7)
b= po(l + %,). (B.3.8)

Magnetic materials are commonly found with B not a linear function of H
and the constitutive law takes the general form

B = B(H). (B.3.9)

We deal with some problems involving materials of this type, but with few
exceptions confine our examples to situations in which B is a single-valued
function of H. In certain magnetic materials in some applications the B-H
curve must include hysteresis and (B.3.9) is not single-valued. *

The differential equations for a magnetic field system in the presence of
moving magnetized media are summarized in Table 1.2.

where

B.3.2 DPolarization

The force between a charge distribution and a test charge is observed to
change if a dielectric material is brought near the region occupied by the test

* G. R. Slemon, Magnetoelectric Devices, Wiley, New York, 1966, p. 115.
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charge. Like the test charge, the charged particles which compose the di-
electric material experience forces due to the applied field. Although these
charges remain identified with the molecules of the material, their positions
can be distorted incrementally by the electric force and thus lead to a polariza-
tion of the molecules.

The basic sources of the electric field are charges. Hence it is natural to
define a polarization charge density p, as a source of a fraction of the electric
field which can be attributed to the inaccessible sources within the media.
Thus Gauss’s law (B.1.16) is written

V.eE =p, + p,, (B.3.10)

where the free charge density p, resides on conducting electrodes and other
parts of the system capable of supporting conduction currents. The free
charges do not remain attached to individual molecules but rather can be
conducted from one point to another in the system.

In view of the form taken by Gauss’s law, it is convenient to identify a
field induced by the polarization charges by writing (B.3.10) as

V.(¢E +P)=p, (B.3.11)

where the polarization density P is related to the polarization charge density
by
pp=—V-P. (B.3.12)

As in Section B.3.1, it is convenient to define a new vector field that serves
as an alternative to P in formulating the electrodynamics of polarized media.
This is the electric displacement D, defined as

D=¢E+P (B.3.13)
In terms of this field, Gauss’s law for electric fields (B.3.11) becomes
V:-D=p, (B.3.14)

The simple form of this expression makes it desirable to use D rather than P
in the formulation of problems.

If a polarization charge model is to be used to account for the effects of
polarizable media on electric fields, we must recognize that the motion of
these charges can lead to a current. In fact, now that two classes of charge
density have been identified we must distinguish between two classes of current
density. The free current density J, accounts for the conservation of free
charge so that (B.1.18) can be written as

V-3, + aa_,:, = 0. (B.3.15)
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In view of (B.3.11), this expression becomes

V-J,+%V-(50E+P)=0. (B.3.16)
Now, if we write Ampére’s law (B.2.26b) as
Vv x (i) =3, +J, + %em, (B.3.17)

where J, is a current density due to the motion of polarization charges, the
divergence of (B.3.17) must give (B.3.16). Therefore

V.3, + %(—v .P) = 0. (B.3.18)

which from (B.3.12) is an expression for the conservation of polarization
charge. This expression does not fully determine the polarization current
density J,,, because in general we could write

J, = Z—l: +VxA, (B.3.19)

where A is an arbitrary vector, and still satisfy (B.3.18). At this point we
could derive the quantity A (which would turn out to be P x v, where v is the
velocity of the polarized medium). It is important, however, to recognize that
this represents an unnecessary digression. In the electric field system the mag-
netic field appears in only one of the equations of motion—Amp¢re’s law. It
does not appear in (B.2.27b) to (B.2.29b), nor will it appear in any constitutive
law used in this book. For this reason the magnetic field serves simply as a
quantity to be calculated once the electromechanical problem has been solved.
We might just as well lump the quantity A with the magnetic field in writing
Ampere’s law. In fact, if we are consistent, the magnetic field intensity H
can be defined as given by

VxH= J,+§—]2, (B.3.20)
ot
with no loss of physical significance. In an electric field system the magnetic
field is an alternative representation of the current density J,. A review of the
quasi-static solutions for the system in Fig. B.2.15 illustrates this point.

In some materials (ferroelectrics) the polarization density P is constant.
In most common dielectrics, however, the polarization density is a function of
E. The simplest constituent relation for a dielectric is that of linear and
isotropic material,

P = ¢ E, (B.3.21)
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where %, is the dielectric susceptibility (dimensionless) that may be a function
of space but not of E. For such a material we define the permittivity € as

e = ¢(1 4+ %,). (B.3.22)
and then write the relation between D and E as [see (B.3.13)]

D = ¢E. (B.3.23)

This mathematical model of polarizable material is used extensively in this
book.

The differential equations for the electric field system, in the presence of
moving polarized media, are summarized in Table 1.2.

B.3.3 Electrical Conduction

In both magnetic and electric field systems the conduction process accounts
for the free current density J, in a fixed conductor. The most common model
for this process is appropriate in the case of an isotropic, linear, conducting
medium which, when stationary, has the constituent relation (often called
Ohm’s law)

J, = oE. (B.3.24)

Although (B.3.24) is the most widely used mathematical model of the con-
duction process, there are important electromechanical systems for which it
is not adequate. This becomes apparent if we attempt to derive (B.3.24),
an exercise that will contribute to our physical understanding of Ohm’s law.

In many materials the conduction process involves two types of charge
carrier (say, ions and electrons). As discussed in Section B.1.2, a macro-
scopic model for this case would recognize the existence of free charge den-
sities p, and p_ with charge average velocities v, and v_, respectively. Then

J,=p. v, + p_v_. (B.3.25)

The problem of relating the free current density to the electric field intensity
is thus a problem in electromechanics in which the velocities of the particles
carrying the free charge must be related to the electric fields that apply forces
to the charges.

The charge carriers have finite mass and thus accelerate when subjected to a
force. In this case there are forces on the positive and negative carriers,
respectively, given by (B.1.10) (here we assume that effects from a magnetic
field are ignorable):

F, = p,E, (B.3.26)
F_= p_E. (B.3.27)
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As the charge carriers move, their motion is retarded by collisions with other
particles. On a macroscopic basis the retarding force of collisions can be
thought of as a viscous damping force that is proportional to velocity. Hence
we can picture the conduction process in two extremes. With no collisions
between particles the electric force densities of (B.3.26 and B.3.27) continually
accelerate the charges, for the only retarding forces are due to acceleration
expressed by Newton’s law. In the opposite extreme a charge carrier suffers
collisions with other particles so frequently that its average velocity quickly
reaches a limiting value, which in view of (B.3.26 and B.3.27)is proportional
to the applied electric field. It is in this second limiting case that Ohm’s law
assumes physical significance. By convention mobilities p, and u_ which
relate these limiting velocities to the field E are defined

v, = uE, (B.3.28)
v. = u_E. (B.3.29)

In terms of these quantities, (B.3.25) becomes
J, = (p.p, + p_p)E. (B.3.30)

It is important to recognize that it is only when the collisions between carriers
and other particles dominate the accelerating effect of the electric field that
the conduction current takes on a form in which it is dependent on the in-
stantaneous value of E. Fortunately, (B.3.30) is valid in a wide range of
physical situations. In fact, in a metallic conductor the number of charge
carriers is extremely high and very nearly independent of the applied electric
field. The current carriers in most metals are the electrons, which are detached
from atoms held in the lattice structure of the solid. Therefore the negatively
charged electrons move in a background field of positive charge and, to a good
approximation, p, = —p_. Then (B.3.30) becomes

J = oE, (B.3.31)

where the conductivity is defined as

pilpy — p) (B.3.32)

The usefulness of the conductivity as a parameter stems from the fact that
both the number of charges available for conduction and the net mobility
(essentially that of the electrons) are constant. This makes the conductivity
essentially independent of the electric field, as assumed in (B.3.24).*

* We assume here that the temperature remains constant. A worthwhile qualitative descrip~
tion of conduction processes in solids is given in J. M. Ham and G. R. Slemon, Scientific
Basis of Electrical Engineering, Wiley, New York, 1961, p. 453.
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In some types of material (notably slightly ionized gases) which behave
like insulators, the conduction process cannot be described simply by Ohm’s
law. In such materials the densities of charge carriers and even the mobilities
may vary strongly with electric field intensity.

B.4 INTEGRAL LAWS

The extensive use of circuit theory bears testimony to the usefulness of the
laws of electricity and magnetism in integral form. Physical situations that
would be far too involved to describe profitably in terms of field theory have
a lucid and convenient representation in terms of circuits. Conventional
circuit elements are deduced from the integral forms of the field equations.
The description of lumped-parameter electromechanical systems, as under-
taken in Chapter 2, requires that we generalize the integral laws to
include time-varying surfaces and contours of integration. Hence it is natural
that we conclude this appendix with a discussion of the integral laws.

B.4.1 Magnetic Field Systems
Faraday’s law of induction, as given by (B.1.42), has the differential form

VxE=—a—B. (B.4.1)
ot
This expression can be integrated over a surface S enclosed by the contour

C. Then, according to Stokes’s theorem,

%E-dl= - a—B-nda. (B.4.2)
s ot

c
Now, if § and C are fixed in space, the time derivative on the right can be
taken either before or after the surface integral of B - n is evaluated. Note

that fB nda is only a function of time. For this reason (B.1.41) could be
s

written with the total derivative outside the surface integral. It is implied in
the integral equation (B.1.41) that S is fixed in space.

Figure B.4.1 shows an example in which it is desirable to be able to use
(B.4.2), with S and C varying in position as a function of time. The contour
C is a rectangular loop that encloses a surface .S which makes an angle 6(¢)
with the horizontal. Although the induction law is not limited to this case, the
loop could comprise a one-turn coil, in which case it is desirable to be able
to use (B.4.2) with C fixed to the coil. The integral law of induction would be
much more useful if it could be written in the form

#)‘ E - dl = — 4 f B-nda. (B.4.3)
c dt Js
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Fig. B4.1 Contour C enclosing a surface S which varies as a function of time. The
rectangular loop links no magnetic flux when 6 =0, =, ...

In this form the quantity on the right is the negative time rate of change of
the flux linked by the contour C, whereas E’ is interpreted as the electric field
measured in the moving frame of the loop. An integral law of induction in
the form of (B.4.3) is essential to the lumped-parameter description of
magnetic field systems. At this point we have two choices. We can accept
(B.4.3) as an empirical result of Faraday’s original investigations or we can
show mathematically that (B.4.2) takes the form of (B.4.3) if

E=E+4+vxB, (B.4.4)

where v is the velocity of d] at the point of integration. In any case this topic
is pursued in Chapter 6 to clarify the significance of electric and magnetic
fields measured in different frames of reference.
The mathematical connection between (B.4.2) and (B.4.3) is made by
using the integral theorem
9 A-nda =f [aAHV-A)v].nda + 3§(A xv)-dl, (B.4.S5)
dt Js slot c
where v is the velocity of S and C and in the case of (B.4.3), A — B. Before
we embark on a proof of this theorem, an example will clarify its significance.

Example B.4.1. The coil shown in Fig. B.4.1 rotates with the angular deflection 6() in
a uniform magnetic flux density B(z), directed as shown. We wish to compute the rate of

change of the flux linked by the coil in two ways: first by computing fB - n da and taking
S
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its derivative [the left-hand side of (B.4.5)], then by using the surface and contour integra-
tions indicated on the right-hand side of (B.4.5). This illustrates how the identity allows us
to carry out the surface integration before rather than after the time derivative is taken.
From Fig. B.4.1 we observe that

f B:nda = —By(t)2ad sin 0, (@
s

so that the first calculation gives

d . . dB do
EJSB-nm= —2ad sin 0 d—to—BOZadcosoz. (b)

To evaluate the right-hand side of (B.4.5) observe that V< B = 0 and [from (a)]
B dB,
f—-nda=—2adsin9——°. ©
s 0t dt

The quantity B X v is collinear with the axis of rotation in Fig. B.4.1; hence there is no
contribution to the line integral along the pivoted ends of the loop. Because both the
velocity v = iga (d0/dt) and line elements dl are reversed in going from the upper to the
lower horizontal contours, the line integral reduces to twice the value from the upper
contour.

de
§ Bx v.dl= —2Bjad cos § — ()
c dt

From (c) and (d) it follows that the right-hand side of (B.4.5) also gives (b). Thus, at least
for this example, (B.4.5) provides alternative ways of evaluating the time rate of change
of the flux linked by the contour C.

The integral theorem of (B.4.5) can be derived by considering the de-
forming surface S shown at two instants of time in Fig. B.4.2. In the incre-
mental time interval At the surface S moves from S, to S,, and therefore by

-~V At % di

Fig. B4.2 When ¢ =, the surface S enclosed by the contour C is as indicated by §; and
C;. By the time ¢ = ¢ + At this surface has moved to S,, where it is enclosed by the contour

C2-
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definition

4 A-nda=1imi(fA
dt Js At~o At\Js,

n da). (B.4.6)

‘nda —f A
t+At 81

Here we have been careful to show that when the integral on S, is evaluated
t =t + At, in contrast to the integration on S;, which is carried out when
t=1.

The expression on the right in (B.4.6) can be evaluated at a given instant
in time by using the divergence theorem (B.1.14) to write

fV-AdngA -nda—fA
14 sz |, 8

for the volume ¥ traced out by the surface S in the time Az, Here we have
used the fact that —v Az x dlis equivalent to a surface element n da on the
surface traced out by the contour C in going from C, to C, in Fig. B.4.2.
To use (B.4.7) we make three observations. First, as At — 0,

t

'nda — At A-vxdl (B47)
t C1

jA ‘nda=~| A| -nda+ A At-nda+---. (B4.8)
Sa  lt+aAt Sy 1t 8, Ot It
Second, it is a vector identity that

Avxdl=Axv-dl (B4.9)

Third, an incremental volume dV swept out by the surface da is essentially
the base times the perpendicular height or

dV = Atv-nda. (B.4.10)

From these observations (B.4.7) becomes

Atf V-Av-ndae| A| -nda—{ a2 .nda
8y Sz |t+At s, Ot |
—J. A -nda—At.cﬁ Axv.dl. (B4.11)
S t 1

This expression can be solved for the quantity on the right in (B.4.6) to give

4 A-nda=1imU [(V-A)v+§é]-nda+ Axv-dl}.
dt Js At»o0 |l JS: ot (o3

(B.4.12)

The limit of this expression produces the required relation (B.4.5).
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Use of (B.4.5) to express the right-hand side of (B.4.2) results in

SZ_‘:. ——fB nda—f(V B)v- nda—SG(va) cdl,

(B.4.13)

Because V < B = 0, (B.4.2) then reduces to (B.4.3), with E’ given by (B.4.4).

The integral laws for the magnetic field system are summarized in Table 1.2
at the end of Chapter 1. In these equations surfaces and contours of
integration can, in general, be time-varying.

