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PREFACE

Part I: Discrete Systems

In the early 1950's the option structure was abandoned and a common core
curriculum was instituted for all electrical engineering students at M.I.T.
The objective of the core curriculum was then, and is now, to provide a
foundation in mathematics and science on which a student can build in his
professional growth, regardless of the many opportunities in electrical
engineering from which he may choose. In meeting this objective, core
curriculum subjects cannot serve the needs of any professional area with
respect to nomenclature, techniques, and problems unique to that area.
Specialization comes in elective subjects, graduate study, and professional
activities.

To be effective a core curriculum subject must be broad enough to be
germane to the many directions an electrical engineer may go professionally,
yet it must have adequate depth to be of lasting value. At the same time, the
subject must be related to the real world by examples of application. This
is true because students learn by seeing material in a familiar context, and
engineering students are motivated largely by the relevance of the material
to the realities of the world around them.

In the organization of the core curriculum in electrical engineering at
M.I.T. electromechanics is one major component. As our core curriculum
has evolved, there have been changes in emphasis and a broadening of the
topic. The basic text in electromechanics until 1954, when a new departure
was made, was Electric Machinery by Fitzgerald and Kingsley. This change
produced ElectromechanicalEnergy Conversion by White and Woodson,
which was used until 1961. At that time we started the revision that resulted
in the present book. During this period we went through many versions of
notes while teaching the material three semesters a year.

Our objective has always been to teach a subject that combines classical
mechanics with the fundamentals of electricity and magnetism. Thus the
subject offers the opportunity to teach both mechanics and electromagnetic
theory in a context vital to much of the electrical engineering community.

Our choice of material was to some extent determined by a desire to give
the student a breadth of background sufficient for further study of almost
any type of electromechanical interaction, whether in rotating machinery,
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plasma dynamics, the electromechanics of biological systems, or magneto-
elasticity. It was also chosen to achieve adequate depth while maintaining
suitable unity, but, most important, examples were chosen that could be
enlivened for the engineering student interested in the interplay of physical
reality and the analytical model. There were many examples from which to
choose, but only a few satisfied the requirement of being both mathe-
matically lucid and physically demonstrable, so that the student could "push
it or see it" and directly associate his observations with symbolic models.
Among the areas of electrical engineering, electromechanics excels in offering
the opportunity to establish that all-important "feel" for a physical phe-
nomenon. Properly selected electromechanical examples can be the basis for
discerning phenomena that are remote from human abilities to observe.

Before discussing how the material can be used to achieve these ends, a
review of the contents is in order. The student who uses this book is assumed
to have a background in electrostatics and magnetostatics. Consequently,
Chapter 1 and Appendix B are essentially a review to define our starting
point.

Chapter 2 is a generalization of the concepts of inductance and capacitance
that are necessary to the treatment of electromechanical systems; it also
provides a brief introduction to rigid-body mechanics. This treatment is
included because many curricula no longer cover mechanics, other than
particle mechanics in freshman physics. The basic ideas of Chapter 2 are
repeated in Chapter 3 to establish some properties of electromechanical
coupling in lumped-parameter systems and to obtain differential equations
that describe the dynamics of lumped-parameter systems.

Next, the techniques of Chapters 2 and 3 are used to study rotating
machines in Chapter 4. Physical models are defined, differential equations
are written, machine types are classified, and steady-state characteristics are
obtained and discussed. A separate chapter on rotating machines has been
included not only because of the technological importance of machines but
also because rotating machines are rich in examples of the kinds of phe-
nomena that can be found in lumped-parameter electromechanical systems.

Chapter 5 is devoted to the study, with examples, of the dynamic behavior
of lumped-parameter systems. Virtually all electromechanical systems are
mathematically nonlinear; nonetheless, linear incremental models are useful
for studying the stability of equilibria and the nature of the dynamical
behavior in the vicinity of an equilibrium. The second half of this chapter
develops the classic potential-well motions and loss-dominated dynamics in
the context of electromechanics. These studies of nonlinear dynamics afford
an opportunity to place linear models in perspective while forming further
insights on the physical significance of, for example, flux conservation and
state functions.
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Chapter 6 represents our first departure from lumped-parameter systems
into continuum systems with a discussion of how observers in relative motion
will define and measure field quantities and the related effects of material
motion on electromagnetic fields. It is our belief that de rotating machines
are most easily understood in this context. Certainly they are a good demon-
stration of field transformations at work.

As part of any continuum electromechanics problem, one must know how
the electric and magnetic fields are influenced by excitations and motion. In
quasi-static systems the distribution of charge and current are controlled by
magnetic diffusion and charge relaxation, the subjects of Chapter 7. In
Chapter 7 simple examples isolate significant cases of magnetic diffusion or
charge relaxation, so that the physical processes involved can be better
understood.

Chapters 6 and 7 describe the electrical side of a continuum electro-
mechanical system with the material motion predetermined. The mechanical
side of the subject is undertaken in Chapter 8 in a study of force densities of
electric and magnetic origin. Because it is a useful concept in the analysis of
many systems, we introduce the Maxwell stress tensor. The study of useful
properties of tensors sets the stage for later use of mechanical stress tensors
in elastic and fluid media.

At this point the additional ingredient necessary to the study of continuum
electromechanics is the mechanical medium. In Chapter 9 we introduce
simple elastic continua-longitudinal motion of a thin rod and transverse
motion of wires and membranes. These models are used to study simple
continuum mechanical motions (nondispersive waves) as excited electro-
mechanically at boundaries.

Next, in Chapter 10 a string or membrane is coupled on a continuum
basis to electric and magnetic fields and the variety of resulting dynamic
behavior is studied. The unifying thread of this treatment is the dispersion
equation that relates complex frequency w with complex wavenumber k.
Without material convection there can be simple nondispersive waves, cut
off or evanescent waves, absolute instabilities, and diffusion waves. The
effect of material convection on evanescent waves and oscillations and on
wave amplification are topics that make a strong connection with electron
beam and plasma dynamics. The method of characteristics is introduced as a
convenient tool in the study of wave propagation.

In Chapter 11 the concepts and techniques of Chapters 9 and 10 are
extended to three-dimensional systems. Strain displacement and stress-strain
relations are introduced, with tensor concepts, and simple electromechanical
examples of three-dimensional elasticity are given.

In Chapter 12 we turn to a different mechanical medium, a fluid. We
first study electromechanical interactions with inviscid, incompressible

__·_ I_·
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fluids to establish essential phenomena in the simplest context. It is here that
we introduce the basic notions of MHD energy conversion that can result
when a conducting fluid flows through a transverse magnetic field. We also
bring in electric-field interactions with fluids, in which ion drag phenomena
are used as an example. In addition to these basically conducting processes,
we treat the electromechanical consequences of polarization and magnetiza-
tion in fluids. We demonstrate how highly conducting fluids immersed in
magnetic fields can propagate Alfvyn waves.

In Chapter 13 we introduce compressibility to the fluid model. This can
have a marked effect on electromechanical behavior, as demonstrated with
the MHD conduction machine. With compressibility, a fluid will propagate
longitudinal disturbances (acoustic waves). A transverse magnetic field and
high electrical conductivity modify these disturbances to magnetoacoustic
waves.

Finally, in Chapter 14 we add viscosity to the fluid model and study the
consequences in electromechanical interactions with steady flow. Hartmann
flow demonstrates the effect of viscosity on the dc magnetohydrodynamic
machine.

To be successful a text must have a theme; the material must be inter-
related. Our philosophy has been to get into the subject where the student
is most comfortable, with lumped-parameter (circuit) concepts. Thus many
of the subtle approximations associated with quasi-statics are made naturally,
and the student is faced with the implications of what he has assumed only
after having become thoroughly familiar with the physical significance and
usefulness of his approximations. By the time he reaches Chapter 4 he will
have drawn a circle around at least a class of problems in which electro-
magnetic fields interact usefully with media in motion.

In dealing with physical and mathematical subjects, as we are here, in
which the job is incomplete unless the student sees the physical laws put to
work in some kind of physical embodiment, it is necessary for the thread of
continuity to be woven into the material in diverse and subtle ways. A
number of attempts have been made, to which we can add our early versions
of notes, to write texts with one obvious, pedagogically logical basis for
evolving the material; for example, it can be recognized that classes of
physical phenomena could be grouped according to the differential equation
that describes the pertinent dynamics. Thus we could treat magnetic diffusion,
diffusion waves on elastic continua, and viscous diffusion waves in one
chapter, even though the physical embodiments are entirely different.
Alternatively, we could devise a subject limited to certain technological
applications or cover superficially a wide range of basically unrelated topics
such as "energy conversion" under one heading. This was the preva-
lent approach in engineering education a decade or so ago, even at the
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undergraduate level. It seems clear to us that organizing material in a teach-
able and meaningful fashion is far more demanding than this. To confess our
own mistakes, our material went originally from the general to the specific; it
began with the relativistic form of Maxwell's equations, including the effects
of motion, and ended with lumped-parameter devices as special cases. Even
if this were a pedagogically tenable approach, which we found it was not,
what a bad example to set for students who should be learning to distinguish
between the essential and the superfluous! Ideas connected with the propaga-
tion of electromagnetic waves (relativistic ideas) must be included in the
curriculum, but their connection with media in motion should be made after
the student is aware of the first-order issues.

A meaningful presentation to engineers must interweave and interrelate
mathematical concepts, physical characteristics, the modeling process, and
the establishment of a physical "feel" for the world of reality. Our approach
is to come to grips with each of these goals as quickly as possible (let the
student "get wet" within the first two weeks) and then, while reinforcing what
he has learned, continually add something new. Thus, if one looks, he will
see the same ideas coming into the flow of material over and over again.

For the organization of this book one should look for many threads of
different types. We can list here only a few, in the hope that the subtle
reinforcing interplay of mathematical and physical threads will be made
evident. Probably the essential theme is Maxwell's equations and the ideas of
quasi-statics. The material introduced in Chapter 1 is completely abstract,
but it is reinforced in the first few chapters with material that is close to home
for the student. By the time he reaches Chapter 10 he will have learned that
waves exist which intimately involve electric and magnetic fields that are
altogether quasistatic. (This is something that comes as a surprise to many
late in life.) Lumped-parameter ideas are based on the integral forms of
Maxwell's equations, so that the dynamical effects found with lumped-
parameter time constants LIR and RC in Chapter 5 are easily associated with
the subjects of magnetic diffusion and charge relaxation. A close tie is made
between the "speed voltage" of Chapter 5 and the effects of motion on
magnetic fields, as described by field transformations in Chapters 6 to 14.
Constant flux dynamics of a lumped coil in Chapter 5 are strongly associated
with the dynamics of perfectly conducting continuous media; for example,
Alfv6n waves in Chapter 12.

Consider another thread of continuity. The book begins with the mathe-
matics of circuit theory. The machines of Chapter 4 are essentially circuits in
the sinusoidal steady state. In Chapter 5 we linearize to pursue lumped-
parameter ideas of stability and other transient responses and then proceed
to nonlinear dynamics, potential-well theory, and other approaches that
should form a part of any engineer's mathematical background. By the time
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the end of Chapter 10 is reached these ideas will have been carried into the
continuum with the addition of tensor concepts, simple cases of the method
of characteristics, and eigenvalue theory. The o-k plot and its implication
for all sorts of subjects in modern electrical engineering can be considered as
a mathematical or a physical objective. The ideas of stability introduced
with ordinary differential equations (exp st) in Chapter 5 evolve into the
continuum stability studies of Chapter 10 [expj(wt - kx)] and can be
regarded as a mathematical or a physical thread in our treatment. We could
list many other threads: witness the evolution of energy and thermodynamic
notions from Chapters 3 to 5, 5 to 8, and 8 to 13.

We hope that this book is not just one more in the mathematics of elec-
trical engineering or the technical aspects of rotating machines, transducers,
delay lines, MHD converters, and so on, but rather that it is the mathe-
matics, the physics, and, most of all, the engineering combined into one.

The material brought together here can be used in a variety of ways. It has
been used by Professors C. N. Weygandt and F. D. Ketterer at the University
of Pennsylvania for two subjects. The first restricts attention to Chapters
1 to 6 and Appendix B for a course in lumped-parameter electromechanics
that both supplants the traditional one on rotating machines in the electrical
engineering curriculum and gives the background required for further study
in a second term (elective) covering Chapter 7 and beyond. Professors C. D.
Hendricks and J. M. Crowley at the University of Illinois have used the
material to follow a format that covers up through Chapter 10 in one term
but omits much of the material in Chapter 7. Professor W. D. Getty at the
University of Michigan has used the material to follow a one-term subject in
lumped-parameter electromechanics taught from a different set of notes.
Thus he has been able to use the early chapters as a review and to get well
into the later chapters in a one-term subject.

At M.I.T. our curriculum seems always to be in a state of change. It is clear
that much of the material, Chapters 1 to 10, will be part of our required
(core) curriculum for the forseeable future, but the manner in which it is
packaged is continually changing. During the fall term, 1967, we covered
Chapters 1 to 10 in a one-semester subject taught to juniors and seniors.
The material from Chapters 4 and 6 on rotating machines was used selectively,
so that students had "a foot solidly in the door" on this important subject
but also that the coverage could retain an orientation toward the needs of all
the diverse areas found in electrical engineering today. We have found the
material useful as the basis for early graduate work and as a starting point
in several courses related to electromechanics.

Finally, to those who open this book and then close it with the benediction,
"good material but unteachable," we apologize because to them we have
not made our point. Perhaps not as presented here, but certainly as it is
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represented here, this material is rich in teaching possibilities. The demands
on the teacher to see the subject in its total context, especially the related
problems that lie between the lines, are significant. We have taught this
subject many times to undergraduates, yet each term has been more enjoyable
than the last. There are so many ways in which drama can be added to the
material, and we do not need to ask the students (bless them) when we have
been successful in doing so.

In developing this material we have found lecture demonstrations and
demonstration films to be most helpful, both for motivation and for develop-
ing understanding. We have learned that when we want a student to see a
particular phenomenon it is far better for us to do the experiment and let
the student focus his attention on what he should see rather than on the
wrong connections and blown fuses that result when he tries to do the
experiment himself. The most successful experiments are often the simplest--
those that give the student an opportunity to handle the apparatus himself.
Every student should "chop up some magnetic field lines" with a copper
"axe" or he will never really appreciate the subject. We have also found that
some of the more complex demonstrations that are difficult and expensive
to store and resurrect each semester come through very well in films. In
addition to our own short films, three films have been produced professionally
in connection with this material for the National Committee on Electrical
Engineering Films, under a grant from the National Science Foundation, by
the Education Development Center, Newton, Mass.

Synchronous Machines: Electromechanical Dynamics by H. H. Woodson
Complex Waves I: Propagation, Evanescence and Instability by J. R.

Melcher
Complex Waves II: Instability, Convection and Amplification by J. R.

Melcher

An additional film is in the early stages of production. Other films that
are useful have been produced by the Education Development Center for
the National Committee on Fluid Mechanics Films and for the College
Physics Film Program. Of particular interest, from the former series, is
Magnetohydrodynamics by Arthur Shercliff.

A book like this can be produced only with plenty of assistance. We
gratefully acknowledge the help we received from many directions and hope
we have forgotten no one after seven years of work. First of all we want
to acknowledge our students with whom we worked as the material developed.
They are the one most essential ingredient in an effort of this sort. Next we
want to thank Dr. S. I. Freedman, Professor H. H. Richardson, and Dr.
C. V. Smith, Jr., for their assistance in framing worthwhile approaches to
several of our key topics. In seven years we have had the help of many able
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teachers in presenting this material to students. Their discussions and advice
have been most useful. In this category we want particularly to mention
Professors H. A. Haus, P. L. Penfield, D. C. White, G. L. Wilson, R. Gal-
lager, and E. Pierson and Doctors J. Reynolds, W. H. Heiser, and A. Kusko.
Professor Ketterer, who has taught this material at M.I.T. and the University
of Pennsylvania, Professors C. D. Hendricks and J. M. Crowley, who have
taught it at M.I.T. and the University of Illinois, and Professor W. D. Getty,
who has taught it at M.I.T. and the University of Michigan, have been most
generous with their comments. Messrs. Edmund Devitt, John Dressler, and
Dr. Kent Edwards have checked the correctness of many of the mathematical
treatments. Such a task as typing a manuscript repeatedly is enough to try
the patience of anyone. Our young ladies of the keyboard, Miss M. A. Daly,
Mrs. D. S. Figgins, Mrs. B. S. Morton, Mrs. E. M. Holmes, and Mrs. M.
Mazroff, have been gentle and kind with us.

A lengthy undertaking of this sort can be successful only when it has the
backing of a sympathetic administration. This work was started with the
helpful support of Professor P. Elias, who was then head of the Department
of Electrical Engineering at M.I.T. It was finished with the active encourage-
ment of Professor L. D. Smullin, who is presently head of the Department.

Finally, and most sincerely, we want to acknowledge the perseverance of
our families during this effort. Our wives, Blanche S. Woodson and Janet D.
Melcher, have been particularly tolerant of the demands of this work.

This book appears in three separately bound, consecutively paged parts
that can be used individually or in any combination. Flexibility is ensured
by including with each part a complete Table of Contents and Index. In
addition, for convenient reference, Parts LI and II are supplemented by brief
appendices which summarize the relevant material from the preceding chap-
ters. Part I includes Chapters 1 to 6, hence emphasizes lumped-parameter
models while developing background in field concepts for further studies.

H. H. Woodson
J. R. Melcher

Cambridge, Massachusetts
January 1968
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PREFACE

Part II: Fields, Forces, and Motion

In the early 1950's the option structure was abandoned and a common core
curriculum was instituted for all electrical engineering students at M.I.T.
The objective of the core curriculum was then, and is now, to provide a
foundation in mathematics and science on which a student can build in his
professional growth, regardless of the many opportunities in electrical
engineering from which he may choose. In meeting this objective, core
curriculum subjects cannot serve the needs of any professional area with
respect to nomenclature, techniques, and problems unique to that area.
Specialization comes in elective subjects, graduate study, and professional
activities.

To be effective a core curriculum subject must be broad enough to be
germane to the many directions an electrical engineer may go professionally,
yet it must have adequate depth to be of lasting value. At the same time, the
subject must be related to the real world by examples of application. This
is true because students learn by seeing material in a familiar context, and
engineering students are motivated largely by the relevance of the material
to the realities of the world around them.

In the organization of the core curriculum in electrical engineering at
M.I.T. electromechanics is one major component. As our core curriculum
has evolved, there have been changes in emphasis and a broadening of the
topic. The basic text in electromechanics until 1954, when a new departure
was made, was Electric Machinery by Fitzgerald and Kingsley. This change
produced ElectromechanicalEnergy Conversion by White and Woodson,
which was used until 1961. At that time we started the revision that resulted
in the present book. During this period we went through many versions of
notes while teaching the material three semesters a year.

Our objective has always been to teach a subject that combines classical
mechanics with the fundamentals of electricity and magnetism. Thus the
subject offers the opportunity to teach both mechanics and electromagnetic
theory in a context vital to much of the electrical engineering community.

Our choice of material was to some extent determined by a desire to give
the student a breadth of background sufficient for further study of almost
any type of electromechanical interaction, whether in rotating machinery,
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plasma dynamics, the electromechanics of biological systems, or magneto-
elasticity. It was also chosen to achieve adequate depth while maintaining
suitable unity, but, most important, examples were chosen that could be
enlivened for the engineering student interested in the interplay of physical
reality and the analytical model. There were many examples from which to
choose, but only a few satisfied the requirement of being both mathe-
matically lucid and physically demonstrable, so that the student could "push
it or see it" and directly associate his observations with symbolic models.
Among the areas of electrical engineering, electromechanics excels in offering
the opportunity to establish that all-important "feel" for a physical phe-
nomenon. Properly selected electromechanical examples can be the basis for
discerning phenomena that are remote from human abilities to observe.

Before discussing how the material can be used to achieve these ends, a
review of the contents is in order. The student who uses this book is assumed
to have a background in electrostatics and magnetostatics. Consequently,
Chapter 1 and Appendix B are essentially a review to define our starting
point.

Chapter 2 is a generalization of the concepts of inductance and capacitance
that are necessary to the treatment of electromechanical systems; it also
provides a brief introduction to rigid-body mechanics. This treatment is
included because many curricula no longer cover mechanics, other than
particle mechanics in freshman physics. The basic ideas of Chapter 2 are
repeated in Chapter 3 to establish some properties of electromechanical
coupling in lumped-parameter systems and to obtain differential equations
that describe the dynamics of lumped-parameter systems.

Next, the techniques of Chapters 2 and 3 are used to study rotating
machines in Chapter 4. Physical models are defined, differential equations
are written, machine types are classified, and steady-state characteristics are
obtained and discussed. A separate chapter on rotating machines has been
included not only because of the technological importance of machines but
also because rotating machines are rich in examples of the kinds of phe-
nomena that can be found in lumped-parameter electromechanical systems.