B.4.2 Electric Field System

Although the integral form of Faraday’s law can be taken as an empirical
fact, we require (B.4.5) to write Ampére’s law in integral form for an electric
field system. If we integrate (B.3.20) over a surface S enclosed by a contour C,
by Stokes’s theorem it becomes

_(j;H cdl = fJ, ‘nda + E ‘nda. (B.4.14)
As with the induction law for the magnetic field system, this expression can
be generalized to include the possibility of a deforming surface S by using
(B.4.13) with B — D to rewrite the last term. If, in addition, we use (B.3.14)
to replace V - D with p,, (B.4.14) becomes

§ H'.dl -—f J;-nda + — fD nda, (B.4.15)
where
H=H-vxD, (B.4.16)

The fields H' and J can be interpreted as the magnetic field intensity and free
current density measured in the moving frame of the deforming contour.
The significance of these field transformations is discussed in Chapter 6.
Certainly the relationship between J; (the current density in a frame moving
with a velocity v) and the current density J, (measured in a fixed frame),
as given by (B.4.17), is physically reasonable. The free charge density appears
as a current in the negative v-direction when viewed from a frame moving at
the velocity v. If was reasoning of this kind that led to (B.1.25).

As we have emphasized, it is the divergence of Ampére’s differential law
that assumes the greatest importance in electric field systems, for it accounts
for conservation of charge. The integral form of the conservation of charge
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Fig. B.4.3 The sum of two surfaces §; and S, “spliced” together at the contour to enclose
the volume V.

equation, including the possibility of a deforming surface of integration, is
obtained by using (B.4.15). For this purpose integrations are considered over
two deforming surfaces, S; and S,, as shown in Fig. B.4.3. These surfaces
are chosen so that they are enclosed by the same contour C. Hence, taken
together, S; and S, enclose a volume V.

Integration of (B.4.15) over each surface gives

i;l{’ «dl, = J, nda + i D -nda. (B.4.18)
dt Js,

fﬁﬂ"‘ﬂz“—‘ J;-nda +£ D-nda. (B.4.19)
c Sa dt Js,

Now, if n is defined so that it is directed out of the volume ¥ on each surface,
the line integral enclosing S, will be the negative of that enclosing S,. Then
the sum of (B.4.18 and B.4.19) gives the desired integral form of the conser-
vation of charge equation:

§ J;-nda + ) '[p, dv=0. (B.4.20)
8 dt Jv

In writing this expression we have used Gauss’s theorem and (B.3.14) to
show the explicit dependence of the current density through the deforming
surface on the enclosed charge density.

The integral laws for electric field systems are summarized in Table 1.2 at
the end of Chapter 1.

B.5 RECOMMENDED READING

The following texts treat the subject of electrodynamics and provide a
comprehensive development of the fundamental laws of electricity and mag-
netism.



B38 Review of Electromagnetic Theory

R. M. Fano, L. J. Chu, and R. B. Adler, ElectromagneticFields, Energy, and
Forces, Wiley, New York, 1960; J. D. Jackson, Classical Electrodynamics,
Wiley, New York, 1962: S. Ramo, J. R. Whinnery, and T. Van Duzer,
Fields and Waves in Communication Electronics, Wiley, New York, 1965;
W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism,
Addison-Wesley, Reading, Mass., 1956; J. A. Stratton, Electromagnetic
Theory, McGraw-Hill, New York, 1941.

Many questions arise in the study of the effects of moving media on electric
and magnetic fields concerning the macroscopic representation of polarized
and magnetized media; for example, in this appendix we introduced the
fields E and B as the quantities defined by the force law. Then P and M (or
D and H) were introduced to account for the effects of polarization and
magnetization. Hence the effect of the medium was accounted for by equiv-
alent polarization charges p, and magnetization currents J,,. Other represen-
tations can be used in which a different pair of fundamental vectors is taken,
as defined by the force law (say, E and H), and in which the effects of media
are accounted for by an equivalent magnetic charge instead of an equivalent
current. If we are consistent in using the alternative formulations of the field
equations, they predict the same physical results, including the force on
magnetized and polarized media. For a complete discussion of these matters
- see P. Penfield, and H. Haus, Electrodynamics of Moving Media, M.1.T.
Press, Cambridge, Mass., 1967.



Appendix C

SUMMARY OF PARTS I AND I
AND USEFUL THEOREMS

IDENTITIES
AxB-C=A-Bx_,
Ax (B xC)=B(A-C)— CA-B)
V(g +y)=Vé + Vy,
V-(A+B)=V-A4 V.B,
Vx(A+B)=VxA+VxB,
Vigy) = 6 Vy + v V4,

V.(pA) = A-Vyp + pV - A,

V. AxB)=B-VxA—A-VxB,
V- V¢ = V24,
V:-VxA=0,

V x Vé =0,
Vx(VxA)=V(V-A) — VA,
(VxA'x A=(A-V)A — }V(A-A),

VA-B)=(A-V)B+ (B-V)A + A x (V xB) + B x (V x A)

V x (pA) =Vd x A + 4V x A,

Vx(AxB)=A(NV-B)—B(V-A) + (B-V)A — (A-V)B.
C1
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Divergence theorem fﬁA .nda =Jv CAdV
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Stokes’s theorem fﬁA . dl =f(v x A)-nda
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C2

nda
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Appendix D

GLOSSARY OF
COMMONLY USED SYMBOLS

Section references indicate where symbols of a given significance are
introduced; grouped symbols are accompanied by their respective references.
The absence of a section reference indicates that a symbol has been applied
for a variety of purposes. Nomenclature used in examples is not included.

Symbol Meaning Section
A cross-sectional area
A; coefficient in differential equation 5.1.1
AL, A7) complex amplitudes of components of nth
mode 9.2.1
Ay cross-sectional area of armature conductor  6.4.1
a spacing of pole faces in magnetic circuit ~ 8.5.1
a, (a, a,) phase velocity of acoustic related waves 13.2.1,11.4.1
a Alfvén velocity 12.2.3
(a,b,0c) Lagrangian coordinates 11.1
a; constant coefficient in differential equation 5.1.1
a, instantaneous acceleration of point p fixed
in material 2.2.1c
B, B,, B, damping constant for linear, angular and
square law dampers 2.2.1b,4.1.1,5.2.2
B,B,, B, magnetic flux density 1.1.1a, 8.1, 6.4.2
B; induced flux density 7.0
(B,, B,y By, Byy) radial components of air-gap flux
densities 4.1.4
[B,s, (Byplav] radial flux density due to field current 6.4.1
b width of pole faces in magnetic circuit 8.5
b half thickness of thin beam 11.4.2b
C contour of integration 1.1.2a
C, (C,, Cp), C, capacitance 2.1.2,7.2.1a,5.2.1
C coefficient in boundary condition 9.1.1
C the curl of the displacement 114
(C+, C) designation of characteristic lines 9.1.1

D1



D2 Glossary of Commonly Used Symbols

Symbol Meaning Section

¢y specific heat capacity at constant pressure 13.1.2
Cy specific heat capacity at constant volume  13.1.2
D electric displacement 1.1.1a
d length
da elemental area 1.1.2a
df, total elemental force on material in rigid

body 22.1c
dl elemental line segment 1.1.2a
dT, torque on elemental volume of material 2.2.1c
dav elemental volume 1.1.2b
E constant of motion 5.21
E Young’s modulus or the modulus of

elasticity 9.1
E, E, electric field intensity 1.1.1a, 5.1.2d
E; magnitude of armature voltage generated

by field current in a synchronous

machine 4.1.6a
E; induced electric field intensity 7.0
ey, € strain tensor 9.1,11.2
é;; strain-rate tensor 14.1.1a
F magnetomotive force (mmf) 13.2.2
F force density 1.1.1a
F complex amplitude of f(¢) 5.1.1
K, amplitude of sinusoidal driving force 9.1.3
f equilibrium tension of string 9.2
f driving function 5.11

LELSS i fo

force

2.2.1,2.2.1¢, 3.1,

5.1.2a,3.1.2b, 8.1,

9.1

f arbitrary scalar function 6.1
f scalar function in moving coordinate

system 6.1
f three-dimensional surface 6.2
f integration constant 11.4.2a
G a constant 5.1.2¢
G shear modulus of elasticity 11.2.2
G speed coefficient 6.4.1
G conductance 31
g air-gap length 5.21
g, 8 acceleration of gravity 5.1.2¢,12.1.3
H, H,, H,, H) magnetic field intensity 1.1.1a
h specific enthalpy 13.1.2

I) I, (17" 13)5 If

(O I P PO
(iarJas’ ibr’ ibs)’

ia: (i(u iby ic);
(s, i), (s i)

electrical current

electrical current

10.4.3, 12.2.1a, 4.1.2,

6.4.1

2.1,4.1.3,6.4.1,4.1.7,

641,41



Appendix D D3
Symbol Meaning Section

i, unit vector perpendicular to area of

integration 6.2.1
i unit vector normal to surface of

integration 6.2.1
iy, iy, ip), (iy, io, ig) unit vectors in coordinate directions 2.21c

current density 7.0,1.1.1a

I3 d vy Uy Bys J2)

Tozs Jyz
J

K

K, Kf
K

K;
k’ kc9 (kr) k{)
k

k
kn
(L: Lp Lz)s (La) Lf):
Lm’ (L()! Lz)’
(Lf9 Lﬂ’ LST)’ LSS

b~

>~
~
3
<
&

RTRXRRR

X

T~ T -1 WW’““ZZSE

Pes Pg> Pms Pr

Q
s Gis I

R,R;, R,

moment of inertia

products of inertia

v -1

loading factor

surface current density

linear or torsional spring constant
induced surface current density
wavenumber

summation index

maximum coefficient of coupling
nth eigenvalue

inductance

length of incremental line segment

value of relative displacement for which
spring force is zero

length

Hartmann number

mass of one mole of gas in kilograms

Mach number

mass

number of mechanical terminal pairs

mutual inductance

magnetization density

mass/unit length of string

number of electrical terminal pairs

number of turns

number density of ions

integer

unit normal vector

polarization density

power

number of pole pairs in a machine

power per unit area

pressure

power

electric charge
electric charge

radius

5.1.2b,4.1.1,2.2.1c
2.2.1c

4.1.6a

13.2.2

7.0,1.1.1a

2.2.1a

7.0

7.1.3, 10.1.3, 10.0

2.1.1

4.1.6b

9.2

2.1.1,64.1,21.1,
4.21,4.1.1,42.4

6.2.1
22.1a

14.2.2

13.1.2

13.2.1

2.2.1c

2.1.1

411,424

1.1.1a

9.2

2.1.1

522

12.3.1

7.1.1

1.1.2

1.1.1a

12.2.1a

4.1.8

14.2.1

5.1.2d and 12,14

4.1.6a, 4.1.6b, 4.1.2,
4.1.6b

7.2.1a

1.1.3 and 2.1.2, 8.1,
212



D4 Glossary of Commonly Used Symbols

Symbol Meaning Section
R, R,, Ry, Ry, Ry, R,  resistance
(R, Ry) gas constant 13.1.2
R, electric Reynolds number 7.0
R,, magnetic Reynolds number 7.0
r radial coordinate
r position vector of material 221c
r position vector in moving reference frame 6.1
| center of mass of rigid body 2.2.1c
S reciprocal modulus of elasticity 11.5.2¢
S surface of integration 1.1.2a
S normalized frequency 7.2.4
M membrane tension 9.2
S, transverse force/unit length acting on string 9.2
s complex frequency 5.11
(s, Spp) slip 4.1.6b
5y ith root of characteristic equation, a 511
natural frequency
T period of oscillation 5.21
T temperature 13.1.2
T,T,T° T,y Ty, torque 2.2.1¢, 5.1.2b, 3.1.1,
T, Ty 4.1.6b, 4.1.1, 6.4.1,
6.4.1
T surface force 8.4
T mechanical stress tensor 13.1.2
Toun the component of the stress-tensor in the
mth-direction on a cartesian surface with
a normal vector in the nth-direction 8.1
Toy constant of coulomb damping 4.1.1
T, initial stress distribution on thin rod 9.1.1
T longitudinal stress on a thin rod 9.1.1
T, transverse force per unit area on
membrane 9.2
I, transverse force per unit area acting on
thin beam 11.4.2b
t time L11
t time measured in moving reference frame 6.1
U gravitational potential 12.1.3
U longitudinal steady velocity of string or
membrane 10.2
u internal energy per unit mass 13.1.1
u surface coordinate 11.3
ug(x — ) unit impulse at z = z, 9.2.1
u transverse deflection of wire in z-direction 10.4.3
u_,(1) unit step occurring at £ = 0 5.1.2b
VeV velocity 7.0,13.2.3
Vv volume 1.1.2

V, Vo Vy, Voo Vs
v

voltage
potential energy

5.21



Appendix D

Symbol Meaning Section
v,V velocity
@550 voltage 2.1.1
v, (Ug, Uy, V), voltage
Uys Upe» Uy
Up velocity of surface in normal direction 6.2.1
v, initial velocity distribution on thin rod 9.1.1
v, phase velocity 9.1.1 and 10.2
\d relative velocity of inertial reference frames 6.1
v, v fim for a string under tension f and 10.1.1
having mass/unit length m
v longitudinal material velocity on thinrod 9.1.1
v transverse deflection of wire in y-direction 10.4.3
(W,, W) energy stored in electromechanical
coupling 311
W, W,,, W) coenergy stored in electromechanical 3.1.2b
coupling
w’ hybrid energy function 5.2.1
w width 522
w energy density 11.5.2¢
w coenergy density 8.5
X equilibrium position 5.1.2a
(x, 2y, T, . .. ,2p) displacement of mechanical node 2.1.1
x dependent variable 5.1.1
z, particular solution of differential equation 5.1.1
(zy, %9, 73), (z,¥,2)  cartesian coordinates 8.1, 6.1
@y, %) cartesian coordinates of moving frame 6.1
(a, B) constants along C~ and C- characteristics,
respectively 9.1.1
(=, B) see (10.2.20) or (10.2.27)
o transverse wavenumber 11.4.3
(a, B) angles used to define shear strain 11.2
(x, B) constant angles 4.1.6b
o space decay parameter 7.1.4
o damping constant 5.1.2b
o equilibrium angle of torsional spring 2.2.1a
Y ratio of specific heats 13.1.2
y piezoelectric constant 11.5.2¢
7 Yo V' angular position
A1) slope excitation of string 10.2.1b
Aq amplitude of sinusoidal slope excitation 10.2.1b
Ar distance between unstressed material
points 11.2.1a
As distance between stressed positions of
material points 11.2.1a
8 ) incremental change in ( ) 8.5
8,96,,6, displacement of elastic material 11.1,9.1,11.4.2a
4 thickness of incremental volume element  6.2.1
é 4.1.6a

torque angle



D6

Glossary of Commonly Used Symbols

Symbol Meaning Section
0y Kronecker delta 8.1
(6,,6) wave components traveling in the
+z-directions 9.1.1
€ linear permittivity 1.1.1b
€ permittivity of free space 1.1.1a
Ui efficiency of an induction motor 4.1.6b
7 second coefficient of viscosity 14.1.1c
6,0,0, angular displacement 2.1.1,3.1.1,5.2.1
0 power factor angle; phase angle between
current and voltage 4.1.6a
0 equilibrium angle 5.21
6 angular velocity of armature 6.4.1
0., maximum angular deflection 5.21
A AL Ay, s A) magnetic flux linkage 2.1.1,64.1,4.1.7,
2y 4.1.3,4.1
(la: j'b’ lc)
(Z'ar’ j'as’ ;*bﬂ lbs)
(s 25)
A Lam¢ constant for elastic material 11.2.3
A wavelength 7.14
u linear permeability 1.1.1a
u, (U, B2 mobility 12.3.1,1.1.1b
" coefficient of viscosity 14.1.1
Hq coefficient of dynamic friction 2.2.1b
Ug permeability of free space 1.1.1a
M coefficient of static friction 2.2.1b
v Poisson’s ratio for elastic material 11.2.2
v damping frequency 10.1.4
(€,5 continuum displacement 8.5
& initial deflection of string 9.2
&y amplitude of sinusoidal driving deflection 9.2
(£a(@), £,@) nth eigenfunctions 9.2.1b
(&4, &) amplitudes of forward and backward
traveling waves 9.2
éo(x) initial velocity of string 9.2
p mass density 2.2.1¢c
Pr free charge density 1.1.1a
Ps surface mass density 11.3
P surface of discontinuity 6.2
c conductivity 1.1.1a
oy free surface charge density 1.1.1a
O surface mass density of membrane 9.2
o, surface charge density 7.2.3
g surface conductivity 1.1.1a
oy surface charge density 7.23
T surface traction 8.2.1
T, Tq diffusion time constant 7.1.1,7.1.2a
T relaxation time 7.2.1a