Chapter 5 is devoted to the study, with examples, of the dynamic behavior
of lumped-parameter systems. Virtually all electromechanical systems are
mathematically nonlinear; nonetheless, linear incremental models are useful
for studying the stability of equilibria and the nature of the dynamical
behavior in the vicinity of an equilibrium. The second half of this chapter
develops the classic potential-well motions and loss-dominated dynamics in
the context of electromechanics. These studies of nonlinear dynamics afford
an opportunity to place linear models in perspective while forming further
insights on the physical significance of, for example, flux conservation and
state functions.
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Chapter 6 represents our first departure from lumped-parameter systems
into continuum systems with a discussion of how observers in relative motion
will define and measure field quantities and the related effects of material
motion on electromagnetic fields. It is our belief that de rotating machines
are most easily understood in this context. Certainly they are a good demon-
stration of field transformations at work.

As part of any continuum electromechanics problem, one must know how
the electric and magnetic fields are influenced by excitations and motion. In
quasi-static systems the distribution of charge and current are controlled by
magnetic diffusion and charge relaxation, the subjects of Chapter 7. In
Chapter 7 simple examples isolate significant cases of magnetic diffusion or
charge relaxation, so that the physical processes involved can be better
understood.

Chapters 6 and 7 describe the electrical side of a continuum electro-
mechanical system with the material motion predetermined. The mechanical
side of the subject is undertaken in Chapter 8 in a study of force densities of
electric and magnetic origin. Because it is a useful concept in the analysis of
many systems, we introduce the Maxwell stress tensor. The study of useful
properties of tensors sets the stage for later use of mechanical stress tensors
in elastic and fluid media.

At this point the additional ingredient necessary to the study of continuum
electromechanics is the mechanical medium. In Chapter 9 we introduce
simple elastic continua-longitudinal motion of a thin rod and transverse
motion of wires and membranes. These models are used to study simple
continuum mechanical motions (nondispersive waves) as excited electro-
mechanically at boundaries.

Next, in Chapter 10 a string or membrane is coupled on a continuum
basis to electric and magnetic fields and the variety of resulting dynamic
behavior is studied. The unifying thread of this treatment is the dispersion
equation that relates complex frequency w with complex wavenumber k.
Without material convection there can be simple nondispersive waves, cut
off or evanescent waves, absolute instabilities, and diffusion waves. The
effect of material convection on evanescent waves and oscillations and on
wave amplification are topics that make a strong connection with electron
beam and plasma dynamics. The method of characteristics is introduced as a
convenient tool in the study of wave propagation.

In Chapter 11 the concepts and techniques of Chapters 9 and 10 are
extended to three-dimensional systems. Strain displacement and stress-strain
relations are introduced, with tensor concepts, and simple electromechanical
examples of three-dimensional elasticity are given.

In Chapter 12 we turn to a different mechanical medium, a fluid. We
first study electromechanical interactions with inviscid, incompressible
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fluids to establish essential phenomena in the simplest context. It is here that
we introduce the basic notions of MHD energy conversion that can result
when a conducting fluid flows through a transverse magnetic field. We also
bring in electric-field interactions with fluids, in which ion drag phenomena
are used as an example. In addition to these basically conducting processes,
we treat the electromechanical consequences of polarization and magnetiza-
tion in fluids. We demonstrate how highly conducting fluids immersed in
magnetic fields can propagate Alfv6n waves.

In Chapter 13 we introduce compressibility to the fluid model. This can
have a marked effect on electromechanical behavior, as demonstrated with
the MHD conduction machine. With compressibility, a fluid will propagate
longitudinal disturbances (acoustic waves). A transverse magnetic field and
high electrical conductivity modify these disturbances to magnetoacoustic
waves.

Finally, in Chapter 14 we add viscosity to the fluid model and study the
consequences in electromechanical interactions with steady flow. Hartmann
flow demonstrates the effect of viscosity on the dc magnetohydrodynamic
machine.

To be successful a text must have a theme; the material must be inter-
related. Our philosophy has been to get into the subject where the student
is most comfortable, with lumped-parameter (circuit) concepts. Thus many
of the subtle approximations associated with quasi-statics are made naturally,
and the student is faced with the implications of what he has assumed only
after having become thoroughly familiar with the physical significance and
usefulness of his approximations. By the time he reaches Chapter 4 he will
have drawn a circle around at least a class of problems in which electro-
magnetic fields interact usefully with media in motion.

In dealing with physical and mathematical subjects, as we are here, in
which the job is incomplete unless the student sees the physical laws put to
work in some kind of physical embodiment, it is necessary for the thread of
continuity to be woven into the material in diverse and subtle ways. A
number of attempts have been made, to which we can add our early versions
of notes, to write texts with one obvious, pedagogically logical basis for
evolving the material; for example, it can be recognized that classes of
physical phenomena could be grouped according to the differential equation
that describes the pertinent dynamics. Thus we could treat magnetic diffusion,
diffusion waves on elastic continua, and viscous diffusion waves in one
chapter, even though the physical embodiments are entirely different.
Alternatively, we could devise a subject limited to certain technological
applications or cover superficially a wide range of basically unrelated topics
such as "energy conversion" under one heading. This was the preva-
lent approach in engineering education a decade or so ago, even at the
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undergraduate level. It seems clear to us that organizing material in a teach-
able and meaningful fashion is far more demanding than this. To confess our
own mistakes, our material went originally from the general to the specific; it
began with the relativistic form of Maxwell's equations, including the effects
of motion, and ended with lumped-parameter devices as special cases. Even
if this were a pedagogically tenable approach, which we found it was not,
what a bad example to set for students who should be learning to distinguish
between the essential and the superfluous! Ideas connected with the propaga-
tion of electromagnetic waves (relativistic ideas) must be included in the
curriculum, but their connection with media in motion should be made after
the student is aware of the first-order issues.

A meaningful presentation to engineers must interweave and interrelate
mathematical concepts, physical characteristics, the modeling process, and
the establishment of a physical "feel" for the world of reality. Our approach
is to come to grips with each of these goals as quickly as possible (let the
student "get wet" within the first two weeks) and then, while reinforcing what
he has learned, continually add something new. Thus, if one looks, he will
see the same ideas coming into the flow of material over and over again.

For the organization of this book one should look for many threads of
different types. We can list here only a few, in the hope that the subtle
reinforcing interplay of mathematical and physical threads will be made
evident. Probably the essential theme is Maxwell's equations and the ideas of
quasi-statics. The material introduced in Chapter 1 is completely abstract,
but it is reinforced in the first few chapters with material that is close to home
for the student. By the time he reaches Chapter 10 he will have learned that
waves exist which intimately involve electric and magnetic fields that are
altogether quasistatic. (This is something that comes as a surprise to many
late in life.) Lumped-parameter ideas are based on the integral forms of
Maxwell's equations, so that the dynamical effects found with lumped-
parameter time constants LIR and RC in Chapter 5 are easily associated with
the subjects of magnetic diffusion and charge relaxation. A close tie is made
between the "speed voltage" of Chapter 5 and the effects of motion on
magnetic fields, as described by field transformations in Chapters 6 to 14.
Constant flux dynamics of a lumped coil in Chapter 5 are strongly associated
with the dynamics of perfectly conducting continuous media; for example,
Alfvdn waves in Chapter 12.

Consider another thread of continuity. The book begins with the mathe-
matics of circuit theory. The machines of Chapter 4 are essentially circuits in
the sinusoidal steady state. In Chapter 5 we linearize to pursue lumped-
parameter ideas of stability and other transient responses and then proceed
to nonlinear dynamics, potential-well theory, and other approaches that
should form a part of any engineer's mathematical background. By the time
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the end of Chapter 10 is reached these ideas will have been carried into the
continuum with the addition of tensor concepts, simple cases of the method
of characteristics, and eigenvalue theory. The w-k plot and its implication
for all sorts of subjects in modern electrical engineering can be considered as
a mathematical or a physical objective. The ideas of stability introduced
with ordinary differential equations (exp st) in Chapter 5 evolve into the
continuum stability studies of Chapter 10 [expj(wft - kx)] and can be
regarded as a mathematical or a physical thread in our treatment. We could
list many other threads: witness the evolution of energy and thermodynamic
notions from Chapters 3 to 5, 5 to 8, and 8 to 13.

We hope that this book is not just one more in the mathematics of elec-
trical engineering or the technical aspects of rotating machines, transducers,
delay lines, MHD converters, and so on, but rather that it is the mathe-
matics, the physics, and, most of all, the engineering combined into one.

The material brought together here can be used in a variety of ways. It has
been used by Professors C. N. Weygandt and F. D. Ketterer at the University
of Pennsylvania for two subjects. The first restricts attention to Chapters
1 to 6 and Appendix B for a course in lumped-parameter electromechanics
that both supplants the traditional one on rotating machines in the electrical
engineering curriculum and gives the background required for further study
in a second term (elective) covering Chapter 7 and beyond. Professors C. D.
Hendricks and J. M. Crowley at the University of Illinois have used the
material to follow a format that covers up through Chapter 10 in one term
but omits much of the material in Chapter 7. Professor W. D. Getty at the
University of Michigan has used the material to follow a one-term subject in
lumped-parameter electromechanics taught from a different set of notes.
Thus he has been able to use the early chapters as a review and to get well
into the later chapters in a one-term subject.

At M.I.T. our curriculum seems always to be in a state of change. It is clear
that much of the material, Chapters 1 to 10, will be part of our required
(core) curriculum for the forseeable future, but the manner in which it is
packaged is continually changing. During the fall term, 1967, we covered
Chapters 1 to 10 in a one-semester subject taught to juniors and seniors.
The material from Chapters 4 and 6 on rotating machines was used selectively,
so that students had "a foot solidly in the door" on this important subject
but also that the coverage could retain an orientation toward the needs of all
the diverse areas found in electrical engineering today. We have found the
material useful as the basis for early graduate work and as a starting point
in several courses related to electromechanics.

Finally, to those who open this book and then close it with the benediction,
"good material but unteachable," we apologize because to them we have
not made our point. Perhaps not as presented here, but certainly as it is
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represented here, this material is rich in teaching possibilities. The demands
on the teacher to see the subject in its total context, especially the related
problems that lie between the lines, are significant. We have taught this
subject many times to undergraduates, yet each term has been more enjoyable
than the last. There are so many ways in which drama can be added to the
material, and we do not need to ask the students (bless them) when we have
been successful in doing so.

In developing this material we have found lecture demonstrations and
demonstration films to be most helpful, both for motivation and for develop-
ing understanding. We have learned that when we want a student to see a
particular phenomenon it is far better for us to do the experiment and let
the student focus his attention on what he should see rather than on the
wrong connections and blown fuses that result when he tries to do the
experiment himself. The most successful experiments are often the simplest-
those that give the student an opportunity to handle the apparatus himself.
Every student should "chop up some magnetic field lines" with a copper
"axe" or he will never really appreciate the subject. We have also found that
some of the more complex demonstrations that are difficult and expensive
to store and resurrect each semester come through very well in films. In
addition to our own short films, three films have been produced professionally
in connection with this material for the National Committee on Electrical
Engineering Films, under a grant from the National Science Foundation, by
the Education Development Center, Newton, Mass.

Synchronous Machines: ElectromechanicalDynamics by H. H. Woodson
Complex Waves I: Propagation,Evanescence and Instability by J. R.

Melcher
Complex Waves II: Instability, Convection and Amplification by J. R.

Melcher

An additional film is in the early stages of production. Other films that
are useful have been produced by the Education Development Center for
the National Committee on Fluid Mechanics Films and for the College
Physics Film Program. Of particular interest, from the former series, is
Magnetohydrodynamicsby Arthur Shercliff.

A book like this can be produced only with plenty of assistance. We
gratefully acknowledge the help we received from many directions and hope
we have forgotten no one after seven years of work. First of all we want
to acknowledge our students with whom we worked as the material developed.
They are the one most essential ingredient in an effort of this sort. Next we
want to thank Dr. S. I. Freedman, Professor H. H. Richardson, and Dr.
C. V. Smith, Jr., for their assistance in framing worthwhile approaches to
several of our key topics. In seven years we have had the help of many able
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teachers in presenting this material to students. Their discussions and advice
have been most useful. In this category we want particularly to mention
Professors H. A. Haus, P. L. Penfield, D. C. White, G. L. Wilson, R. Gal-
lager, and E. Pierson and Doctors J. Reynolds, W. H. Heiser, and A. Kusko.
Professor Ketterer, who has taught this material at M.I.T. and the University
of Pennsylvania, Professors C. D. Hendricks and J. M. Crowley, who have
taught it at M.I.T. and the University of Illinois, and Professor W. D. Getty,
who has taught it at M.I.T. and the University of Michigan, have been most
generous with their comments. Messrs. Edmund Devitt, John Dressier, and
Dr. Kent Edwards have checked the correctness of many of the mathematical
treatments. Such a task as typing a manuscript repeatedly is enough to try
the patience of anyone. Our young ladies of the keyboard, Miss M. A. Daly,
Mrs. D. S. Figgins, Mrs. B. S. Morton, Mrs. E. M. Holmes, and Mrs. M.
Mazroff, have been gentle and kind with us.

A lengthy undertaking of this sort can be successful only when it has the
backing of a sympathetic administration. This work was started with the
helpful support of Professor P. Elias, who was then head of the Department
of Electrical Engineering at M.I.T. It was finished with the active encourage-
ment of Professor L. D. Smullin, who is presently head of the Department.

Finally, and most sincerely, we want to acknowledge the perseverance of
our families during this effort. Our wives, Blanche S. Woodson and Janet D.
Melcher, have been particularly tolerant of the demands of this work.

This book appears in three separately bound, consecutively paged parts
that can be used individually or in any combination. Flexibility is ensured
by including with each part a complete Table of Contents and Index. In
addition, for convenient reference, Parts II and III are supplemented by brief
appendices which summarize the relevant material from the preceding chap-
ters. Part II, Chapters 7 to 10, develops interactions between moving media
and fields with simple mechanical models that illustrate the dynamics of
continuum electromechanical systems.

H. H. Woodson
J. R. Melcher

Cambridge, Massachusetts
January 1968
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PREFACE

Part III: Elastic and Fluid Media

In the early 1950's the option structure was abandoned and a common core
curriculum was instituted for all electrical engineering students at M.I.T.
The objective of the core curriculum was then, and is now, to provide a
foundation in mathematics and science on which a student can build in his
professional growth, regardless of the many opportunities in electrical
engineering from which he may choose. In meeting this objective, core
curriculum subjects cannot serve the needs of any professional area with
respect to nomenclature, techniques, and problems unique to that area.
Specialization comes in elective subjects, graduate study, and professional
activities.

To be effective a core curriculum subject must be broad enough to be
germane to the many directions an electrical engineer may go professionally,
yet it must have adequate depth to be of lasting value. At the same time, the
subject must be related to the real world by examples of application. This
is true because students learn by seeing material in a familiar context, and
engineering students are motivated largely by the relevance of the material
to the realities of the world around them.

In the organization of the core curriculum in electrical engineering at
M.I.T. electromechanics is one major component. As our core curriculum
has evolved, there have been changes in emphasis and a broadening of the
topic. The basic text in electromechanics until 1954, when a new departure
was made, was Electric Machinery by Fitzgerald and Kingsley. This change
produced ElectromechanicalEnergy Conversion by White and Woodson,
which was used until 1961. At that time we started the revision that resulted
in the present book. During this period we went through many versions of
notes while teaching the material three semesters a year.

Our objective has always been to teach a subject that combines classical
mechanics with the fundamentals of electricity and magnetism. Thus the
subject offers the opportunity to teach both mechanics and electromagnetic
theory in a context vital to much of the electrical engineering community.

Our choice of material was to some extent determined by a desire to give
the student a breadth of background sufficient for further study of almost
any type of electromechanical interaction, whether in rotating machinery,
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plasma dynamics, the electromechanics of biological systems, or magneto-
elasticity. It was also chosen to achieve adequate depth while maintaining
suitable unity, but, most important, examples were chosen that could be
enlivened for the engineering student interested in the interplay of physical
reality and the analytical model. There were many examples from which to
choose, but only a few satisfied the requirement of being both mathe-
matically lucid and physically demonstrable, so that the student could "push
it or see it" and directly associate his observations with symbolic models.
Among the areas of electrical engineering, electromechanics excels in offering
the opportunity to establish that all-important "feel" for a physical phe-
nomenon. Properly selected electromechanical examples can be the basis for
discerning phenomena that are remote from human abilities to observe.

Before discussing how the material can be used to achieve these ends, a
review of the contents is in order. The student who uses this book is assumed
to have a background in electrostatics and magnetostatics. Consequently,
Chapter 1 and Appendix B are essentially a review to define our starting
point.

Chapter 2 is a generalization of the concepts of inductance and capacitance
that are necessary to the treatment of electromechanical systems; it also
provides a brief introduction to rigid-body mechanics. This treatment is
included because many curricula no longer cover mechanics, other than
particle mechanics in freshman physics. The basic ideas of Chapter 2 are
repeated in Chapter 3 to establish some properties of electromechanical
coupling in lumped-parameter systems and to obtain differential equations
that describe the dynamics of lumped-parameter systems.

Next, the techniques of Chapters 2 and 3 are used to study rotating
machines in Chapter 4. Physical models are defined, differential equations
are written, machine types are classified, and steady-state characteristics are
obtained and discussed. A separate chapter on rotating machines has been
included not only because of the technological importance of machines but
also because rotating machines are rich in examples of the kinds of phe-
nomena that can be found in lumped-parameter electromechanical systems.

Chapter 5 is devoted to the study, with examples, of the dynamic behavior
of lumped-parameter systems. Virtually all electromechanical systems are
mathematically nonlinear; nonetheless, linear incremental models are useful
for studying the stability of equilibria and the nature of the dynamical
behavior in the vicinity of an equilibrium. The second half of this chapter
develops the classic potential-well motions and loss-dominated dynamics in
the context of electromechanics. These studies of nonlinear dynamics afford
an opportunity to place linear models in perspective while forming further
insights on the physical significance of, for example, flux conservation and
state functions.

I
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Chapter 6 represents our first departure from lumped-parameter systems
into continuum systems with a discussion of how observers in relative motion
will define and measure field quantities and the related effects of material
motion on electromagnetic fields. It is our belief that dc rotating machines
are most easily understood in this context. Certainly they are a good demon-
stration of field transformations at work.

As part of any continuum electromechanics problem, one must know how
the electric and magnetic fields are influenced by excitations and motion. In
quasi-static systems the distribution of charge and current are controlled by
magnetic diffusion and charge relaxation, the subjects of Chapter 7. In
Chapter 7 simple examples isolate significant cases of magnetic diffusion or
charge relaxation, so that the physical processes involved can be better
understood.

Chapters 6 and 7 describe the electrical side of a continuum electro-
mechanical system with the material motion predetermined. The mechanical
side of the subject is undertaken in Chapter 8 in a study of force densities of
electric and magnetic origin. Because it is a useful concept in the analysis of
many systems, we introduce the Maxwell stress tensor. The study of useful
properties of tensors sets the stage for later use of mechanical stress tensors
in elastic and fluid media.

At this point the additional ingredient necessary to the study of continuum
electromechanics is the mechanical medium. In Chapter 9 we introduce
simple elastic continua-longitudinal motion of a thin rod and transverse
motion of wires and membranes. These models are used to study simple
continuum mechanical motions (nondispersive waves) as excited electro-
mechanically at boundaries.

Next, in Chapter 10 a string or membrane is coupled on a continuum
basis to electric and magnetic fields and the variety of resulting dynamic
behavior is studied. The unifying thread of this treatment is the dispersion
equation that relates complex frequency wo with complex wavenumber k.
Without material convection there can be simple nondispersive waves, cut
off or evanescent waves, absolute instabilities, and diffusion waves. The
effect of material convection on evanescent waves and oscillations and on
wave amplification are topics that make a strong connection with electron
beam and plasma dynamics. The method of characteristics is introduced as a
convenient tool in the study of wave propagation.

In Chapter 11 the concepts and techniques of Chapters 9 and 10 are
extended to three-dimensional systems. Strain displacement and stress-strain
relations are introduced, with tensor concepts, and simple electromechanical
examples of three-dimensional elasticity are given.

In Chapter 12 we turn to a different mechanical medium, a fluid. We
first study electromechanical interactions with inviscid, incompressible
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fluids to establish essential phenomena in the simplest context. It is here that
we introduce the basic notions of MHD energy conversion that can result
when a conducting fluid flows through a transverse magnetic field. We also
bring in electric-field interactions with fluids, in which ion drag phenomena
are used as an example. In addition to these basically conducting processes,
we treat the electromechanical consequences of polarization and magnetiza-
tion in fluids. We demonstrate how highly conducting fluids immersed in
magnetic fields can propagate Alfv6n waves.