Appendix D D7

Symbol Meaning Section

Te electrical time constant 522
Tm time for air gap to close 522
T time constant 513
T; traversal time 7.1.2a
é electric potential 7.2
¢ magnetic flux 211
é cylindrical coordinate 2.11
% potential for H when J; = 0 85.2
¢ flow potential 12.2
Ze electric susceptibility 1.L1b
Lm magnetic susceptibility 1.1.1a
Y the divergence of the material

displacement 11.4
p angle defined in Fig. 6.4.2 6.4.1
V4 angular position in the air gap measured

from stator winding (a) magnetic axis 4.1.4
¥ electromagnetic force potential 12.2
Y angular deflection of wire 10.4.3
Q equilibrium rotational speed 5.1.2b
L2 rotation vector in elastic material 11.2.1a
Q, real part of eigenfrequency (10.1.47) 10.1.4
w, (0, ;) radian frequency of electrical excitation 4.1.6a,4.1.2
] natural angular frequency (Im s) 5.1.2b
w, ©,, angular velocity 2.2.1¢,4.1.2
@, cutoff frequency for evanescent waves 10.1.2
g driving frequency 9.2
W, nth eigenfrequency 9.2
w, natural angular frequency 5.13
(wy, w;) real and imaginary parts of @ 10.0

nabla 6.1

Vz surface divergence 6.2.1



Appendix E

SUMMARY OF PARTS I AND II
AND USEFUL THEOREMS

IDENTITIES

AxB-C=A.BxC(,

Ax (BxC)=B(A-C)— C(A-B)
V(¢ + )= V¢ + Vy,

V-(A+B)=V-A+V.B,

Vx(A+B)=VxA+VxB,

Vigy) = ¢ Vy + y Vg,

V-(pAy=A-Vy + ¢V A,

V.- (AxB)=B-VxA—A.V xB,

V- V¢é = Vig,
V. VxA=0,
V x V¢ =0,

Vx(VxA)=V(V.A) — V24,

(VxA)xA=(A-V)A — 1V(A - A),
VIA-B)=(A-V)B+ (B-V)A + A x (V x B) + B x (V x A)
V x (dA) =Vd x A + ¢V x A,

V x (AxB)=A(V-B) —B(V-A) + (B-V)A — (A-V)B.
El
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Divergence theorem fﬁA .nda =fv AdV
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Stokes’s theorem ff;A .dl =J(V x A)-nda
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nda
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Table 1.2 Summary of Quasi-Static Electromagnetic Equations

Differential Equations Integral Equations
Magnetic field system VxH=1J, (1.1.1) § H-dl= f J;-nda (1.1.20)
c s
V:-B=0 (1.1.2) §B-nda=0 (1.1.21)
8
V.3,=0 (1.1.3) §J,-nda =0 (1.1.22)
s
B d
= — — 'edl=—— | Bend 1.1.23
VXE % (1.1.5) é}E dl dt_L nda ( )
where EE=E+v X B
Electric field system VXE=0 (1.1.11) § E.-dl=0 (1.1.29)
¢
VD =p, (1.1.12) %D-nda = f prdv (1.1.25)
8 v
v.s,=-2 (L 3 onda=— 2| pav (1.1.26)
T T % o P n dtVP’ o
d
VxH=J+ D (1.1.15) H’-dl=fJ,'.-nda+—fD-nda (1.1.27)
ot c s drJg

where J; = J;— p;v
H=H-vXxD




Table 2.1 Summary of Terminal Variables and Terminal Relations

Magnetic field system Electric field system

Definition of Terminal Variables

Flux Charge
lk=fB'nda qk=f Pde
Sk Vi
Current Voltage

b
ik=f J;on' da vk=fE-dl
S’ a

Terminal Conditions

diy, . _ dgy
Vp = -;17 I = —d—t
Ay = M(iy - - - iy geometry) qr = qx(vy * * * vy; geometry)

iy = iy(Ay - - - Ay; geometry) vy = U(qy * * * qn'; geometry)



G |

assmrav wrea ALURAVE gy ARNLALAVAIG ATra SRR ASAM LR M AsRw AAmeRRRmEma W egeemmepy = w7y e as

and M Mechanical Terminal Pairs*

Magnetic Field Systems Electric Field Systems

Conservation of Energy

N M N M
dW,, = D ijdi; — > [ d; (a) dW, = vjdg; — > f*dz; (b)
=1 je=1 j=1 j=1
, N M , N M
dw,, =3 didi;+ > f*dx (©) AW, =3 gqidv; + > f;°dx; (d)
i=1 i=1 =1 i=1
Forces of Electric Origin,j =1,..., M
W, gy oo Ay, oo, Zyy) OW, Gy N3 T1s e o5 2hp)
e — _ AL > N> 1 »TM e — . Ay >IN L M
iz o @  f o ®
W, (i v nins Ty e e e s Thp) OW 01y e ey U3 Ty v v e 5 Tgyp)
e _ AU TR\ e » % e _ e\l1s - - -5 Vys 2p, »Fm
Ji ox; ® fi 0x; (h
Relation of Energy to Coenergy
N B
W + W = 2 Ay M Wot+ W/ =2 vq, 6)
i=1 j=1
Energy and Coenergy from Electrical Terminal Relations
N4, , , LA ,
We = Z J‘ iy v A, 25,0, 00, 05y, Ly dRy (K w, = Z 177 (- U/ FEPY /O VR | ST )
i=1J0 i=140
N 25 , , N vy ,
W, = z Jv lj(il,...,l'j_l,ij,o,...,0;%1,...,%‘Dl)dij (m) W, = f qj(vlf"‘r"j—la v, 0,...,0;2,... (n)
i=1J0 i=14J0

* The mechanical variables f; and @; can be regarded as the jth force and displacement or the jth torque 7; and angular displacement 6;.



Table 6.1 Differential Equations, Transformations, and Boundary Conditions for Quasi-static Electromagnetic Systems with
Moving Media

Differential Equations Transformations Boundary Conditions

VxH=1I, (1.1.1) H =H (6.1.35) n x (H* — H®) =K, (6.2.14)

V-B=0 (1.1.2) B' =B 6.1.37) n-B*—BY) =0 6.2.7)
fﬁf‘;““"m V.J,=0 Ly 3=y, (61.36) n-(I° —J}) + Vy-K,=0 (6.2.9)
systems B ’

VXE=— " (1.1.5) E=E+vxB (6138 nx(E*—E?=y,B*—B" (6.2.22)

B = uy(H + M) (1.1.4) M =M (6.1.39)

VXE=0 (1.1.11) E' =E (6.1.54) n x(E* —E») =0 (6.2.31)

V:-D= (1.1.12) D'=D (6.1.55) n-(D*—D¥ =0 (6.2.33)

Pr b4
. Py = ps (6.1.56) 2

Electric V.y=-—2 (1114 T, =J,—pn"  (6.1.58) n-(J* — I + Vy-K; = 1,(p,% — p,®) — 1 (6.2.36)
field ot ot
systems aD

VxH=J+ 5 (1.1.15) H =H-v xD (6157 nx H*—H?) =K, + y,n x [n x (D — D?)] (6.2.38)

D=gE+P (1.1.13) P’ = (6.1.59)




Appendix F

GLOSSARY OF
COMMONLY USED SYMBOLS

Section references indicate where symbols of a given significance are
introduced; grouped symbols are accompanied by their respective references.
The absence of a section reference indicates that a symbol has been applied
for a variety of purposes. Nomenclature used in examples is not included.

Symbol Meaning Section
A cross-sectional area
Ag coefficient in differential equation 511
(4%, A7) complex amplitudes of components of nth
mode 9.2.1
Ayp cross-sectional area of armature conductor 6.4.1
a spacing of pole faces in magnetic circuit  8.5.1
a, (a,, a;) phase velocity of acoustic related waves 13.2.1,11.4.1
a Alfvén velocity 12.2.3
(a,b,0) Lagrangian coordinates 11.1
a; constant coefficient in differential equation 5.1.1
a, instantaneous acceleration of point p fixed
in material 2.2.1c
B, B,, B, damping constant for linear, angular and
square law dampers 2.2.1b,4.1.1,5.2.2
B,B,, B, magnetic flux density 1.1.1a, 8.1, 6.4.2
4 induced flux density 7.0
(B,, By, By, Bry) radial components of air-gap flux
densities 414
[Byrs, (Brplav] radial flux density due to field current 6.4.1
b width of pole faces in magnetic circuit 8.5
b half thickness of thin beam 11.4.2b
C contour of integration 1.1.2a
C,(Cy, Cy), C, capacitance 2.1.2,7.2.1a,5.2.1
C coefficient in boundary condition 9.1.1
C the curl of the displacement 114
(C+, C) designation of characteristic lines 9.1.1

F1



F2 Glossary of Commonly Used Symbols
Symbol Meaning Section
cy specific heat capacity at constant pressure 13.1.2
Cy specific heat capacity at constant volume  13.1.2
D electric displacement 1.1.1a
d length
da elemental area 1.1.2a
daf, total elemental force on material in rigid
body 2.2.1c
dl elemental line segment 1.1.2a
dT, torque on elemental volume of material 2.2.1c
dv elemental volume 1.1.2b
E constant of motion 5.2.1
E Young’s modulus or the modulus of
elasticity 9.1
E,E, electric field intensity 1.1.1a, 5.1.2d
E, magnitude of armature voltage generated
by field current in a synchronous
machine 4.1.6a
E; induced electric field intensity 7.0
€43, €4 strain tensor 9.1,11.2
éi strain-rate tensor 14.1.1a
F magnetomotive force (mmf) 13.2.2
F force density 1.1lla
F complex amplitude of f(t) 5.1
Fy amplitude of sinusoidal driving force 9.1.3
f equilibrium tension of string 9.2
f driving function 5.11
LS i foli force 2.2.1,2.2.1¢,3.1,
5.1.2a, 3.1.2b, 8.1,
9.1
f arbitrary scalar function 6.1
f scalar function in moving coordinate
system 6.1
f three-dimensional surface 6.2
f integration constant 11.4.2a
G a constant 512
G shear modulus of elasticity 11.2.2
G speed coefficient 6.4.1
G conductance 3.1
£ air-gap length 5.21
&g acceleration of gravity 5.1.2¢,12.1.3
H, H,, H,, H,) magnetic field intensity 1.1.1a
h specific enthalpy 13.1.2

I’ Is (lr’Is ,If

(i, gy o ooy i),
(ian ias’ ibrr ibs):
ia» (ia, ib’ ic)s
(if, it): (if! is)

electrical current

electrical current

10.4.3, 12.2.1a, 4.1.2,
6.4.1

2.1,4.13,64.1,4.1.7,
6.4.1, 4.1



Appendix F F3
Symbol Meaning Section

i, unit vector perpendicular to area of

integration 6.2.1
is unit vector normal to surface of

integration 6.2.1
(i iy, 1), (iy, i3, i3) unit vectors in coordinate directions 2.2.1c
A current density 7.0,1.1.1a

JsJﬂ (Jx’Jy’Jz)

Jﬁtt 4 JW

-

K
K, K,
K
K
] kc, (k.,., ki)

k.
k
k
ky,
(Li L]_, Lz), (La; Lf):

Ly Lgs Ly),
(Lr’ Ls! LST)’ LES

bl

o~
~

g

s

&~

SNV NS I ¥ ZIZXRIIIRR
X

Pes Pas Pms Pr

(4]
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Rs Ri’ -Ro

moment of inertia

products of inertia

vl

loading factor

surface current density

linear or torsional spring constant
induced surface current density
wavenumber

summation index

maximum coefficient of coupling
nth eigenvalue

inductance

length of incremental line segment

value of relative displacement for which
spring force is zero

length

Hartmann number

mass of one mole of gas in kilograms

Mach number

mass

number of mechanical terminal pairs

mutual inductance

magnetization density

mass/unit length of string

number of electrical terminal pairs

number of turns

number density of ions

integer

unit normal vector

polarization density

power

number of pole pairs in a machine

power per unit area

pressure

power

electric charge
electric charge

radius

5.1.2b, 4.1.1,2.2.1c
2.2.1c

4.1.6a

13.2.2

7.0,1.1.1a

2.2.1a

7.0

7.1.3, 10.1.3, 10.0

2.1.1

4.1.6b

9.2

21.1,64.1,2.1.1,
421,411,424

6.2.1
2.2.1a

142.2

13.1.2

13.2.1

2.2.1c

2.1.1

4.1.1,424

1.1.1a

9.2

2.1.1

522

12.3.1

7.1.1

1.1.2

1.1.1a

12.2.1a

4.1.8

14.2.1

5.1.2d and 12.14

4.1.6a, 4.1.6b, 4.1.2,
4.1.6b

7.2.1a

1.1.3 and 2.1.2, 8.1,
212



Symbol

Glossary of Commonly Used Symbols

Meaning

Section

R, Ry, Ry, Ry, Ry, R,
(R, Ry)

‘“hsahhtnh; "k"‘??