In Chapter 13 we introduce compressibility to the fluid model. This can
have a marked effect on electromechanical behavior, as demonstrated with
the MHD conduction machine. With compressibility, a fluid will propagate
longitudinal disturbances (acoustic waves). A transverse magnetic field and
high electrical conductivity modify these disturbances to magnetoacoustic
waves.

Finally, in Chapter 14 we add viscosity to the fluid model and study the
consequences in electromechanical interactions with steady flow. Hartmann
flow demonstrates the effect of viscosity on the dc magnetohydrodynamic
machine.

To be successful a text must have a theme; the material must be inter-
related. Our philosophy has been to get into the subject where the student
is most comfortable, with lumped-parameter (circuit) concepts. Thus many
of the subtle approximations associated with quasi-statics are made naturally,
and the student is faced with the implications of what he has assumed only
after having become thoroughly familiar with the physical significance and
usefulness of his approximations. By the time he reaches Chapter 4 he will
have drawn a circle around at least a class of problems in which electro-
magnetic fields interact usefully with media in motion.

In dealing with physical and mathematical subjects, as we are here, in
which the job is incomplete unless the student sees the physical laws put to
work in some kind of physical embodiment, it is necessary for the thread of
continuity to be woven into the material in diverse and subtle ways. A
number of attempts have been made, to which we can add our early versions
of notes, to write texts with one obvious, pedagogically logical basis for
evolving the material; for example, it can be recognized that classes of
physical phenomena could be grouped according to the differential equation
that describes the pertinent dynamics. Thus we could treat magnetic diffusion,
diffusion waves on elastic continua, and viscous diffusion waves in one
chapter, even though the physical embodiments are entirely different.
Alternatively, we could devise a subject limited to certain technological
applications or cover superficially a wide range of basically unrelated topics
such as "energy conversion" under one heading. This was the preva-
lent approach in engineering education a decade or so ago, even at the
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undergraduate level. It seems clear to us that organizing material in a teach-
able and meaningful fashion is far more demanding than this. To confess our
own mistakes, our material went originally from the general to the specific; it
began with the relativistic form of Maxwell's equations, including the effects
of motion, and ended with lumped-parameter devices as special cases. Even
if this were a pedagogically tenable approach, which we found it was not,
what a bad example to set for students who should be learning to distinguish
between the essential and the superfluous! Ideas connected with the propaga-
tion of electromagnetic waves (relativistic ideas) must be included in the
curriculum, but their connection with media in motion should be made after
the student is aware of the first-order issues.

A meaningful presentation to engineers must interweave and interrelate
mathematical concepts, physical characteristics, the modeling process, and
the establishment of a physical "feel" for the world of reality. Our approach
is to come to grips with each of these goals as quickly as possible (let the
student "get wet" within the first two weeks) and then, while reinforcing what
he has learned, continually add something new. Thus, if one looks, he will
see the same ideas coming into the flow of material over and over again.

For the organization of this book one should look for many threads of
different types. We can list here only a few, in the hope that the subtle
reinforcing interplay of mathematical and physical threads will be made
evident. Probably the essential theme is Maxwell's equations and the ideas of
quasi-statics. The material introduced in Chapter I is completely abstract,
but it is reinforced in the first few chapters with material that is close to home
for the student. By the time he reaches Chapter 10 he will have learned that
waves exist which intimately involve electric and magnetic fields that are
altogether quasistatic. (This is something that comes as a surprise to many
late in life.) Lumped-parameter ideas are based on the integral forms of
Maxwell's equations, so that the dynamical effects found with lumped-

parameter time constants LIR and RC in Chapter 5 are easily associated with
the subjects of magnetic diffusion and charge relaxation. A close tie is made
between the "speed voltage" of Chapter 5 and the effects of motion on
magnetic fields, as described by field transformations in Chapters 6 to 14.
Constant flux dynamics of a lumped coil in Chapter 5 are strongly associated
with the dynamics of perfectly conducting continuous media; for example,
Alfv6n waves in Chapter 12.

Consider another thread of continuity. The book begins with the mathe-
matics of circuit theory. The machines of Chapter 4 are essentially circuits in
the sinusoidal steady state. In Chapter 5 we linearize to pursue lumped-
parameter ideas of stability and other transient responses and then proceed
to nonlinear dynamics, potential-well theory, and other approaches that
should form a part of any engineer's mathematical background. By the time
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the end of Chapter 10 is reached these ideas will have been carried into the
continuum with the addition of tensor concepts, simple cases of the method
of characteristics, and eigenvalue theory. The co-k plot and its implication
for all sorts of subjects in modern electrical engineering can be considered as
a mathematical or a physical objective. The ideas of stability introduced
with ordinary differential equations (exp st) in Chapter 5 evolve into the
continuum stability studies of Chapter 10 [expj(cot - kx)] and can be
regarded as a mathematical or a physical thread in our treatment. We could
list many other threads: witness the evolution of energy and thermodynamic
notions from Chapters 3 to 5, 5 to 8, and 8 to 13.

We hope that this book is not just one more in the mathematics of elec-
trical engineering or the technical aspects of rotating machines, transducers,
delay lines, MHD converters, and so on, but rather that it is the mathe-
matics, the physics, and, most of all, the engineering combined into one.

The material brought together here can be used in a variety of ways. It has
been used by Professors C. N. Weygandt and F. D. Ketterer at the University
of Pennsylvania for two subjects. The first restricts attention to Chapters
1 to 6 and Appendix B for a course in lumped-parameter electromechanics
that both supplants the traditional one on rotating machines in the electrical
engineering curriculum and gives the background required for further study
in a second term (elective) covering Chapter 7 and beyond. Professors C. D.
Hendricks and J. M. Crowley at the University of Illinois have used the
material to follow a format that covers up through Chapter 10 in one term
but omits much of the material in Chapter 7. Professor W. D. Getty at the
University of Michigan has used the material to follow a one-term subject in
lumped-parameter electromechanics taught from a different set of notes.
Thus he has been able to use the early chapters as a review and to get well
into the later chapters in a one-term subject.

At M.I.T. our curriculum seems always to be in a state of change. It is clear
that much of the material, Chapters 1 to 10, will be part of our required
(core) curriculum for the forseeable future, but the manner in which it is
packaged is continually changing. During the fall term, 1967, we covered
Chapters 1 to 10 in a one-semester subject taught to juniors and seniors.
The material from Chapters 4 and 6 on rotating machines was used selectively,
so that students had "a foot solidly in the door" on this important subject
but also that the coverage could retain an orientation toward the needs of all
the diverse areas found in electrical engineering today. We have found the
material useful as the basis for early graduate work and as a starting point
in several courses related to electromechanics.

Finally, to those who open this book and then close it with the benediction,
"good material but unteachable," we apologize because to them we have
not made our point. Perhaps not as presented here, but certainly as it is
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represented here, this material is rich in teaching possibilities. The demands
on the teacher to see the subject in its total context, especially the related
problems that lie between the lines, are significant. We have taught this
subject many times to undergraduates, yet each term has been more enjoyable
than the last. There are so many ways in which drama can be added to the
material, and we do not need to ask the students (bless them) when we have
been successful in doing so.

In developing this material we have found lecture demonstrations and
demonstration films to be most helpful, both for motivation and for develop-
ing understanding. We have learned that when we want a student to see a
particular phenomenon it is far better for us to do the experiment and let
the student focus his attention on what he should see rather than on the
wrong connections and blown fuses that result when he tries to do the
experiment himself. The most successful experiments are often the simplest-
those that give the student an opportunity to handle the apparatus himself.
Every student should "chop up some magnetic field lines" with a copper
"axe" or he will never really appreciate the subject. We have also found that
some of the more complex demonstrations that are difficult and expensive
to store and resurrect each semester come through very well in films. In
addition to our own short films, three films have been produced professionally
in connection with this material for the National Committee on Electrical
Engineering Films, under a grant from the National Science Foundation, by
the Education Development Center, Newton, Mass.

Synchronous Machines: ElectromechanicalDynamics by H. H. Woodson
Complex Waves I: Propagation, Evanescence and Instability by J. R.

Melcher
Complex Waves II: Instability, Convection and Amplification by J. R.

Melcher

An additional film is in the early stages of production. Other films that
are useful have been produced by the Education Development Center for
the National Committee on Fluid Mechanics Films and for the College
Physics Film Program. Of particular interest, from the former series, is
Magnetohydrodynamicsby Arthur Shercliff.

A book like this can be produced only with plenty of assistance. We
gratefully acknowledge the help we received from many directions and hope
we have forgotten no one after seven years of work. First of all we want
to acknowledge our students with whom we worked as the material developed.
They are the one most essential ingredient in an effort of this sort. Next we
want to thank Dr. S. I. Freedman, Professor H. H. Richardson, and Dr.
C. V. Smith, Jr., for their assistance in framing worthwhile approaches to
several of our key topics. In seven years we have had the help of many able
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teachers in presenting this material to students. Their discussions and advice
have been most useful. In this category we want particularly to mention
Professors H. A. Haus, P. L. Penfield, D. C. White, G. L. Wilson, R. Gal-
lager, and E. Pierson and Doctors J. Reynolds, W. H. Heiser, and A. Kusko.
Professor Ketterer, who has taught this material at M.I.T. and the University
of Pennsylvania, Professors C. D. Hendricks and J. M. Crowley, who have
taught it at M.I.T. and the University of Illinois, and Professor W. D. Getty,
who has taught it at M.I.T. and the University of Michigan, have been most
generous with their comments. Messrs. Edmund Devitt, John Dressier, and
Dr. Kent Edwards have checked the correctness of many of the mathematical
treatments. Such a task as typing a manuscript repeatedly is enough to try
the patience of anyone. Our young ladies of the keyboard, Miss M. A. Daly,
Mrs. D. S. Figgins, Mrs. B. S. Morton, Mrs. E. M. Holmes, and Mrs. M.
Mazroff, have been gentle and kind with us.

A lengthy undertaking of this sort can be successful only when it has the
backing of a sympathetic administration. This work was started with the
helpful support of Professor P. Elias, who was then head of the Department
of Electrical Engineering at M.I.T. It was finished with the active encourage-
ment of Professor L. D. Smullin, who is presently head of the Department.

Finally, and most sincerely, we want to acknowledge the perseverance of
our families during this effort. Our wives, Blanche S. Woodson and Janet D.
Melcher, have been particularly tolerant of the demands of this work.