(S > smT)
S5

T

T

T, T’ TG! Tem’ Tm,
T, Tq

u

u

uy(z — xy)

u

"—1(t)

ViV

V

V, Vo V3, Vo, Vg
vV

resistance
gas constant

electric Reynolds number
magnetic Reynolds number

radial coordinate

position vector of material

position vector in moving reference frame
center of mass of rigid body

reciprocal modulus of elasticity

surface of integration
normalized frequency
membrane tension

transverse force/unit length acting on string

complex frequency
slip

ith root of characteristic equation, a

natural frequency
period of oscillation
temperature
torque

surface force

mechanical stress tensor

the component of the stress-tensor in the
mth-direction on a cartesian surface with
a normal vector in the ath-direction

constant of coulomb damping

initial stress distribution on thin rod

longitudinal stress on a thin rod

transverse force per unit area on

membrane

transverse force per unit area acting on

thin beam
time

time measured in moving reference frame

gravitational potential

longitudinal steady velocity of string or

membrane

internal energy per unit mass

surface coordinate

unit impulse at z = %,
transverse deflection of wire in z-direction
unit step occurring at t = 0

velocity
volume
voltage
potential energy

13.1.2
7.0
7.0

2.2.1c
6.1
2.2.1¢
11.5.2¢
1.1.2a
124
9.2
9.2
5.1.1
4.1.6b
5.1.1

5.21

13.1.2

2.2.1c, 5.1.2b, 3.1.1,
4.1.6b, 4.1.1, 6.4.1,
6.4.1

8.4

13.1.2

8.1

4.1.1
9.1.1
9.1.1

9.2

11.4.2b
1.1.1
6.1
12,13

10.2
13.1.1
11.3

9.2.1
104.3
5.1.2b
7.0,13.23
1.1.2

5.21



Appendix F

Symbol Meaning Section
v, ¥ velocity
0, 05+« 2 Ug) voltage 2.1.1
v, (g, vy, 00), voltage
Uf, VUoes Vg
Up, velocity of surface in normal direction 6.2.1
v, initial velocity distribution on thin rod 9.1.1
o, phase velocity 9.1.1 and 10.2
v relative velocity of inertial reference frames 6.1
Vs 4 fim for a string under tension f and 10.1.1
having mass/unit length m
v longitudinal material velocity on thinrod 9.1.1
v transverse deflection of wire in y-direction 10.4.3
(W, W) energy stored in electromechanical
coupling 311
(W, W, W) coenergy stored in electromechanical 3.1.2b
coupling
w hybrid energy function 5.2.1
w width 522
w energy density 11.5.2¢
w' coenergy density 8.5
X equilibrium position 5.1.2a
(z, 2,2y, ...,%) displacement of mechanical node 2.1.1
x dependent variable 5.1.1
%, particular solution of differential equation 5.1.1
(xy, %y, z3), (%,9,2)  cartesian coordinates 8.1,6.1
@,y 2") cartesian coordinates of moving frame 6.1
(o, B) constants along C* and C- characteristics,
respectively 9.1.1
(«, B) see (10.2.20) or (10.2.27)
1 transverse wavenumber 11.4.3
(x, ) angles used to define shear strain 11.2
(x, B) constant angles 4.1.6b
3 space decay parameter 7.14
o damping constant 5.1.2b
o equilibrium angle of torsional spring 2.2.1a
Y ratio of specific heats 13.1.2
y piezoelectric constant 11.5.2¢
Y Vo ¥ angular position
Ay slope excitation of string 10.2.1b
A, amplitude of sinusoidal slope excitation 10.2.1b
Ar distance between unstressed material
points 11.2.1a
As distance between stressed positions of
material points 11.2.1a
é( ) incremental change in () 8.5
8, 6y, 6, displacement of elastic material 11.1,9.1,114.2a
é thickness of incremental volume clement  6.2.1
é torque angle 4.1.6a



F6 Glossary of Commonly Used Symbols

Symbol Meaning Section
s Kronecker delta 8.1
d,,d.) wave components traveling in the
+2-directions 9.1.1
€ linear permittivity 1.1.1b
€ permittivity of free space 1.1.1a
7 efficiency of an induction motor 4.1.6b
7 second coefficient of viscosity 14.1.1c
0,6;,6, angular displacement 2.1.1,3.1.1,5.2.1
] power factor angle; phase angle between
current and voltage 4.1.6a
6 equilibrium angle 5.2.1
6 angular velocity of armature 6.4.1
O maximum angular deflection 5.2.1
A dyy Ay 4y) magnetic flux linkage 2.1.1,64.1,4.1.7,
Y 413,41
(Ags Ay 4¢)
(lara j'as’ Abr’ j'b:~1)
Ara s.
A Lamé constant for elastic material 11.2.3
A wavelength 7.1.4
u linear permeability 1.1.1a
My (g, ) mobility 12.3.1,1.1.1b
I3 coefficient of viscosity 14.1.1
Mg coefficient of dynamic friction 2.2.1b
Ho permeability of free space 1.1.1a
g coefficient of static friction 2.2.1b
» Poisson’s ratio for elastic material 11.2.2
v damping frequency 10.1.4
(&, 5 continuum displacement 8.5
& initial deflection of string 9.2
&g amplitude of sinusoidal driving deflection 9.2
(& @), &) nth eigenfunctions 9.2.1b
(¢, &) amplitudes of forward and backward
traveling waves 9.2
éo(m) initial velocity of string 9.2
P mass density 2.2.1¢
pr free charge density L.l.1a
Ps surface mass density 113
bY surface of discontinuity 6.2
o conductivity 1.i.1a
oy free surface charge density L.lLla
O surface mass density of membrane 9.2
Oy surface charge density 7.2.3
o surface conductivity 1.1.1a
G, surface charge density 7.23
T surface traction 8.2.1
T, Tq diffusion time constant 7.11,7.1.2a

T relaxation time 7.2.1a
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Symbol Meaning Section

Te electrical time constant 522
Tm time for air gap to close 5.22
T time constant 513
T4 traversal time 7.1.2a
] electric potential 7.2
¢ magnetic flux 211
¢ cylindrical coordinate 2.1.1
$ potential for H when J, = 0 852
¢ flow potential 12.2
Xe electric susceptibility 1.1.1b
Lm magnetic susceptibility 1.1.1a
v the divergence of the material

displacement 114
P angle defined in Fig. 6.4.2 6.4.1
v angular position in the air gap measured

from stator winding (a) magnetic axis 4.1.4
Y electromagnetic force potential 12.2
Y angular deflection of wire 104.3
Q equilibrium rotational speed 5.1.2b
Q rotation vector in elastic material 11.2.1a
Q, real part of eigenfrequency (10.1.47) 10.1.4
@, (B, Wg) radian frequency of electrical excitation 4.1.6a,4.1.2
@ natural angular frequency (Im s) 5.1.2b
W, 0, angular velocity 2.2.1c,41.2
W, cutoff frequency for evanescent waves 10.1.2
wg driving frequency 9.2
(" nth eigenfrequency 9.2
@, natural angular frequency 513
(w,, @y) real and imaginary parts of 10.0
\'4 nabla 6.1
Vs surface divergence 6.2.1

-



Appendix G

SUMMARY OF PARTS I AND I
AND USEFUL THEOREMS

IDENTITIES
AxB-C=A-BxC,
Ax(BxC)=BA-C)— CA-B)
V@ +v) = Vg + Vy,
V- (A+B)=V-A+V-.B,
Vx(A+B)=VxA+VxB,
Vigy) = Vy + 9 V4,
V.(pA)=A-Vy + pV. A,
V-AxB)=B:VxA—A-VxB,
V-V = V24,
V-VxA=0,

VxVed=0,
Vx(VxA)=VV:A) — V2j,
(VUxA)xA=(A-V)A — }V(A-A),

VA-B)=(A-VIB+ B-V)A + A x (VxB)+Bx(VxA)

Vx(dA) = V¢ x A+ ¢V x A,

Vx(AxB)=A(V-B)—B(V-A) + (B-V)A — (A- V)B.
G1



THEOREMS

LDVS{’ cdl = ¢, — 4,

Divergence theorem #A .nda =J.V 14
s v

Stokes’s theorem %A . dl =f(\7 x A)+nda
c S

G2

nda

nda
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Table 1.2 Summary of Quasi-Static Electromagnetic Equations

Differential Equations

Integral Equations

‘Magnetic field system VxH=J, (1.1.1)
V.-B=20 (1.1.2)
V.J, =0 (1.1.3)
7}
VXE=— -—al—: (1.1.5)
Electric field system VXE=0 (1.1.11)
V:D=p, (1.1.12)
?
Vel =— 7’:’ (1.1.14)
oD

VxH=J+— (L1115

§H-d1=f.1,-nda
[ S

%B-nda=0
S

§J,-nda=0
S

”»

§E’-dl= —ifB-nda
¢ dat Jg

whereE  =E+vx B

§E-d1=0
c
§D-nda =fp,dV
S 14
d
3, -nda = — —fp,dV
i’ dt}y

d
§H’-dl=fJ;-nda+—fD-nda
c s atJg

where J,f =J;— ps¥
H=H~vxD

(1.1.20)

(1.1.21)

(1.1.22)

(1.1.23)

(1.1.24)

(1.1.25)

(1.1.26)

(1.1.27)




Table 2.1 Summary of Terminal Variables and Terminal Relations
Magnetic field system Electric field system

e " m Vi
\

Definition of Terminal Variables

Flux Charge
Zk=fB-nda qk=f Pde
Sk Vi
Current Voltage

b
ik=f Js-n'da vk=fE-dl
S’ a

Terminal Conditions

. == dhy . dyy,
"= =
Ay = Aiy - - - iy geometry) gx = qx{ry " * * vy} geometry)
iy = (4 - -+ Ay; geometry) v = tylgy " * - g3 geometry)
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Table 3.1 Energy Relations for an Electromechanical Coupling Network with N Electrical
and M Mechanical Terminal Pairs*

Magnetic Field Systems Electric Field Systems

Conservation of Energy

N M N M
AW, = 3 i;di; ~ > f;# dx; (a) AW, = v;dg; — > [ d (b)
=1 j=1 j= 1 i=1
N M M
W;:zljdij+zj;edxj ©) aw, —zqadl‘J""ZfJ dz; (d)
j=1 Je=1 ;
Forces of Electric Origin, j = 1,..., M
OWAys oy Ay 2, oa e, 5 OW Gy e s Gnr3 Ty e e ey &
ff = — mh a; 1 a0 (e) ff = — 22 % ‘;J\Cf 1 ) )
4 Z}
W, (iyy ooy in Tyy ey ®ny) W0y, DN Ty, e e e B y)
e m1 2 ' N 1 s AT e e\¥1! N 1 2
fi ox; ® /i 0x; (h)
Relation of Energy to Coenergy
, N , N .
Wo+ W, = 2 Ayl ® W,+ W, = z Viq; )]
=1 j=1

Energy and Coenergy from Electrical Terminal Relations

ll

i Mz =

N aj
f,,(/11,...,x]._l,zj,o,...,o;xl,...,xﬂ,)dz,. (k) We=zf O O/ 2P TR A | RN FE N O A ()
j=1

N vy
] - o 7 s ’ 7
l(zl,...,zj_l,zj,O,...,O;xl,...,xM)dlj (m) w, =Z G5y b 0005y, L, 2y dyy (D)
i=1Jo

* The mechanical variables f; and #; can be regarded as the jth force and displacement or the jth torque T; and angular displacement 8,.
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Table 6.1 Differential Equations, Transformations, and Boundary Conditions for Quasi-static Electromagnetic Systems with
Moving Media

Differential Equations Transformations Boundary Conditions
VxH=1I, (.11 H =H (6.1.35) n x (H* — H®) =K, (6.2.14)
V:-B=0 (1.1.2) B’ =B 6.137) n-(B*—-BY) =0 (6.2.7)
gglgnetlc V.3,=0 (1.1.3) ¥ =13 (6136) n-@ — I+ Vy-K,=0 6.2.9)
systems B , b »
VXE=— s (1.1.5) E=E+vxB (6138 nx(E*®~—E®=ny,(B*~-B (6.2.22)
= u(H + M) (1.1.9) M =M (6.1.39)
VXE=0 (1.1.11) E'=E (6.1.54) nx (E*—E%) =0 (6.2.31)
V.D=p (1.1.12) D'=D 6.1.55) n-(D* —D¥) =0, (6.2.33)
Py = py (6.1.56)
i 9, , do
g‘l‘;‘ﬂc V)= —a‘itl LW B =J—p" (6158 n-(f = I + Ve Ky = ulp* ~ p) — =T (62.36)
systems D
VxH=J,+ = (1.1.15) H =H-v xD (6157 nx H*—H) =K, + v,n x [n x (D* —D?] (6.2.38)
D =¢E +P 1.113) P’ =P (6.1.59)
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From Chapter 8; The Stress Tensor and Related Tensor Concepts

In what follows we assume a right-hand cartesian coordinate system
*,, ¥y, ¥, The component of a vector in the direction of an axis carries the
subscript of that axis. When we write F,, we mean the mth component of the
vector F, where m can be 1, 2, or 3. When the index is repeated in a single
term, it implies summation over the three values of the index

amﬂ aml a$2 azs
and i 0 0 0
Hn =H1—+H2—+H3—=H.V-

oz, 0z, 07, 0z,
This illustrates the summation convention. On the other hand, 0H,,[0z,
represents any one of the nine possible derivatives of components of H with
respect to coordinates. We define the Kronecker delta d,,,, which has the values
1, when m = n,
Omn = (8.1.7)
0, when m # n.
The component T,,, of the stress tensor can be physically interpreted as the
mth component of the traction (force per unit area) applied to a surface with
a normal vector in the n-direction.

(1 + 25 13, x)
1x 2

- Tas

(x1, x3,x3 +AT:’)

Ax3

\(xl, x3 + ;2‘2, x3)

;xs

xz
Fig. 8.2.2 Rectangular volume with center at (z,, %,, #3) showing the surfaces and direc-
tions of the stresses T,,,,,.



G8 Summary of Parts I and II

The z;-component of the total force applied to the material within the
volume of Fig. 8.2.2 is

fHi=Ty (-’”1 + ATZI y Ta» x3) AzyAzy — Ty (371 - ATxl s Loy “’3) Az, Az,
+ Ty (xl, z; + éz_xz > :1:3) Az Azy — Ty (xl, Ty — é;_z ’ xs) Az, Az,

+ Tis (xn %y, %3 + A_Z_zs) Az Az, — Ty (xn Ly Tg — ‘Azﬂ) Az, Ax,.

(8.2.3)

Here we have evaluated the components of the stress tensor at the centers
of the surfaces on which they act; for example, the stress component Ty,
acting on the top surface is evaluated at a point having the same z,- and 25~
coordinates as the center of the volume but an #, coordinate Az,/2 above the
center.

The dimensions of the volume have already been specified as quite small.
In fact, we are interested in the limit as the dimensions go to zero. Con-
sequently, each component of the stress tensor is expanded in a Taylor series
about the value at the volume center with only linear terms in each series
retained to write (8.2.3) as

Az, 0T, Az, 0T,
fii= (Tu + “2‘13_;1'1' — T+ “'2_15;11‘1) Az, Az,
Az, 0T, Az, 0T,
+ (Tm + “2923;—: — T+ %a_xl:) Az, Az,
+ (7‘13 +é_xsaT’TH — 713 +A_x:.’g’£1_3) Axlez
2 Oz, 2 Oz,
or
fi= (?ﬁ 4 T a_Tl_a) Az, Az, As,, (8.2.4)
0z, Oz, O,

All terms in this expression are to be evaluated at the center of the volume
(%, %5, 73). We have thus verified our physical intuition that space-varying
stress tensor components are necessary to obtain a net force.
From (8.2.4) we can obtain the #,-component of the force density F at the
point (zy, x,, z3) by writing
Fi= tm —f 9T, 0T 0Ty
Az Az, Az 0 Az Az, Ay Oy 0z, 0z,

(8.2.5)

The limiting process makes the expansion of (8.2.4) exact. The summation
convention is used to write (8.2.5) as
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F, =T (8.2.6)
oz,
A similar process for the other two components of the force and force density
yields the general result that the mth component of the force density at a
point is aT

oz,

F, = 8.2.7)

Now suppose we wish to find the mth component of the total force f on
material contained within the volume V. We can find it by performing the
volume integration:

fo= f Fodv =[ Tm gy (8.1.13)
v v 0z,
When we define the components of a vector A as
A]_ = L1y A2 = 1 s As = 13 (8.1.14)
we can write (8.1.13) as
fo= f s gy = f (V- A)dV. (8.1.15)
v 0z, 12

We now use the divergence theorem to change the volume integral to a surface

integral,

fm= §A~nda = §A,,n,, da, (8.1.16)
] ]

where n,, is the nth component of the outward-directed unit vector n normal
to the surface S and the surface S encloses the volume V. Substitution from
(8.1.14) back into this expression yields

S = §Tm,,n,, da. (8.1.17)
8

where T,,.n, is the mth component of the surface traction 7.

The traction v is a vector. The components of this vector depend on the
coordinate system in which T is expressed; for example, the vector might be
directed in one of the coordinate directions (z,, x,, ,), in which case there
would be only one nonzero component of . In a second coordinate system
(2}, x,, x), this same vector might have components in all of the coordinate
directions. Analyzing a vector into orthogonal components along the co-
ordinate axes is a familiar process. The components in a cartesian coordinate
system (z,, x,, z;) are related to those in the cartesian coordinate system
(x,, x5, %3) by the three equations

Tp = GpiTps (8.2.10)

where a,,, is the cosine of the angle between the x-axis and the z,-axis.
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Similarly, the components of the stress tensor transform according to the
equation
Ty = ,00,,T,,. (8.2.17)

This relation provides the rule for finding the components of the stress in the
primed coordinates, given the components in the unprimed coordinates. It
serves the same purpose in dealing with tensors that (8.2.10) serves in dealing
with vectors.

Equation 8.2.10 is the transformation of a vector v from an unprimed to a
primed coordinate system. There is, in general, nothing to distinguish the two
coordinate systems. We could just as well define a transformation from the
primed to the unprimed coordinates by

7y = by, (8.2.18)

where b,, is the cosine of the angle between the x-axis and the = -axis. But
byy, from the definition following (8.2.10), is then also

by = a3 (8.2.19)
that is, the transformation which reverses the transformation (8.2.10) is
Ty = ApTh- (8.2.20)

Now we can establish an important property of the direction cosines a,,
by transforming the vector =t to an arbitrary primed coordinate system and
then transforming the components 7/, back to the unprimed system in which
they must be the same as those we started with. Equation 8.2.10 provides the
first transformation, whereas (8.2.20) provides the second; that is, we sub-
stitute (8.2.10) into (8.2.20) to obtain

Ts = Qpellyy Ty (8.2.21)

Remember that we are required to sum on both p and r; for example, consider
the case in which s = 1:

71 = (auau + anay + anas)m
+ (11812 + @G0 + A3105)72 (8.2.22)
+ (a3 + Ay + 307

This relation must hold in general. We have not specified either a,, or ,,.
Hence the second two bracketed quantities must vanish and the first must be
unity. We can express this fact much more concisely by stating that in general

a,.a, = O, (8.2.23)
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Table 8.1 Electromagnetic Force Densities, Stress Tensors, and Surface Force Densities for Quasi-static
Magnetic and Electric Field Systems*

Force Density

Stress Tensor T,,,,
oT,,

Surface Force Density *

— n
Description F Fp = oz, (8.1.10) m = LT ity (8.4.2)

Force on media carrying J;x B Toun = vH Hy — 8, 3uH H, T = K, x u{H)

free current density Jy, K;=n x [H]

4 constant (8.1.3) (8.1.11) (8.4.3)
Force on media supporting prE Tyn = €Ep By — OpppieELE; T = oKE)

free charge density py, g, =n-[eE]

¢ constant (8.3.3) (8.3.10) (8.4.8)
Force on free current plus J;xB—iH-HVu T,,=pH, H,

magnetization force in
which B = uH both before
and after media are
deformed

?
+§V(H-Hp_")
%

(8.5.38)

o
-1 5mn(.“ - P'a—P)Hka

(8.5.41)

Force on free charge plus
polarization force in which
D = €E both before and
after media are deformed

pE —{E-EVe

?
+%V(E-Ep5£)

(8.5.45)

Typp = €EpEy

Oe
- iém"(s - ps;))EkEk

(8.5.46)

A% 4 AY
2
[Al=A% - A

*{A) =



Table 9.1 Modulus of Elasticity £ and Density p for Representative Materials*

E-units of p-units of  vy-unitst of
Material 10t N/m? 10% kg/m?® m/sec
Aluminum (pure and alloy) 0.68-0.79 2.66-2.89 5100
Brass (60-709% Cu, 40-30%; Zn) 1.0-1.1 8.36-8.51 3500
Copper 1.17-1.24 8.95-8.98 3700
Iron, cast (2.7-3.6% C) 0.89-1.45 6.96-7.35 4000
Steel (carbon and low alloy) 1.93-2.20 7.73-1.87 5100
Stainless steel (189 Cr, 8% Ni) 1.93-2.06 7.65-7.93 5100
Titanium (pure and alloy) 1.06-1.14 4.52 4900
Glass 0.49-0.79 2.38-3.88 4500
Methyl methacrylate 0.024-0.034 116 1600
Polyethylene 1.38-3.8 x 1073 0915 530
Rubber 0.79-4.1 x 1075 0.99-1.245 46

* See S. H. Crandall, and N. C. Dahl, An Introduction to the Mechanics of Solids, McGraw-
Hill, New York, 1959, for a list of references for these constants and a list of these constants
in English units.

t Computed from average values of E and p.
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Table 9.2 Summary of One-Dimensional Mechanical Continua
Introduced in Chapter 9

Thin Elastic Rod

i E 0% F
Par~ Egatte

a6
o

J—longitudinal (z) displacement
T—normal stress

p—mass density

E—modulus of elasticity
F,—longitudinal body force density

T'=E

Wire or “String”

8¢ 22

&—transverse displacement
m—mass/unit length

f—tension (constant force)
S,—transverse force/unit length

Membrane
%k PE Rk
“ma_;'i:‘g(ﬁ""a'y’z) +T

&—ftransverse displacement
o ,—surface mass density
S—tension in y- and z-directions
(constant force per unit length)
T,—=2-directed force per unit area,

G13
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INDEX

Numbers preceded by letters are Appendix references. Appendices A, B, and C are in
Part One; Appendices D and E, Part Two; and Appendices F and G, Part Three.

Acceleration, centrifugal fluid, 729
centripetal, 59
Coriolis, 59
Eulerian variable, 727
fluid, 727
instantaneous, 45
Accelerator, electric field, 776
MHD, 825
particle, 608
Acoustic delay lines, 480
Acoustic waves, compressional in solid, 673
dilatational in solid, 673
elastic media, 671
fluid, 544

gases, 845
guided, 679, 683, 693
magnetic fields and, 846
membrane, 509
shear elastic, 675
string, 509
thin beam, 683
thin rod, 487, 681
Acyclic machine, 286
Air-gap magnetic fields, 114
Alfvén velocity, 763
Alfvén waves, 759
compressible fluids and, 841
cylindrical geometry, 767
effect of conductivity on, 772
mechanical analogue to, 766
nature of, 764
numerical example of, 771
resonances and, 771
standing, 771
torsional, 765
Amortisseur winding, 164
Ampere, 1
Ampére’s law, B6, C3, E3, G3
dynamic, B9
electromechanical, 304
example of, B7
integral form of, B36, C3, E3, G3
magnetization and, B26
Amplifying wave, coupled system and, 608
electric field induced, 605
evanescent wave and, 607
space-time behavior of, 604, 606
Angular frequency, 513
Angular momentum, 248
Angular velocity, 47
Applications of electromechanics, 2
Approximations, electromechanical, 206
Armature, ac machine, 120
dc machine, 141, 293
Armature reaction, 297

Astrophysics and MHD, 552
Attenuation, microwave, 561
Average power converted, salient pole ma-
chine, 155
smooth-air-gap machine, 124

Beats in space, 595
Bemoulli’s equation, 738
example of, 752
Bessel functions, 408
roots of, 409
Bias, linear transducer operation and, 201
piezoelectricity and, 711
Bode plot, 206
Boundary, analytic description of, 269, 668
examples of moving, 269, 276, 279, 280,
364, 392, 397, 451, 460, 563, 574, 605,
627, 704, 783
moving, 267
well defined, 267
Boundary condition, Alfvén waves, 769
causality and, 491, 592, 607
con?s:eér;ation of charge, 279, 374, 376, 394,

convection and, 267, 587, 598
dispersion and, 618
elastic media, 671, 676
electric displacement, 278
electric field intensity, 275, 278
electric field systems, 277, E6, G6
electromagnetic field, 267
electromechanical, 668
field transformations and, 275
geometric effect of, 280
initial condition and, 513
inviscid fluid, 752
inviscid fluid slip, 740
longitudinal and transverse, 680
magnetic field intensity, 273, 280
magnetic field systems, 270, E6, G6
magnetic field system current, 272
magnetic fluid, 774
magnetic flux density, 271
MHD, 769
motion and, 267, 491, 587, 592, 598, 607
string and membrane, 522
summary of electromagnetic, 268, E6, G6
thin rod, 493
viscous fluid, 873
Boundary layer dynamics, 602
Brake, induction, 134
MHD, 744
Breakdown, electrical, 576, 782
Breakdown strength of air, 576
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Brush, dc machine, 292
liquid-metal, 316, 878
metal-graphite, 883

Bullard’s equation, 336

Cables, charge relaxation in high voltage, 380

nonuniform conductivity in, 380
Capabili&y curve of synchronous generator,
17

Capacitance, electrical linearity and, 30
example for calculation of, 32, 33
generalized, 28
quasi-static limit and, B18

Causa6lgy, boundary conditions and, 592,

7

condition of, 491, 592, 607
Center of mass, 46
Channel, variable-area MHD, 751
Characteristic dynamical times, excitation
and, 332
material motion and, 332
Characteristic equation, 181
Characteristics, wave fronts and, 618
wave propagation and, 488, 490
waves with convection and, 586
Charge, B1
conservation of, BS
net flow and flow of net, B6
test, 12
total, 29
Charge-average velocity, BS
Charge carriers, effect of motion on, 290
Chaxgesconsewation, differential form of,
B

integral form of, BS
Charge density, Bl
effect of motion on, 290, 334, 382, 387,
388, 392, 397, 401
free, 7, B28
magnetic field system and, 288
Charge distribution, effect of motion on,
334, 382, 387, 388, 392, 397, 401
Charge relaxation, 330, 370
electrical transient, 372
examples of, 372, 375
excitation frequency and, 378, 400
frequency in frame of material and, 399
general equation for, 371
lumped-parameter models for, 331, 375
magnetic diffusion and, 401
motion sinusoidal excitation with, 392
moving frame and, 381
nonuniform properties and, 378
sources of charge and, 372
spatially and temporally periodic fields
and, 397
steady motion and, 380
thunder storms, and, 388
trav;lgi;]xg wave in a moving material and,

uniform properties and, 372
Choking, constant area flow, 824

Circuit breaker, transducer for a, 22
Circuit theory, 16
Coefficient, of slidin% friction, 42
of static friction, 4
Coefficients of viscosity, independence of,

Coenergy, 73, E5, G5
electrical linearity and, 76
potential well motions and, 217
Coenerlgz' density, electric field system, 464,
7

magnetic field system, 456
Collector rings, 120
Commutation in dc machines, 296
Commutator, 140

of dc machines, 292
Commutator bars, 142
Commutator machines, 140

ac generator, 329

brake operation of, 306

compound wound, 310

electrical power input of, 303

equation for armature of, 300

equation for field of, 297

equation of motion for, 297

generator operation of, 306

linear amplifier, 304

mechanical power output of, 303

motor operation of, 306

opegalt;on with alternating currents and,

properties of, 303

separately excited, 306

series excitation of, 309

shunt excitation of, 309

speed curves of, shunt excited, 310

speed regulation of, 307

summary of equations for, 303

torque-current curves of series excited, 311

torque-speed curves of shunt excited, 310

transient performance of, 306
Compensating networks, 198
Compensation in feedback loops, 198
Compressibility constant, 845
Compressibility of fluid, 725
Compressible fluids, 813

electromechanical coupling to, 820
Conduction, electrical, 7, B30

in electric field system, effect of motion

on, 371

heat, 815

motion and electrical, 284, 289
Conduction current, B6

absence of net free charge and, 374
Conduction machine, MHD, 740

variable area, MHD, 753

see also Commutator machine; DC machines
Conductivity, air and water, 388

electrical, 7

electrical surface, 7

mechanical strength and, 698

nonuniform, 380

numerical values of, 345, 377

Conductor, electric field perfect, 29, 213,
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390, 400, 401
magnetic field perfect, 18, 211, 223,
354, 401, 563
Confinement, electromechanical, 4, 407
Conservation, of charge, BS
displacement current and, B9
integral form of, B37
of energy, 63, 66
continuum, 456, 464
continuum coupling and, 455
equation, steady state, 820
fluid, 814
incompressible fluid, 757
integral form of, 819
of flux, lumped-parameter, 211, 220
perfectly conducting fluid and, 761
of mass, differential law of, 731
example of, 730
fluid, 729, 814
integral form of, 730
of momentum, fluid, 731, 814
integral form of, 733, 734
interfacial, 671
stress and, 733
Conservative systems, 213
Constant charge dynamics, 205, 213
Constza;(t’-current constant-flux dynamics,

Constant-current constraint, continuum, 628

Constant-current dynamics, 220
Constant flux, lumped and continuum, 212
Constant flux dynamics, fluid, 761
lumped-parameter, 211, 220
Constant of the motion, fluid, 738
Constant voltage dynamics, 204, 212, 226
Constig.lent relations, electromagnetic, 283,
B25
fluid, 815
fluid mechanical, 735
materials in motion and, 283
moving media in electric field systems
and, 289
moving media in magnetic field systems
and, 284
Constitutive law, mobile ion, 778
piezoelectric slab, 712
Contact resistance, MHD, 750
Contacts, sliding, 42
Continuity of space, 35
Continuum and discrete dynamics, 553
Continuum descriptions, 727
Continuum electromechanical systems, 251
Contour, deforming, 11, B32
Control, dc machines and, 291
Controlled thermonuclear reactions, 354
Convection, dynamical effect of, 584
and instability, 593
Convection current, B6
Convective derivative, 259, 584
charge relaxation and, 381
example of, 729
magnetic diffusion and, 357
see also Substantial derivative