This book appears in three separately bound, consecutively paged parts
that can be used individually or in any combination. Flexibility is ensured
by including with each part a complete Table of Contents and Index. In
addition, for convenient reference, Parts II and III are supplemented by brief
appendices which summarize the relevant material from the preceding chap-
ters. Part III, Chapters 11 to 14, introduces three-dimensional elasticity and
fluid dynamics while emphasizing important electromechanical phenomena
involving these mechanical models.

H. H. Woodson
J. R. Melcher

Cambridge, Massachusetts
January 1968
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Appendix A

GLOSSARY OF
COMMONLY USED SYMBOLS

Section references indicate where symbols of a given significance are
introduced; grouped symbols are accompanied by their respective references.
The absence of a section reference indicates that a symbol has been applied
for a variety of purposes. Nomenclature used in examples is not included.

Symbol Meaning Section

A
Ai
(A + , An)

A,
a
a, (ae, as)
ab
(a, b, c)
ai

a,

B, Br, B,

B, Bi, Bo
Bi

(Br, Bra, Brb, Brm)

[Brt, (Brf)av]
b

b
C

C, (Ca, Cb), C,
C
C
(C+, C-)

cross-sectional area
coefficient in differential equation
complex amplitudes of components of nth

mode
cross-sectional area of armature conductor
spacing of pole faces in magnetic circuit
phase velocity of acoustic related waves
Alfvyn velocity
Lagrangian coordinates
constant coefficient in differential equation
instantaneous acceleration of point p fixed

in material
damping constant for linear, angular and

square law dampers
magnetic flux density
induced flux density
radial components of air-gap flux

densities
radial flux density due to field current
width of pole faces in magnetic circuit
half thickness of thin beam
contour of integration
capacitance
coefficient in boundary condition
the curl of the displacement
designation of characteristic lines

5.1.1

9.2.1
6.4.1
8.5.1
13.2.1, 11.4.1
12.2.3
11.1
5.1.1

2.2.1c

2.2.1b, 4.1.1, 5.2.2
1.1.1a, 8.1, 6.4.2
7.0

4.1.4
6.4.1
8.5
11.4.2b
1.1.2a
2.1.2, 7.2.1a, 5.2.1
9.1.1
11.4
9.1.1

_~



Glossary of Commonly Used Symbols

Meaning

C,

Cv

D
d
da
df,

dl
dT.
dV
E
E

E, Eo
E,

Ei
e1 1 , eij
eij
F
F

F0

f

f, ffe,fSftfi l

f
f'

f
f
G
G
G
G

g
g, g
(H, H., H,, Hz)
h

I, I, (I, i)s) , if

(i, i , i2 ,.. . , ik),
(iar,ias, ibr, ibs),

(Of,it),('r,Qs

specific heat capacity at constant pressure
specific heat capacity at constant volume
electric displacement
length
elemental area
total elemental force on material in rigid

body
elemental line segment
torque on elemental volume of material
elemental volume
constant of motion
Young's modulus or the modulus of

elasticity
electric field intensity
magnitude of armature voltage generated

by field current in a synchronous
machine

induced electric field intensity
strain tensor
strain-rate tensor
magnetomotive force (mmf)
force density
complex amplitude off(t)
amplitude of sinusoidal driving force
equilibrium tension of string
driving function
force

arbitrary scalar function
scalar function in moving coordinate

system
three-dimensional surface
integration constant
a constant
shear modulus of elasticity
speed coefficient
conductance
air-gap length
acceleration of gravity
magnetic field intensity
specific enthalpy
electrical current

electrical current

13.1.2
13.1.2
l.l.la

1.1.2a

2.2.1c
1.1.2a
2.2.1c
1.1.2b
5.2.1

9.1
1.1.1a, 5.1.2d

4.1.6a
7.0
9.1, 11.2
14.1.1a
13.2.2
1.1.1a

5.1.1
9.1.3
9.2
5.1.1
2.2.1, 2.2.1c, 3.1,

5.1.2a, 3.1.2b, 8.1,
9.1

6.1

6.1
6.2
11.4.2a
5.1.2c
11.2.2
6.4.1
3.1
5.2.1
5.1.2c, 12.1.3
1.1.1a
13.1.2
10.4.3, 12.2.1a, 4.1.2,

6.4.1
2.1,4.1.3, 6.4.1, 4.1.7,

6.4.1, 4.1

Symbol Section
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MeaningSymbol

i,

i,

(i,'I, U, (ix,is,2is)
J,J1

J, J )

K
K,K1
K
K,
k, ke, (kr, k,)
k
k

k.
(L, L2, (La, Lf),

L,, (Lo, LR),
(L,, L ),L.0) L.

1,1,, 1,
M
M
M
M
M
M, M,
M
m
N
N
n
n

n
P
P
P
p

pe, Pg,pPm,Pr

Q
q, qi, qk

unit vector perpendicular to area of
integration

unit vector normal to surface of
integration

unit vectors in coordinate directions
current density
moment of inertia
products of inertia
V-l
loading factor
surface current density
linear or torsional spring constant
induced surface current density
wavenumber
summation index
maximum coefficient of coupling
nth eigenvalue
inductance

length of incremental line segment
value of relative displacement for which

spring force is zero
length
Hartmann number
mass of one mole of gas in kilograms
Mach number
mass
number of mechanical terminal pairs
mutual inductance
magnetization density
mass/unit length of string
number of electrical terminal pairs
number of turns
number density of ions
integer
unit normal vector
polarization density
power
number of pole pairs in a machine
power per unit area
pressure
power

electric charge
electric charge

R, Rj,Ro radius

Section

6.2.1

6.2.1
2.2.1c
7.0, 1.1.1a
5.1.2b, 4.1.1, 2.2.1c
2.2.1c
4.1.6a
13.2.2
7.0, 1.1.1a
2.2.1a
7.0
7.1.3, 10.1.3, 10.0
2.1.1
4.1.6b
9.2
2.1.1, 6.4.1, 2.1.1,

4.2.1, 4.1.1, 4.2.4

6.2.1
2.2.1a

14.2.2
13.1.2
13.2.1
2.2.1c
2.1.1
4.1.1, 4.2.4
1.l.la
9.2
2.1.1
5.2.2
12.3.1
7.1.1
1.1.2
1.1.1a
12.2.1a
4.1.8
14.2.1
5.1.2d and 12.1.4
4.1.6a, 4.1.6b, 4.1.2,

4.1.6b
7.2.1a
1.1.3 and 2.1.2, 8.1,

2.1.2
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Meaning

R, Ra, Rb, R,, Rr, R,
(R, R,)
Re

Rm
r
r
r

rS
S
S
S
S
S.

s,

T
T
T, T, T, Tem, Tm,

To, T,

ui

uo(x - xo)
u
u_-(t)
V, v,
V
V, Va, V1 , Vo, VI
V

resistance
gas constant
electric Reynolds number
magnetic Reynolds number
radial coordinate
position vector of material
position vector in moving reference frame
center of mass of rigid body
reciprocal modulus of elasticity
surface of integration
normalized frequency
membrane tension
transverse force/unit length acting on string
complex frequency
slip
ith root of characteristic equation, a

natural frequency
period of oscillation
temperature
torque

surface force
mechanical stress tensor
the component of the stress-tensor in the

mth-direction on a cartesian surface with
a normal vector in the nth-direction

constant of coulomb damping
initial stress distribution on thin rod
longitudinal stress on a thin rod
transverse force per unit area on

membrane
transverse force per unit area acting on

thin beam

time measured in moving reference frame
gravitational potential
longitudinal steady velocity of string or

membrane
internal energy per unit mass
surface coordinate
unit impulse at x = zo
transverse deflection of wire in x-direction
unit step occurring at t = 0
velocity
volume
voltage
potential energy

13.1.2
7.0
7.0

2.2.1c
6.1
2.2.1c
11.5.2c
1.1.2a
7.2.4
9.2
9.2
5.1.1
4.1.6b
5.1.1

5.2.1
13.1.2
2.2.1c, 5.1.2b, 3.1.1,

4.1.6b, 4.1.1, 6.4.1,
6.4.1

8.4
13.1.2

8.1
4.1.1
9.1.1
9.1.1

9.2

11.4.2b
1.1.1
6.1
12.1.3

10.2
13.1.1
11.3
9.2.1
10.4.3
5.1.2b
7.0, 13.2.3
1.1.2

5.2.1

Symbol Section
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Symbol

v, V

(V,V1. V.k)
v', (vC, Vb, vc),

Vp,Voc, Vj

Un
Vo
V',

vr

Vs

(W5 , WI)

(WI , w ')

W"
w
w
w
X

x

xp

(X1, x2,X 3), (x Y, Z)
(x', y', z')

(W,Y)

(·, P)

x

7

Y,Yo, Y
Ad(t)

Ar

As

6( )

8, (9, d 0
6

Meaning

velocity
voltage
voltage

velocity of surface in normal direction
initial velocity distribution on thin rod
phase velocity
relative velocity of inertial reference frames

V~flm for a string under tensionf and
having mass/unit length m

longitudinal material velocity on thin rod
transverse deflection of wire in y-direction
energy stored in electromechanical

coupling
coenergy stored in electromechanical

coupling
hybrid energy function
width
energy density
coenergy density
equilibrium position
displacement of mechanical node
dependent variable
particular solution of differential equation
cartesian coordinates
cartesian coordinates of moving frame
constants along C' and C- characteristics,

respectively
see (10.2.20) or (10.2.27)
transverse wavenumber
angles used to define shear strain
constant angles
space decay parameter
damping constant
equilibrium angle of torsional spring
ratio of specific heats
piezoelectric constant
angular position
slope excitation of string
amplitude of sinusoidal slope excitation
distance between unstressed material

points
distance between stressed positions of

material points
incremental change in (
displacement of elastic material
thickness of incremental volume element
torque angle

Section

2.1.1

6.2.1
9.1.1
9.1.1 and 10.2
6.1

10.1.1

9.1.1
10.4.3

3.1.1
3.1.2b

5.2.1
5.2.2
11.5.2c
8.5
5.1.2a
2.1.1
5.1.1
5.1.1
8.1, 6.1
6.1

9.1.1

11.4.3
11.2
4.1.6b
7.1.4
5.1.2b
2.2.1a
13.1.2
11.5.2c

10.2.1b
10.2.1b

11.2.1a

11.2.1a
8.5
11.1, 9.1, 11.4.2a
6.2.1
4.1.6a
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Meaning

6Si
(0+, l_)

E

27

O, 0;, Om
0

0

(2,aa,22,).. s,.) AbS
Aa

(Aa, las, Ab, lbs)

jp, ('+,9)
/I

ald

/1is

(5, )

to

Ed

(F,, E-)

P
P1
Ps

a

a,

a,

"r •r

Kronecker delta
wave components traveling in the

Ix-directions
linear permittivity
permittivity of free space
efficiency of an induction motor
second coefficient of viscosity
angular displacement
power factor angle; phase angle between

current and voltage
equilibrium angle

angular velocity of armature
maximum angular deflection
magnetic flux linkage

Lamr constant for elastic material
wavelength
linear permeability
mobility
coefficient of viscosity
coefficient of dynamic friction
permeability of free space
coefficient of static friction
Poisson's ratio for elastic material
damping frequency
continuum displacement
initial deflection of string
amplitude of sinusoidal driving deflection
nth eigenfunctions
amplitudes of forward and backward

traveling waves

initial velocity of string
mass density
free charge density
surface mass density
surface of discontinuity
conductivity
free surface charge density
surface mass density of membrane
surface charge density
surface conductivity
surface charge density
surface traction
diffusion time constant
relaxation time

8.1

9.1.1
l.1.lb
1.1.la
4.1.6b
14.1.1c
2.1.1, 3.1.1, 5.2.1

4.1.6a
5.2.1

6.4.1
5.2.1
2.1.1, 6.4.1, 4.1.7,

4.1.3, 4.1

11.2.3
7.1.4
1.1.la
12.3.1, 1.1.1b
14.1.1
2.2.1b
1.1.1a
2.2.1b
11.2.2
10.1.4
8.5
9.2
9.2
9.2.1b

9.2

9.2
2.2.1c
1.1.1a
11.3
6.2
1.1.1a
1.1.1a
9.2
7.2.3
1.l.1a
7.2.3
8.2.1
7.1.1, 7.1.2a
7.2.1a

Symbol Section
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Symbol Meaning Section

re  electrical time constant 5.2.2

rm  time for air gap to close 5.2.2

70 time constant 5.1.3
rt traversal time 7.1.2a

electric potential 7.2
magnetic flux 2.1.1
cylindrical coordinate 2.1.1
potential for H when J, = 0 8.5.2
flow potential 12.2

Ze electric susceptibility 1.1.1b

Zm magnetic susceptibility 1.1.1a

Y the divergence of the material
displacement 11.4

Y angle defined in Fig. 6.4.2 6.4.1

Y angular position in the air gap measured
from stator winding (a) magnetic axis 4.1.4

V electromagnetic force potential 12.2

V angular deflection of wire 10.4.3
2 equilibrium rotational speed 5.1.2b

rotation vector in elastic material 11.2.1a
2n  real part of eigenfrequency (10.1.47) 10.1.4

w, (we, Ws) radian frequency of electrical excitation 4.1.6a, 4.1.2
w natural angular frequency (Im s) 5.1.2b
W, oW angular velocity 2.2.1c, 4.1.2
) e  cutoff frequency for evanescent waves 10.1.2

Cod driving frequency 9.2

Wn nth eigenfrequency 9.2
coo natural angular frequency 5.1.3

(Or, Oi) real and imaginary parts of co 10.0
V nabla 6.1
VE surface divergence 6.2.1
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Appendix B

REVIEW OF
ELECTROMAGNETIC THEORY

B.1 BASIC LAWS AND DEFINITIONS

The laws of electricity and magnetism are empirical. Fortunately they can
be traced to a few fundamental experiments and definitions, which are re-
viewed in the following sections. The rationalized MKS system of units is
used.

B.1.1 Coulomb's Law, Electric Fields and Forces

Coulomb found that when a charge q (coulombs) is brought into the vicinity
ofa distribution of chargedensity p,(r') (coulombs per cubic meter), as shown
in Fig. B.1.1, a force of repulsion f (newtons) is given by

f = qE, (B. 1.1)

where the electricfield intensity E (volts per meter) is evaluated at the position

= qE

Fig. B.1.1 The force f on the point charge q in the vicinity of charges with density Pe(r')
is represented by the electric field intensity E times q, where E is found from (B.1.2).
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r of the charge q and determined from the distribution of charge density by

E(r) = e(r') - r) dV'. (B.1.2)
4E(r) =e r - r'lj

In the rationalized MKS system of units the permittivity eo of free space is

qo = 8.854 x 10- 12 
_ -- X 10- 9 F/m. (B.1.3)

367r

Note that the integration of (B.1.2) is carried out over all the charge dis-
tribution (excluding q), hence represents a superposition (at the location r
of q) of the electric field intensities due to elements of charge density at the
positions r'.

A I- U h Ud s an exampp , suppose tlatiLe cargeL
distribution p,(r') is simply a point charge
Q (coulombs) at the origin (Fig. B.1.2);
that is,

p,= Q 6(r'), (B.1.4)

where 6(r') is the deltafunction defined by

qQI,.1__W4Xeo-]-r

0(r')= 0, r' # 0, Fig. B.1.2 Coulomb's law for point
charges Q (at the origin) and q (at

S6(r') dV' = 1. (B.1.5) the position r).

For the charge distribution of (B.1.4) integration of (B.1.2) gives

E(r) = Qr (B.1.6)
4rreo Ir"

Hence the force on the point charge q, due to the point charge Q, is from
(B. 1.1)

f = qQr (B.1.7)
4 ore0 Irl "

This expression takes the familiar form of Coulomb's law for the force of
repulsion between point charges of like sign.

We know that electric charge occurs in integral multiples of the electronic
charge (1.60 x 10- 19 C). The charge density p., introduced with (B.1.2), is
defined as

Pe(r) = lim - I q,, (B.1.8)
av-o 61 i
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where 6V is a small volume enclosing the point r and Z, q, is the algebraic
sum of charges within 6V. The charge density is an example of a continuum
model. To be valid the limit 6V -- 0 must represent a volume large enough to
contain a large number of charges q1,yet small enough to appear infinitesimal
when compared with the significant dimensions of the system being analyzed.
This condition is met in most electromechanical systems.

For example, in copper at a temperature of 200C the number density of
free electrons available for carrying current is approximately 1023 electrons/
cm3. If we consider a typical device dimension to be on the order of 1 cm,
a reasonable size for 6V would be a cube with 1-mm sides. The number of
electrons. in 6 Vwould be 10", which certainly justifies the continuum model.

The force, as expressed by (B.I.1), gives the total force on a single test
charge in vacuum and, as such, is not appropriate for use in a continuum
model of electromechanical systems. It is necessary to use an electricforce
density F (newtons per cubic meter) that can be found by averaging (B.1.1)
over a small volume.

F = lim = lim I qjEj (B.1.9)
av-o 6V 6v-o 6V

Here q, represents all of the charges in 6V, E, is the electric field intensity
acting on the ith charge, and f, is the force on the ith charge. As in the charge
density defined by (B.1.8), the limit of (B.1.9) leads to a continuum model if
the volume 6V can be defined so that it is small compared with macroscopic
dimensions of significance, yet large enough to contain many electronic
charges. Further, there must be a sufficient amount of charge external to the
volume 6V that the electric field experienced by each of the test charges is
essentially determined by the sources of field outside the volume. Fortunately
these requirements are met in almost all physical situations that lead to useful
electromechanical interactions. Because all charges in the volume 6 V ex-
perience essentially the same electric field E, we use the definition of free
charge density given by (B.1.8) to write (B.1.9) as

F = p,E. (B.1.10)

Although the static electric field intensity E can be computed from (B.1.2),
it is often more convenient to state the relation between charge density and
field intensity in the form of Gauss's law:

soEE.n da = Pe dV. (B.1.11)

In this integral law n is the outward-directed unit vector normal to the surface
S, which encloses the volume V. It is not our purpose in this brief review to
show that (B.1.11) is implied by (B.1.2). It is helpful, however, to note that
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Fig. B.1.3 A hypothetical sphere of radius r encloses a charge Q at the origin. The integral
of eoE, over the surface of the sphere is equal to the charge Q enclosed.

in the case of a point charge Q at the origin it predicts the same electric
field intensity (B.1.6) as found by using (B.1.2). For this purpose the surface
S is taken as the sphere of radius r centered at the origin, as shown in Fig.
B.1.3. By symmetry the only component of E is radial (E7 ), and this is con-
stant at a given radius r. Hence (B.1.11) becomes

47rrEEo= Q. (B.1.12)

Here the integration of the charge density over the volume V enclosed by S
is the total charge enclosed Q but can be formally taken by using (B. 1.4) with
the definition provided by (B.1.5). It follows from (B.1.12) that

E, = 4rEr, (B.1.13)

a result that is in agreement with (B.1.6).
Because the volume and surface of integration in (B.1.11) are arbitrary,

the integral equation implies a differential law. This is found by making use
of the divergence theorem*

A . nda = V. AdV (B.1.14)
to write (B.1.11) as

fv(VU .oE - P) dV = 0. (B.1.15)

* For a discussion of the divergence theorem see F. B. Hildebrand, Advanced Calculusfor
Engineers, Prentice-Hall, New York, 1949, p. 312.
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Since the volume of integration is arbitrary, it follows that

V. - E = P. (B.1.16)

From this discussion it should be apparent that this diferential form of
Gauss's law is implied by Coulomb's law, with the electric field intensity
defined as a force per unit charge.

B.1.2 Conservation of Charge

Experimental evidence supports the postulate that electric charge is con-
served. When a negative charge appears (e.g., when an electron is removed
from a previously neutral atom), an equal positive charge also appears (e.g.,
the positive ion remaining when the electron is removed from the atom).

We can make a mathematical statement of this postulate in the following
way. Consider a volume V enclosed by a surface S. If charge is conserved, the
net rate of flow of electric charge out through the surface S must equal the
rate at which the total charge in the volume V decreases. The current density
J (coulombs per square meter-second) is defined as having the direction of
flow of positive charge and a magnitude proportional to the net rate of flow
of charge per unit area. Then the statement of conservation of charge is

dJtnda =- p dV. (B.1.17)
s dt v

Once again it follows from the arbitrary nature of S (which is fixed in space)
and the divergence theorem (B.1.14) that

V . J + P = 0. (B.1.18)
at

It is this equation that is used as a differential statement of conservation of
charge.