Convective second derivative, 585
Coordinate system, inertial, 254
Corona discharge, 776, 782
Corona wind, demonstration of, 782
Couette flow, plane, 876
Coulomb’s law, B1
point charge, B2
Coupling, electromechanical, 15, 60
Coupling to continuous media at terminal
pairs, 498
Coupling network, lossless and conserva-
tive, 63
Creep, failure in solids by, 704
Critical condition for instability, 568
Crystals, electromechanics of, 651
piezoelectric materials as, 711
Current, balanced two-phase, 113
conduction, B6
convection, B6
displacement, B9
electric field system, 29
free, B25
magnetization, B25
polarization, B29
Current density, BS
diffusion of, 343
distribution of, 332
free, 7
Current law, Kirchhoff’s, 16
Currents as functions of flux linkages, 26
Current transformation, examples of, 226
Cutoff condition, 559
Cutoff frequency, 559
elastic shear waves, 695
membrane, 623
Cutoff waves, 556
electromagnetic plasma, 638
membrane, 623
power flow and, 637
thin beam, 684
see also Evanescent wave
Cyclic energy conversion processes, 79
Cylindricza; coordinates, stress components
in, 437

‘Cylindrical modes, 648

Damped waves, driven response of, 577
Damper, linear ideal, 40
lumped element, 36, 40
square-law, 43, 229
Damper winding in rotating machine, 164
Damping, magnetic fluid, 750
negative, 198
spatial decay and, 560
wave dynamics with, 576
Damping constant, 41
Damping frequency, 577
DC generator, magnetic saturation in, 310
self-excited, 310
DC machines, 140; see also Commutator
machines
DC motor, self-excited, 308
series excited, 311
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starting torque of, 310
torque-speed curves for, 306
Definitions, electromagnetic, 7, B1
Deforming contours of integration, 10, 18,
262, B32, 761
Degree of freedom, 49
Delay line, acoustic, 480
acoustic magnetostrictive, 708
fidelity in, 501
mechanical, 499
shear waves and, 696
Delta function, B2
Kronecker, 421
Derivative, convective, 259, 584, 726
individual, 728
particle, 728
Stokes, 728
substantial, 259, 584, 728
total, 728
Dielectrophoresis, 783
Difference equation, 620
Differential equation, order of, 180
linear, 180
Differential operators, moving coordinates
and, 257
Diffusion, magnetic, 576
magnetic analogous to mechanical, 580
of magnetic field and current, 335
Diffusion equation, 337
Diffusion time constant, 341
numerical values of, 344
Diffusion wave, magnetic, 358
picture of, 581
space-time behavior of, 359
Dilatational motion of fluid, 866
Direction cosines, definition of, 435
relation among, 439
Discrete systems, electromechanics of, 60
Discrete variables, mechanical, 36
summary of electrical, 35
Dispersion equation, absolutely unstable
wire, 567
Alfvén wave, 769
amplifying wave, 602
convective instability, 602
damped waves, 577
elastic guided shear waves, 695
electron oscillations, 601
evanescent wave, 557
kink instability, 629
magnetic diffusion with motion, 357
membrane, 623
moving wire destabilized by magnetic
field, 602
moving wire stabilized by magnetic
field, 596
ordinary waves, 513
with convection, 594
on wire, 555
on wires and membranes, 513
resistive wall interactions, 609
sinusoidal steady-state, and 514
wire with convection and damping, 609

Displacement, elastic materials, 486

elastic media, 652
lumped parameter systems, 36
one-dimensional, 483
relative, 657
and rotation, 657
and strain, 658
transformation of, 659
translational, 657
Displacement current, B9
Displacement current negligible, B19
Distributed circuits, electromechanical, 651
Divergence, surface, 272
tensor, 422, G9
theorem, B4, C2, E2, G2, G9
Driven and transient response, unstable
system, 569
Driven response, one-dimensional con-
tinuum, 511
unstable wire, 568
Driving function, differential equation, 180
sinusoidal, 181
Dynamics, constant charge, 205, 213
constant current, 220
constant flux, 211, 220
constant voltage, 204, 212, 226
lumped-parameter, 179
reactance dominated, 138, 211, 220, 242,
336, 354, 368, 563
resistance dominated, 138, 209, 233, 242,
336, 354, 368, 503, 583, 611
two-dimensional, 621
Dynamics of continua, x-¢ plane, 488, 586
omegak plane, 511, 554
Dynamo, electrohydrodynamic, 388

Eddy currents, 342, 628
Efficiency of induction machine, 134
EHD, 3, 552, 776
EHD pump, demonstration of, 783
Eigenfrequencies, 518
electromechanical filter, 707
magnetic field, shift of, 562
not harmonic, 563, 684
wire stiffened by magnetic field, 562
Eigenfunction, 518
Eigenmode, 517
complex boundary conditions and, 533
orthogonality of, 341, 519, 520
Eigenvalues, 518
dispersion and, 562
graphic solution for, 526
kink instability, 630
Elastic beam, resonant circuit element, 688
Elastic constants, independence of, 664
numerical values of, 486
Elastic continua, 479
Elastic failure, example of electromechani-
cal, 701
Elastic force density, 667
Elastic guiding structures, 693

Elasticity, summary of equations of, 666, 668

Elasticitly equations, steps in derivation of,
65
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Elastic material, ideal, 485
linear, 485
Elastic media, 651
electromechanical design and, 697
electromechanics of, 696
equations of motion for, 653
quasi-statics of, 503
Elastic model, membrane, 509
thin rod, 480
wire, 509
Elastic waves, lumped mechanical elements
and, 507
shear, 543
thin rod, 543
see also Acoustic waves
Electrical circuits, 16
Electric displacement, 7, B28
Electric field, effect of motion on, 334,
382, 387, 388, 392, 397, 401
Electric field coupling to fluids, 776
Electric l;iglii equations, periodic solution
to,
Electric field intensity, 7, B1
Electric field system, B19
differential equations for, 8, E3, G3
integral equations for, 11, E3, G3
Elect;igzﬁeld transformation, example of,
Faraday’s law and, 262
Electric force, field description of, 440
fluids and, 776
stress tensor for, 441
Electric force density, 418, 463
Electric Reynolds number, 335, 370, 381,
383, 395, 399, 401, 575, 780
mobility model and, 780
-Electiigoshear, induced surface charge and,

Electric surface force, 447
Electrification, frictional, 552
Electroelasticity, 553
Electrogasdynamic generator, 782
Electrohydrodynamic orientation, 785
Electrohydrodynamic power generation, 782
Electrohydrodynamics, 3, 552, 776
Electrohydrodynamic stabilization, 786
Electromagnetic equations, differential, 6,
B12, B19, E3, G3
integral, 9, B32, E3, G3
quasi-static, 5, B19, B32, E3, G3
summary of quasi-static, 13, E3, G3
Electromagnetic field equations, summary
of, 268, E6, G6
Electromagnetic fields, moving observer
and, 254
Electromagnetic theory, S, Bl
summary of, 5, E6, G6
Electromagnetic waves, B13
absorption of, B25
Electromechanical coupling, field descrip-
tion of, 251
Electromechanics, continuum, 330
of elastic media, 651
incompressible fluids and, 737

lumped-parameter, 60
Electron beam, 4, 552, 600, 608
magnetic field confinement of, 601
oscillations of, 600
Electrostatic ac generator, 415
Electrostatic self-excited generator, 388
Electrostatic voltmeter, 94
Electrostriction, incompressibility and, 784
Electrostriction force density, 465
Elements, lumped-parameter electrical, 16
lumped-parameter mechanical, 36
Energy, conservation of fluid, 814
electrical linearity and, 76
electric field system conservation of, 66
internal or thermal gas, 813
internal per unit mass, 815
kinetic per unit mass, 815
magnetic field system conservation of, 63
magnetic stored, 64
potential and kinetic, 214
Energy conversion, cyclic, 79, 110
electromechanical, 79
lumped-parameter systems, 79
Energy density, B23
equal electric and magnetic, B24
Energy dissipated, electromagnetic, B22
Energy flux, B22
Energy function, hybrid, 220
Energy method, 60, 450, ES, G5
Energy relations, summary of, 68, E5, G5
Enthalpy, specific, 820
Equation of motion, elastic media, 668
electromechanical, 84
examples of lumped-parameter, 84, 86
incg;;l ressible, irrotational inviscid flow,
linearized, 183
lumped mechanical, 49
Equilibrium, of continuum, stability of, 574
dynamic or steady-state, 188
hydromagnetic, 561
kink instability of, 633
potential well stability of, 216
static, 182
Equipotentials, fluid, 752
Eulerian description, 727
Evanescence with convection, 596
Evanescent wave, 556
appearance of, 559
constant flux and, 563
dissipation and, 560
elastic shear, 695
equation for, 557
example of, 556
membrane, 560, 623
physical nature of, 560
signal transmission and, 639
sinusoidal steady-state, 558
thin beam, 684
Evil, 697

Failure in solids, fatigue and creep, 704
Faraday, 1
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Faraday disk, 286 Fluid-mechanical examples with viscosity,
Faraday’s law, B9 875

deforming contour of integration and, 262, Fluid orientation systems, 785

300, 315, 565, B32, E3, G3 Fluid pendulum, electric-field coupled, 784
differential form, 6, B10, E3, G3 magnetic damping of, 750

example of integral, 262, 276, 286, 297, Fluid pump or accelerator, 776
315 Fluid stagnation point, 752

integral form of, B10, B32 Fluid streamlines, 752
perfectly conducting fluid and, 761 Fluid transformer, variable-area channel
Fatigue, failure in solids by, 704 as, 756
Feedback, continuous media and, 548 Flux amplification, plasmas and, 354
stabilization by use of, 193 Flux conservation, lumped-parameter, 211,
Ferroelectrics, B29 220
piezoelectric materials and, 711 magnetic fields and, 352
Ferrohydrodynamics, 552, 772 perfectly conducting gas and, 849
Field circuit of dc machine, 141 Flux density, mechanical amplification of,
Field equations, moving media, generalization 354
of, 252 Flux linkage, 19, E4, G4
Fields and moving media, 251 example of, 22, 23
Field transformations, 268, E6, G6; Force, charge, B1
see also Transformations derivative of inductance and, 453
Field winding, ac machine, 120 electric origin, 67, E5, G5
dc machine, 293 electromagnetic, 12
Film, Complex Waves I, xi, 516, 559, 571, field description of, 418
634 fluid electric, 776
Film, Complex Waves II, xi, 573, 606 Lorentz, 12, 255, 419
Filter, electtomechanical, 2, 200, 480, 704 magnetic, B6
First law of thermodynamics, 63 magnetization with one degree of free-
Flow, Hartmann, 884 dom, 451
irrotational fluid, 737 physical significance of electromagnetic,
laminar, 725 420
turbulent, 725 polarized fluids, 463, 572, 784
Flowmeter, liquid metal, 363 single ion, 778
Fluid, boundary condition for, 725 surface integral of stress and, 422
boundary condition on, inviscid, 752 Force-coenergy relations, 72, ES, G5
compressibility of, 725 Force density, 7
effect of temperature and pressure on, 724 averaging of electric, 440
electric field coupled, 776 averaging of magnetic, 419
electromechanics of, 724 divergence of stress tensor and, 422,
ferromagnetic, 552, 772 427, G9
highly conducting, 760 effect of permeability on, 455, 456
incompressible, 724, 735 elastic medium, 667
inhomogeneous, 735 electric, 12, B3, 440, G11
internal friction of, 724 magnetic field systems, 419, 462, G11
inviscid, 724, 725 electromagnetic fluid, 732
laminar and turbulent flow of, 725 electrostriction, 465, G11
magnetic field coupling to incompressible, fluid mechanical, 732
737 fluid pressure, 736
magnetizable, 772 free current, 419, G11
Newtonian, 861 inviscid fluid mechanical, 737
perfectly conducting, 563 lumped parameter model for, 455
solids and, 724 magnetic, 12, 419, B9
static, 735 magnetization, 448, 450, 462, G11
viscous, 861 magnetostriction, 461, 462, G11
Fluid dynamics, equations of inviscid com- polarization, 450, 463, G11
pressible, 813 summary of, 448, G11 .
equations of inviscid, incompressible, 726 Forced related to variable capacitance, 75
equations of viscous, 871 Force-energy relations, 67, ES, G5
Fluid flow, accelerating but steady, 753 examples of, 70 . .
around a corner, 751 Force equations, elastic media, 653
potential, 751 Force of electric origin, 60, ES, G$
unsteady, 746 Fourier series, 340 . .
variable-area channel, 751 Fourier transform, two-dimensional, 617

Fourier transforms and series, diffusion
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equation and, 340

eigenmodes as, 517

]ineg.ll' ,;:onﬁnuum systems and, 511, 554,

linear lamped systems and, 200

muiiusa; inductance expansions and, 108,
Frame of reference, laboratory, 254
Free-body diagram, 49
Free charge density, B28
Free charge forces, avoidance of, 787
Frequency, complex, 181, 554

complex angular, 554

natural, 181, 515

voltage tuning of, 704

Frequency conditions for power conversion,

111, 155
Frequency response of transducer, 204
Friction, coulomb, 42
Frozesn4 ;ields, perfectly conducting gas and,

Fusion machines, instability of, 571

Galilean transformation, 584
Gamma rays, B13
Gas, perfect, 816
Gas constant, 816
universal, 816
Gases, definition of, 724
ionized, 813
Gauss's law, differential form of, B5
example of, B4
integral form of, B3
magnetic field, B12
polarization and, B28
Gauss’s theorem, tensor form of, 423, G9
Generators, electric field, 778
electrohydrodynamic applications of, 3
hydroelectric, 152
induction, 134
magnetohydrodynamic applications of, 3
MHD, 744

Van de Graaff, 3, 383, 385
Geometrical compatibility, 53
Geophysics and MHD, 552
Gravitational potential, 733
Gravity, artificial electric, 785

force density due to, 732

waves, 794
Group velocity, 614

power flow and, 638

unstable media and, 617
Guiding structures, evanescence in, 560

Hartmann flow, 884
Hartmann number, 887
Heat transfer, EHD and, 552
Homogeneity, B27
Homogeneous differential equation, solu-
tion of, 180
Homopolar machine, 286, 312
armature voltage for, 314
speed coefficient for, 314

summary of equations for, 316
torque for, 316

Hunting transient of synchronous machine, 192

Hydraulic turbine, 151
Hydroelectric generator, 152
Hydromagnetic equilibria, 561, §71
Hysteresis, magnetic, B27

Identities, Cl1, E1, G1
Impedance, characteristic, 497
Incompressibility, fluid, 735
Incompressible fluids, MHD, 737
Incompressible media, 380
Incremental motions, see Linearization
Independence of variables, 69, 97 (see
Problem 3.16)
Independent variables, change of, 72
Index notation, 421, G7
Inductance, calculation of, 22
clectrical linearity and, 20
generalized, 17
quasi-static Yimit and, B18
Induction, demonstration of motional, 253
law of, B9; see also Faraday’s law
Induction brake, 134
Induction generator, 134
electric,
Induction interaction, 367
Induction law, integral, B32; see also
Faraday’s law
Induction machine, 127
coefficient of coupling for, 135
distributed linear, 368
efficiency of, 134
equivalent circuit for, 131
loading of, 137
lumped-parameter, 368
MHD, 745
power flow in, 133
reactance and resistance dominated, 137
single phase, 138
squirrel-cage, 129
starting of, 137, 139
torque in, 132
torque-slip cuzve of, 135
variable resistance in, 136
wound rotor, 106
Induction motor, 134
Inductor, 17
Inelastic behavior of solids, 699
Influence coefficients, MHD, 822
variable-area MHD machine, 832
Initial and boundary conditions, 513
Initial conditions, convection and, 587
one-dimensional continuum, 488, 512
Initial value problem, continuum, 488
Instability, absolute, 566
and convective, 604
aeroelastic absolute, 793
convective, 601
dynamic, 192
electrohydrodynamic, 571

engineering limitations from convective, 604



and equilibrium, example of, 185

failure of a static argument to predict, 192

fluid pendulum, 785
fluid turbulence and, 725
graphical determination of, 184
heavy on light fluid, 571
and 1initial conditions, 184
kink, 627
linear and nonlinear description of, 216
nonconvective, 566
nonlinearity and, 570
omega-k plot for, 569
plasma, 553
in presence of motion, 583
Rayleigh-Taylor, 571
resistive wall, 576, 608
space-time dependence of absolute, 570
static, 182
in stationary media, 554
Integr(% laws, electromagnetic, 9, B32, E3,
Integrated electronics, electromechanics
and, 688
Integration contour, deforming, 11, B32
Internal energy, perfect gas, 8 6
Invariance of equations, 256
Inviscid fluid, boundary condition for, 752
Ion beams, 552
Ton conduction, moving fluid and, 778
Ion drag, efficiency of, 782
Ton-drag phenomena, 776
Tonized gases, acceleration of, 746
Ion source, 776
Isotropic elastic media, 660
Isotropy, B27

Kinetic energy, 214

Kirchhoff’s current law, 16

Kirchhoff’s laws, 15
electromechanical coupling and, 84

Kirchhoff’s voltage law, 16

Klystron, 601

Kronecker delta function, 421, G7

Lagrangian coordinates, 652
surface in, 669
Lagrangian description, 727
Lagrangian to Eulerian descriptions, 483
Lamé constant, 667
numerical values of, 677
Laplace’s equation, fluid dynamics and, 737
two-dimensional flow and, 751
Leakage resistance of capacitors, 377
Legendre transformation, 73
Length expander bar, equivalent circuit
for, 716
piezoelectric, 712
Levitating force, induction, 369
Levita;t;gn, electromechanical, 4, 195, 365,
demonstration of magnetic, 370
and instability, 574
of liquids, EHD, 552
MHD, 552

Index

solid and liquid magnetic, 365
Light, velocity of, B14
Linearity, electrical, 20, 30, B27
Linearization, continuum, 483, 510, 556,
652, 842
error from, 224
lumped-parameter, 182
Linear systems, 180
Line integration in variable space, 64, 67
Liquid drops, charge-carrying, 388
Liquid level gauge, 416
Liquid metal brush, 878
numerical example of, 883
Liquid r(l)letal MHD, numerical example of
75

Liquid metals, pumping of, 746
Liquid orientation in fields, 785
Liquids, definition of, 724
Liquids and gases, comparison of, 724
Loading factor, MHD machine, 833
Lodestone, B25
Long-wave limit, 283, 574

thin elastic rod and, 683
Lorxd Kelvin, 389
Lorentz force, 419
Loss-dominated dynamics, continuum, 576
Loss-dominated electromechanics, 229, 249
Loss-dominated systems, 227
Losses, fluid joule, 815
Loudspeaker, model for, 527
Lumped-parameter electromechanics, 60
Lumped-parameter variables, summary of,

Mach lines, 624
Mach number, 624, 823
Macroscopic models, electromagnetic, B25
Magnet, permanent, 27
Magnetic axes of rotating machines, 105
Magnetic circuit, example of, 22, 23
Magnetic dlffusmn 330, 335
charge relaxation compared to, 401
competition between motion and, 351
cylindrical geometry and, 408
effect of motion on, 354
electrical transient, 338
induction machines and, 746
initial conditions for, 339
limit, of infinite conductmty in, 343
of small conductivity in, 343
liquid metals and, 354
luméaed-parameter models for, 331, 334,
36

sinusoidal steady-state, 358
sinusoidal steady-state with motion, 355
steady-state, 337, 347
steady-state in the moving frame, 351
traveling-wave moving media, 364
Magnetic diffusion tlme 341 772
Magnetic field, air-gap,
induced and imposed, 212 286, 332
origin of earths, 336, 552
Magnetic field compression, 354
Magnetic field equations, insulating me-
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dium, 773
Magnetic field intensity, 7, B25
Magnetic field system, 6, B19
differential equations for, 6, B20, E6, G6
integral equations for, 10, B32, E3, G3
Magnetic field transformation, example of,
266; see also Transformations
Magnetic fluid, demonstration of, 777
Magnetic flux density, 7, B6
Magnetic flux lines, frozen, 763
Magnét{cl force, field description of, 418,

stress tensor for, 422, G11
Magnetic forces and mechanical design, 697
Magnetic induction negligible, B19
Magnetic piston, 354
Magnetic pressure, 369
Magnetic Reynolds numbers, 333, 349, 351,
353, 357, 401, 628, 741, 821
MHD flow, 754
numerical value of, 354
Magnetic saturation in commutator ma-
chines, 297
Magnetic surface force, 447
Magnetic tension, 767
Magnetization, B25
effect of free current forces on, 455
Magnetization currents, B25
Magnetization density, 7, B25
Magnetization force, fluids and, 772
one degree of freedom and, 451
Magnetization force density, changes in
density and, 461
example of, 460
inhomogeneity and, 460
in moving media, 285
summary of, 448, G11
Magnetoacoustic velocity, 850
Magnetoacoustic wave, 846
electrical losses and, 860
flux and density in, 851
numerical example, in gas, 852
in liquid, 853
Magnetoelasticity, 553
Magnetofluid dynamics, 551
Magnetogasdynamics, 551
Magnetohydrodynamic conduction ma-
chine, 740
Magnetohydrodynamic generator, constant-
area, 821
variable-area, 828
Magnetohydrodynamics, 551
constant-area channel, 740
viscosity and, 725
Magng%oshydrodynamics of viscous fluids,

Magnetostriction, 697
one degree of freedom and, 452

Magnetostriction force, incompressible
fluid and, 776

Magnetostrictive coupling, 707

Magnetostrictive transducer, terminal repre-
sentation of, 711

Mass, conservation of fluid, 729

elastic continua, quasi-static limit of, 507
lumped-Gpa.rameter, 36, 43
total, 4
Mass conservation, 731
Mass density, 45
elastic materials, numerical values of, 486
of solid, 486
numerical values of, 486, G12
Mass per unit area of membrane, 509
Mass per unit length of wire, 511
Matched termination, 497
Material motion, waves and instabilities
with, 583
Matter, states of, 724
Maxwell, 1
Maxwell’s equations, B12
limiting forms of, B14
Maxwell stress tensor, 420, 441, G7, G11
Mechanical circuits, 36
Mechanical continuum, 479
Mechanical equations, lumped-parameter,
49

Mechanical input power, fluid, 756
variable-area channel, 756
Mechanical lnmped-parameter equations,
examples of, 49, 51, 53
Mechanics, lumped-parameter, 35
rigid body, 35
transformations and Newtonian, 254
Membrane, elastic continua and, 509, 535,
electric field and, 574
equations of motion for, 511, 535, G13
two-dimensional modes of, 622
Membrane dynamics with convection, 584
Mercury, density and conductivity of, 750
properties of, 883
Meteorology, EHD and, 552
MFD, 551; see also MHD
MGD, 551; see also MHD
MHD, 551
compressible fluids and, 813
liquid metal numerical example of, 750
magnetic damping in, 750
transient effects in, 746, 759
transient example of, 750
variable-area channel in, 751
of viscous fluids, 878
MHD conduction machine, 821, 828
equivalent circuit for, 742
pressure drop in, 742
terminal characteristics of, 742
MHD constant-area channel, 740, 820
MHD flows, dynamic effects in, 746
MHD generator, comparison of, 839
compressibility and, 820
constant voltage constrained, 743
distribution of properties in, 827
end effects in, 797
examples of, 840, 841
Mach number in, 823
numerical example of, 826
temperature in, 823
variable-area channel, 828
viscosity and, 725, 884
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MHD machine, compressible and incom-
pressible, 825
constant velocity, loading factor and
aspect ratio, 834
dynamic operation of, 746
equivalent circuit for variable area, 756
loading factor of, 833
operation of brake, pumg, generator, 744
quasi-one-dimensional, 828
steady-state operation of, 740
velocity profile of, 891
MHD plane Couette flow, 884
MHD plane Poiseuille flow, 878
MHD pressure driven flow, 884
MHD pump or accelerator, 824
MHD transient phenomena, 759
MHD variable-area channel equations,
conservation of energy and, 831, 833
conservation of mass and, 831, 833
conservation of momentum and, 831, 833
local Mach number and, 823, 833
local sound velocity and, 822, 833

mechanical equation of state and, 816, 833

Ohm’s law and, 830, 833
thermal equations of state and, 820, 833
MHD variable-area machine, equations
for, 833
MHD variable-area pumps, generators and
brakes, 751
Microphone, capacitor, 201
fidelity of, 204
Microphones, 200
Microwave magnetics, 553
Microwave power generation, 552
Mobility, 289, B31
ion, 778
Model, engineering, 206
Modulus of elasticity, 485
numerical values of, 486, G12
Molecular weight of gas, 816
Moment of inertia, 36, 48
Momentum, conservation of, see Conserva-
tion of momentum
Momentum density, fluid, 734
Motor, commutator, 140, 291
induction, 134
reluctance, 156
synchronous, 119
Movirig {nedia, electromagnetic fields and,
5
Mutual inductance, calculation of, 22

Natural frequencies, 515

dispersion equation and, 517
Natural modes, dispersion and, 561

kink instability, 635

of membrane, 624, 625

overdamped and underdamped, 583

of unstable wire, 569
Navier-Stokes equation, 872
Negative sequence currents, 144
Networks, compensating, 198
Newtonian fluids, 861

Newton’s laws, 15, 35
elastic media and, 653
Newton’s second law, 44, 50
electromechanical coupling and, 84
fluid and, 729, 731
Node, mechanical, 36, 49
Nonlinear systems, 206, 213
Nonuniform magnetic field, motion of
conductor through, 367
Normal modes, 511
boundary conditions and, 524
Normal strain and shear stress, 662
Normal stress and normal strain, 661
Normal vector, analytic description of, 269

Oerstad, 1, B25
Ohm’s law, 7, B30
for moving media, 284, 298
Omega-k plot, absolutely unstable wire, 567
amplifying wave, 603
convective instability, 603
dangglegd waves, complex k for real omega,

elastic guided shear waves, 695
electron oscillations, 601
evanescent wave, 557, 559, §97, 615, 695
moving wire, with destabilizing magnetic
force, 603
with resistive wall, complex k for real
omega, 611
with resistive wall, complex omega for
real k, 610
ordinary wave, with convection, 594
on wires and membranes, 514
ordinary waves, 514, 555
unstable eigenfrequencies and, 569
waves with damging showing eigenfre-
quencies, 58
wire stabilized by magnetic field, 557
Orientation, electrohydrodynamic, 571
electromechanical, 4
of liquids, dielectrophoretic, 785
EHD, 552

Orth(ggz%mlity, eigenfunctions and, 341, 519,

Oscillations, nonlinear, 226
with convection, 5§96

Oscillators in motion, 599

Overstability, 192

Particles, charge carriers and, 782
Particular solution of differential equation,

180

Pendulum, hydrodynamic, 746

simple mechanical, 214
Perfect conductor, no slip condition on, 769
Perfect gas law, 816
Perfectly conducting gas, dynamics of, 846
Perfectly conducting media, see Conductor
Permanent magnet, in electromechanics, 27

example of, 28

as rotor for machine, 127
Permanent set, solids and, 700



Permeability, 7, B27
deformation and, 459
density dependence of, 454
free space, 7, B7
Permittivity, 9, B30
free space, 7, 9, B2
Perturbations, 183
Phase sequence, 144
Phase velocity, 613
diffusion wave, 358
dispersive wave, 598
membrane wave, 512
numerical elastic compressional wave, 677
numerical elastic shear wave, 677
numerical thin rod, 486, G12
ordinary wave, 487
thin rod, 487
wire wave, 512
Physical acoustics, 553, 651
Piezoelectric coupling, 711
reciprocity in, 712
Piezoelectric devices, example of, 717
Piezoelectricity, 553, 711
Piezoelectric length expander bar, 712
Piezoelectric resonator, equivalent circuit
for, 716
Piezoelectric transducer, admittance of,
714
Piezomagnetics, 553
Plane motion, 44
Plasma, confinement of, 552
electromechanics and, 4
evanescent waves in, 561, 638
heating of, 552
lumped-parameter model for, 223
magnetic bottle for, 563
magnetic diffusion and, 408
MHD and, 553
solid state, 553
Plasma dynamics, 553
Plasma frequency, 600
Poiseuille flow, plane, 878
Poisson’s ratio, 662
numerical values of, 666
Polarization, effect of motion on, 290
current, B29
density, 7, B28
electric, B27
force, 463, 571, G11
Polarization force, one degree of freedom,
464
Polarization interactions, liquids and, 783
Polarization stress tensor, 463, G11
Pole pairs, 148
Poles in a machine, 146
Polyphase machines, 142
Position vector, 45
Positive sequence currents, 144
Potential, electric, B9
electromagnetic force, 738
gravitational, 733
mechanical, 214
velocity, 737

Index 11

Potential difference, B10

Potential energy, 214

Potential flow, irrotational electrical

forces and, 738

Potential fluid flow, two-dimensional, 751

Potential plot, 214

Potential well, electrical constraints and, 217
electromechanical system and, 217
temporal behavior from, 224

Power, conservation of, 64

Power density input to fluid, 818

Power factor, 126

Power flow, group velocity and, 638
ordinary and evanescent waves and, 638
rotating machines and, 110

Power generation, ionized gases and, 552
microwave, 552, 553

Power input, electrical, 64
fluid electrical, 818
mechanical, 64
mechanical MHD, 743

Power input to fluid, electric forces and,

819

electrical losses and, 818, 819
magnetic forces and, 818
pressure forces and, 818
Power output, electric MHD, 743
Powe(rS 4tz};1eorem, wire in magnetic field, 637,
Poynting’s theorem, B22
Pressure, density and temperature depen-
dence of, 816
hydrostatic, 735
hydrostatic example of, 736
incompressible fluids and significance of,
753
isotropic, 735
magnetic, 369
normal compressive stress and, 735
significance of negative, 753
velocity and, 753
Principal axes, 49
Principal modes, 681
elastic structure, 679
shear wave, 695
Principle of virtual work, see Conservation,
of energy
Products of inertia, 48
Propagation, 613
Propulsion, electromagnetic, 552
electromechanical, 4
MHD space, 746
Pulling out of step for synchronous ma-
chine, 125
Pump, electric field, 776
electrostatic, 778
liquid metal induction, 365
MHD, 744, 746
variation of parameters in MHD, 825
Pumping, EHD, 552
MHD, 552

Quasi-one-dimensional model, charge relaxa-
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tion, 392, 394

electron beam, 600

gravity wave, 794

magnetic diffusion, 347

membrane, 509, 648

and fluid, 793

MHD generator, 828

thin bar, 712

thin beam, 683

thin rod, 480, 681

wire or string, 509

in field, 556, 563, 574, 605, 627
Quasi-static approximations, 6, B17
Quast-static limit, sinusoidal steady-state
and, 515, 534

wavelength and, B17

wire and, 534
Quasi-statics, conditions for, B21

correction fields for, B21

elastic. media and, 503

electromagnetic, B19
Quasi-static systems, electric, 8

magnetic, 6

Radiation, heat, 815
Rate of strain, 864
Reactance-dominated dynamics, 138, 211,
220, 242, 336, 354, 368, 563, 759
Reciprocity, electromechanical coupling
and, 77
piezoelectric coupling and, 713
Reference system, inertial, 44
Regulation, transformer design and, 699
Relatévesdisplacement, rotation, strain and,
5
Relativity, Einstein, 254
Galilean, 255
postulate of special, 261
theory of, 44
Relaxation time, free charge, 372
numerical values of, 377
Relay, damped time-delay, 229
Reluctance motor, 156
Resistance-dominated dynamics, 138, 209,

233, 242, 336, 354, 368, 503, 583, 611

MHD, 750
Resistive wall damping, continuum, 583
Resistive wall instability, nature of, 612
Resistive wall wave amplification, 608
Resonance, electromechanically driven
confinuum and, 533
response of continua and, 515
Resonance frequencies, magnetic field
shift of, 563
membrane, 624
natural frequencies and, 515
Resonant gate transistor, 688

Response, sinusoidal steady-state, 181, 200,
514

Rigid body, 44
Rigid-body mechanics, 35
Rotating machines, 103

air-gap magnetic fields in, 114

Index

applications of, 3
balanced two-phase, 113
classification of, 119
commutator type, 140, 255, 292
computation of mutual inductance in, 22
dc, 140, 291
differential equations for, 106
effect of poles on speed of, 149
electric field type, 177
energy conversion conditions for, 110
energy conversion in salient pole, 154
equations for salient pole, 151
hunting transient of synchronous, 192
induction, 127
losses in, 109
magnetic saturation in, 106
mutual inductance in, 108
number of poles in, 146
polyphase, 142
power flow in, 110
salient pole, 103, 150
single-phase, 106
single-phase salient-pole, 79
smooth-air-gap, 103, 104
stresses in rotor of, 697
superconducting rotor in, 92
synchronous, 119
two-phase, smooth-air-gap, 111
winding distribution of, 108
Rotating machines, physical structure,
acyclic generator, 287
commutator type, 292
dc¢ motor, 293
development of dc, 295
distribution of currents and, 166, 169
four-pole, salient pole, 164
four-pole, single phase, 147
homopolar, 313
hydroelectric generator, 152
multiple-pole rotor, 146
rotor of induction motor, 107
rotor of salient-pole synchronous, 151
synchronous, salient-pole, 152
salient-pole, two phase, 158
salient-pole, single phase, 150
smooth-air-gap, single phase, 104
stator for induction motor, 106
three-phase stator, 145
turboalternator, 120
two-pole commutator, 294
Rotation, fluid, 865
Rotation vector, 658
Rotor of rotating machines, 104, 107, 112,
120, 146, 147, 150, 151, 152, 158,
164, 166, 169
Rotor teeth, shield effect of, 301

Saliency in different machines, 156
Salient-pole rotating machines, 103, 150
Salient poles and dc machines, 293
Servomotor, 140

Shading coils in machines, 139

Shear flow, 862, 864, 875
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magnetic coupling, 878
Shear modulus, 664
numerical values of, 666
Shear rate, 866
Shear strain, 543, 655
normal strain and, 663
shear stress and, 664
Shear stress, 543
Shear waves, elastic slab and, 693
Shearing modes, beam principal, 683
Shock tube, example related to, 276
Shock waves, supersonic flow and, 592
Sinusoidal steady-state, 181, 200, 514
convection and establishing, 592
Sinusoidal steady-state response, elastic con-
tinua, 514
Skin depth, 357
numerical values of, 361
Skin effect, 358
effect of motion on, 361
Slip of induction machine, 131
Slip rings, 120
ac machines and, 120
Slots of dc machine, 296
Sodium liquid, density of, 771
Solids, degmition of, 724
Sound speed, gases, 844
liquids, 845
Sound velocity, see Velocity
Sound waves, see Acoustic waves
Source, force, 37
position, 36
velocity, 37
Space charge, fluid and, 780
Space-charge oscillations, 601
Speakers, 200
Specific heat capacity, constant pressure, 8§17
constant volume, 816
ratio of, 817
Spee% (():Ooefﬁcient, of commutator machine,

torque on dc machine and, 302
Speed control of rotating machines, 149
Speedometer transducer, 170
Speed voltage in commutator machine, 299
Spring, linear ideal, 38

lumped clement, 36, 38

quast-static limit of elastic continua and, 505

torsional, 40
Spring constant, 39
Stability, 182, 566, 583
Stagnation point, fluid, 752
Standing waves, electromagnetic, B16
electromechanical, 516, 559, 596, 771
State, coupling network, 61, 65
thermal, 816
Stator, of rotating machines, 104, 106, 120,
145, 147, 150, 152, 158, 164, 166, 169
smooth-air-gap, 103
Stinger, magnetic, 193
Strain, formal derivation of, 656
geometric significance of, 654
normal, 654
permanent, 700
shear, 543, 654

as a tensor, 659
thin rod, normal, 484
Strain components, 656
Strain-displacement relation, 653
thin-rod, 485
Strain rate, 724, 864
dilatational, 869
Strain-rate tensor, 864
Streaming electron oscillations, 600
Streamline, fluid, 752
Stress, fluid isotropy and, 868
fluid mechanical, 872
hydrostatic, 724
limiting, 700
normal, 432
shear, 432, 543
and traction, 424, G9
Stress components, 425
Stress-strain, nonlinear, 700
Stress-strain rate relations, 868
Stress-strain relation, 660, 668
thin-rod, 485
Stress-tensor, elastic media and, 667
example of magnetic, 428
magnetization, 462, G11
Maxwell, 420
physical interpretation of, 425, G7
polarization, 463, G11
pressure as, 735
properties of, 423, G7
surface force density and, 446, G9
symmetry of, 422
total force and, 444, G9
Stress tensors, summary of, 448, G11
String, convection and, 584
equation of motion for, 511, 535
and membrane, electromechanical
coupling to, 522
see also Wire
Subsonic steady MHD flow, 823
Subsonic velocity, 587
Substantial derivative, 259, 584, 726; see
also Convective derivative
Summation convention, 421, G7
Superconductors, flux amplification in, 354
Supersonic steady MHD flow, 823
Supersonic steady-state dynamics, 524
Supersonic velocity, 587
Surface charge density, free, 7
Surface conduction in moving media, 285
Surface current density, free, 7
Surface force, example of, 449
magnetization, 775
Surfaée1 {orce densities, summary of, 448,

Surface force density, 445, G11

free surface charge and, 447, G11

free surface currents and, 447, G11
Surface tension, 605
Susceptance, electromechanical driving, 531
Susceptibility, dielectric, 9, B30

electric, 9, B30

magnetic, 7, B27
Suspension, magnetic, 193
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Symbols, Al, D1, F1
Symbols for electromagnetic quantities, 7
Synchronous condenser, 127
Synchronous machine, 119

equivalent circuit of, 123

hunting transient of, 192

phasor diagram for, 124, 162

polyphase, salient-pole, 157

torque in, 122, 123, 125

torque of salient-pole, two-phase, 160, 162
Synchronous motor, performance of, 126
Synchronous reactance, 123
Synchronous traveling-wave energy conver-

sion, 117

Tachometer, drag-cup, 363
Taylor series, evaluation of displacement
with, 483
multivariable, 187
single variable, 183
Teeth of dc machine, 296
Temperature, electrical conductivity and, 380
Tension, of membrane, 509
of wire, 511
Tensor, first and second order, 437
one-dimensional divergence of, 482
surface integration of, 428, 441, 444, G9
transformation law, 437, G10
transformation of, 434, G9
Tensor strain, 659
Tensor transformation, example of, 437
Terminal pairs, mechanical, 36
Terminal variables, summary of, 35, E4, G4
Terminal voltage, definition of, 18
Theorems, C2, E2, G2
Thermonuclear devices, electromechanics
and, 4
Thermonuclear fusion, 552
Theta-pinch machine, 408
Thin beam, 683
boundary conditions for, 687
cantilevered, 688
deflections of, 691, 692
eigenvalues of, 692
electromechanical elements and, 688, 691,
701, 704
equation for, 687
resonance frequencies of, 692
static loading of, 701
Thin rod, 681
boundary conditions for, 494
conditions for, 683
equations of motion for, 485, G13
force equation for, 484
longitudinal motion of, 480
transverse motions of, 682
Three-phase currents, 143
Time constant, charge relaxation, 372
magnetic diffusion, 341
Time delay, acoustic and electromagnetic, 499
Time-delay relay, electrically damped, 249
Time derivative, moving coordinates and, 258
Time rate of change, moving grain and, 727
Torque, dc machine, 302
electrical, 66

Index

Lorentz force density and, 301
pull-out, 124
Torque-angle, 123
Torque-angle characteristic of synchronous
machine, 125
Torque-angle curve, salient-pole synchronous
machine, 163
Torque-slip curve for induction machine, 135
Torque-speed curve, single phase induction
machine, 139
Torsional vibrations of thin rod, 543
Traction, 424, 432
pressure and, 735
stress and, 432, G9
Traction drives, 310
Transducer, applications of, 2
continuum, 704
example of equations for, 84, 86
fidelity of, 203
incremental motion, 180, 193, 200
Magnetostrictive, 708
Transfer function capacitor microphone, 204
electromechanical filter, 706
Transformations, electric field system, 264
Galilean coordinate, 254, 256
integral laws and, 11, 276, 300, 315, B32
Lorentz, 254
Lorentz force and, 262
magnetic field system, 260
primed to imprimed frame, 439
summary of field, 268, E6, G6
vector and tensor, 434, G9
Transformer, electromechanical effects in, 697
step-down, 698
tested to failure, 698
Transformer efficiency, mechanical design
and, 699
Transformer talk, 697
Transient response, convective instability, 621
elastic continua, 517
MHD system, 751
one-dimensional continua, 511
superposition of eigenmodes in, 518
supersonic media, 593

"Transient waves, convection and, 587

Transmission line, electromagnetic, B16
parallel plate, B15
thin rod and, 488
Transmission without distortion in elastic
structures, 696
Traveling wave, 487
convection and, 586
magnetic diffusion in terms of, 357
single-phase excitation of, 118
standing wave and, 116
two-dimensional, 622
two-dimensional elastic, 694
two-phase current excitation of, 116
Traveling-wave induction interaction, 368
Traveling-wave MHD interaction, 746
Traveling-wave solutions, 554
Traveling-wave tube, 602
Turboalternator, 120
Turbulence in fluids, 725
Turbulent flow, 43



Ultrasonic amplification, 602 )
Ultrasonics in integrated electronics, 688
Units of electromagnetic quantities, 7

Van de Graaff generator, example of, 383,

385
gaseous, 778
Variable, dependent, 180
independent, differential equation, 180
thermodynamic independent, 64

Variable capacitance continuum coupling, 704

V curve for synchronous machine, 125
Vector, transformation of, 434, 659
Vector transformation, example of, 435
Velocity, absolute, 44
acoustic elastic wave, 673, 677
acoustic fluid wave, 844, 846
Alfvén wave, 763, 772
charge-average, B5
charge relaxation used to measure, 396
charge relaxation wave, 395
compressional elastic wave, 673, 677
dilatational elastic wave, 673, 677
elastic distortion wave, 675, 677
fast and slow wave, 586
light wave, B14
magnetic diffusion wave, 358
magnetic flux wave, 114
magnetoacoustic wave, 850, 852
measurement of material, 356, 362
membrane wave, 512
phase, 488
shear elastic wave, 675, 677
thin rod wave, 486, 487, 682
wavefront, 618
with dispersion, 598
wire or string wave, 512
Velocity potential, 737
Viscosity, 862
coefficient of, 863
examples of, 875
fluid, 724
mathematical description of, 862
second coefficient of, 871
Viscous flow, pressure driven, 877
Viscous fluids, 861
Viscour losses, turbulent flow, 725
Voltage, definition of, B10
speed, 20, 21
terminal, 18
transformer, 20, 21
Voltage equation, Kirchhoff, 16

Ward-Leonard system, 307
Water waves, 794

Wave amplification, 601
Wave equation, 487
Wavenumber, 357, 513

Index 15

complex, 554, 607
Wave propagation, 487
characteristics and, 487, 586, 618
group velocity and, 616
phase velocity and, 613
Wave reflection at a boundary, 493
Waves, acoustic elastic, 673
acoustic in fluid, 544, 841, 842, 845
Alfvén, 759
compressional elastic, 673
convection and, 586
cutoff, see Cutoff waves
damping and, 576
diffusion, 355, 576
dilatational, 672
dispersionless, 555
dispersion of, 488
of distortion, 675
elastic shear, 678
electromagnetic, B13, 488
electromechanical in fluids, 759
evanescent, see Evanescent waves
fast and slow, 586
fast and stow circularly polarized, 631
fluid convection and, 860
fluid shear, 760
fluid sound, 813
incident and reflected at a boundary, 494
light, B13
longitudinal elastic, 673
magnetoacoustic, 841, 846
motion and, 583
plasma, 553, 600, 638
radio, B13
rotational, 671
shear elastic, 675
stationary media and, 554
surface gravity, 794
thin rod and infinite media, 673
Wave transients, solution for, 490
Wind tunnel, magnetic stinger in, 193
Windings, balanced two-phase, 113
dc machine, 292
lap, 296
wave, 296
Wire, continuum elastic, 509, 535
convection and dynamics of, 584
dynamics of, 554
equations of motion for, 511, G13
magnetic field and, 556, 566, 627
two-dimensional motions of, 627

Yield strength, elastic, 700
Young’s modulus, 485, G12

Zero-gravity experiments, KC-135 trajec-
tory and, 787