To express conservation of charge it has been necessary to introduce a
new continuum variable, the current density J. Further insight into the relation
between this quantity and the charge density p, is obtained by considering a
situation in which two types of charge contribute to the current, charges
q, with velocity v, and charges q_ with velocity v . The current density J,
that results from the flow of positive charge is

J+ = lim I q+iv+i (B.1.19)
r-o 6V i

If we define a charge-average velocity v+ for the positive charges as

I q+iv+i

V+ -= q+ (B.1.20)
i

~_~~LII__LYIII___I~ -^------11I- ~
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and the density p, of positive charges from (B.1.8) as

P+ = lim 1 1 q+,, (B.1.21)
r--o06V

we can write the current density of (B.1.19) as

J+ = pv+. (B.1.22)

Similar definitions for the charge-average velocity v_ and charge density p_ of

negative charges yields the component of current density

J_ = p_v_. (B.1.23)

The total current density J is the vector sum of the two components

J = J+ + J_. (B.1.24)

Now consider the situation of a material that contains charge densities p,
and p_ which have charge-average velocities v+ and v_ with respect to the
material. Assume further that the material is moving with a velocity v with
respect to an observer who is to measure the current. The net average
velocities of positive and negative charges as seen by the observer are v+ + v
and v + v, respectively. The current density measured by the observer is
then from (B.1.24) J = (pv+ + p_v_) + pv, (B.1.25)

where the net charge density p, is given by

Pe = P+ + P-. (B.1.26)

The first term of (B.1.25) is a net flow of charge with respect to the material
and is normally called a conduction current. (It is often described by Ohm's
law.) The last term represents the transport of net charge and is conven-
tionally called a convection current. It is crucial that net flow of charge be
distinguished from flow of net charge. The net charge may be zero but a
current can still be accounted for by the conduction term. This is the case in
metallic conductors.

B.1.3 Ampire's Law, Magnetic Fields and Forces

The magneticflux density B is defined to express the force on a current
element i dl placed in the vicinity of other currents. This element is shown in
Fig. B.1.4 at the position r. Then, according to Amp6re's experiments, the
force is given byf = i dl x B, (B.1.27)
where

BP=o J x (r - r')4 7 I - r(B.1.28)
4w rv (r -r' 3



Appendix B

Fig. B.1.4 A distribution of current density J(r') produces a force on the current element
idl which is represented in terms of the magnetic flux density B by (B.1.27) and (B.1.28).

Hence the flux density at the position r of the current element i dl is the super-
position of fields produced by currents at the positions r'. In this expression
the permeability of free space go is

Pl0 = 47r x 10- ' H/m. (B.1.29)

As an example, suppose that the distribution of current density J is com-
posed of a current I (amperes) in the z direction and along the z-axis, as shown
in Fig. B.1.5. The magnetic flux density at the position r can be computed

Fig. B.1.5 A current I (amperes) along the z-axis produces a magnetic field at the position
r of the current element idl.

_·
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from (B.1.28), which for this case reduces to*

B = (r - zi) dz (B.1.30)
47r r - z'i(

Here the coordinate of the source current I is z', as shown in Fig. B.1.5,
whereas the coordinate r that designates the position at which B is evaluated
can be written in terms of the cylindrical coordinates (r, 0, z). Hence (B.1.30)
becomes

B = oIio +S sin P-/(z - z')2 + r'  ,B -- - - ' r dz', (B.1.31)
47 J. [(z - z')

2 
+ r±]2

where, from Fig. B.1.5, sin y = r/• (z - z') 2 + r2 . Integration on z' gives
the magnetic flux density

B =- ,Ii. (B.1.32)
2nr

It is often more convenient to relate the magnetic flux density to the current
density J by the integral of Ampere's law for static fields, which takes the form

cB . dl = uo J . n da. (B.1.33)

Here C is a closed contour of line integration and S is a surface enclosed by
C. We wish to present a review of electromagnetic theory and therefore we
shall not embark on a proof that (B.1.33) is implied by (B.1.28). Our purpose
is served by recognizing that (B.1.33) can also be used to predict the flux
density in the situation in Fig. B.1.5. By symmetry we recognize that B is
azimuthally directed and independent of 0 and z. Then, if we select the
contour C in a plane z equals constant and at a radius r, as shown in Fig.
B.1.5, (B.1.33) becomes

27TrB o = p~o. (B.1.34)

Solution of this expression for B, gives the same result as predicted by (B.1.28).
[See (B.1.32).]

The contour C and surface S in (B.1.33) are arbitrary and therefore the
equation can be cast in a differential form. This is done by using Stokes'
theoremt,

SA.dl- = fn.(V x A)da, (B.1.35)

* Unit vectors in the coordinate directions are designated by i. Thus iz is a unit vector in
the z-direction.
f See F. B. Hildebrand, Advanced Calculus for Engineers, Prentice-Hall, New York, 1949,
p. 318.
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to write (B.1.33) as

(Vx B - o0 J)'nda = 0, (B.1.36)

from which the differential form of Amphre's law follows as

V x B = pJ. (B.1.37)

So far the assumption has been made that the current J is constant in time.
Maxwell's contribution consisted in recognizing that if the sources p, and
J (hence the fields E and B) are time varying the displacement current o8E/fat
must be included on the right-hand side of (B.1.37). Thus for dynamic fields
Amphre's law takes the form

V x B = o0J + uo- (B.1.38)
at

This alteration of (B.1.37) is necessary if conservation of charge expressed
by (B.1.18) is to be satisfied. Because the divergence of any vector having the
form V x A is zero, the divergence of (B.1.38) becomes

V J + oE) = 0. (B.1.39)

Then, if we recall that p. is related to E by Gauss's law (B.1.16), the con-
servation of charge equation (B.1.18) follows. The displacement current in
(B. 1.38) accounts for the rate of change of p. in (B. 1.18).

We shall make considerable use of Ampere's law, as expressed by (B.1.38),
with Maxwell's displacement current included. From our discussion it is
clear that the static form of this law results from the force law of interaction
between currents. The magnetic flux density is defined in terms of the force
produced on a current element. Here we are interested primarily in a con-
tinuum description of the force, hence require (B.1.27) expressed as a force
density. With the same continuum restrictions implied in writing (B.I.10),
we write the magnetic force density (newtons per cubic meter) as

F = J x B. (B.1.40)

In view of our remarks it should be clear that this force density is not some-
thing that we have derived but rather arises from the definition of the flux
density B. Further remarks on this subject are found in Section 8.1.

B.1.4 Faraday's Law of Induction and the Potential Difference

Two extensions of static field theory are required to describe dynamic fields.
One of these, the introduction of the displacement current in Amp6re's
law, was discussed in the preceding section. Much of the significance of this

_~____ I_
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generalization stems from the apparent fact that an electric field can lead to
the generation of a magnetic field. As a second extension of static field theory,
Faraday discovered that, conversely, time-varying magnetic fields can lead
to the generation of electric fields.

Faraday'slaw of induction can be written in the integral form

fE dl = -d B n da, (B.1.41)

where again C is a contour that encloses the surface S. The contour and
surface are arbitrary; hence it follows from Stokes' theorem (B.1.35) that
Faraday's law has the differential form

aB
V x E = (B.1.42)at

Note that in the static case this expression reduces to V x E = 0, which is,
in addition to Gauss's law, a condition on the static electric field. That this
further equation is consistent with the electric field, as given by (B.1.2), is
not shown in this review. Clearly the one differential equation represented by
Gauss's law could not alone determine the three components of E.

In regions in which the magnetic field is either static or negligible the electric
field intensity can be derived as the gradient of a scalar potential 0:

E = -- VO. (B.1.43)

This is true because the curl of the gradient is zero and (B.1.42) is satisfied.
The difference in potential between two points, say a and b, is a measure of
the line integral of E, for

E* dl---- V. dl = O.a- b. (B.1.44)

The potential difference Oa - #b is referred to as the voltage of point a with
respect to b. If there is no magnetic field B in the region of interest, the
integral of (B.1.44) is independent of path. In the presence of a time-varying
magnetic field the integral of E around a closed path is not in general zero,
and if a potential is defined in some region by (B. 1.43) the path of integration
will in part determine the measured potential difference.

The physical situation shown in Fig. B.1.6 serves as an illustration of the
implications of Faraday's law. A magnetic circuit is excited by a current
source I(t) as shown. Because the magnetic material is highly permeable, the
induced flux density B(t) is confined to the cross section A which links a
circuit formed by resistances Ra and R, in series. A cross-sectional view of the
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I(t)

Highly permeable
, magnetic

material

C.C.C

+/(d) I Area A \
Va Ra e B(t) 1Rb Vb

(b)

Fig. B.1.6 (a) A magnetic circuit excited by I(t) so that flux AB(t) links the resistive loop
(b)a cross-sectional view of the loop showing connection of the voltmeters.

circuit is shown in Fig. B.1.6b, in which high impedance voltmeters va and
Vb are shown connected to the same nodes. Under the assumption that no
current is drawn by the voltmeters, and given the flux density B(t), we wish
to compute the voltages that would be indicated by v, and b,.

Three contours ofintegration C are defined in Fig. B. 1.6b and are used with
Faraday's integral law (B.1.41). The integral of E around the contour C, is
equal to the drop in potential across both of the resistances, which carry the
same current i. Hence, since this path encloses a total flux AB(t), we have

i(Ra + Rb) - [AB(t)]. (B.1.45)
dt

The paths of integration Ca and Cb do not enclose a magnetic flux; hence for
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these paths (B.1.41) gives

v,=--iRa - R- d [AB(t)] for C.,
R, + R, dt

(B.1.46)

Vb = iRb =- R b d [AB(t)] for Cb, (B.1.47)
Ra + Rb dt

where the current i is evaluated by using (B. 1.45). The most obvious attribute
of this result is that although the voltmeters are connected to the same nodes
they do not indicate the same values. In the presence of the magnetic induction
the contour of the voltmeter leads plays a role in determining the voltage
indicated.

The situation shown in Fig. B. 1.6 can be thought of as a transformer with a
single turn secondary. With this in mind, it is clear that Faraday's law plays
an essential role in electrical technology.

The divergence of an arbitrary vector V x A is zero. Hence the divergence
of (B. 1.42) shows that the divergence of B is constant. This fact also follows
from (B.1.28), from which it can be shown that this constant is zero. Hence
an additional differential equation for B is

V B = 0. (B.1.48)

Integration of this expression over an arbitrary volume V and use of the
divergence theorem (B. 1.14) gives

B - n da = 0. (B.1.49)

This integral law makes more apparent the fact that there can be no net
magnetic flux emanating from a given region of space.

B.2 MAXWELL'S EQUATIONS

The generality and far-reaching applications of the laws of electricity and
magnetism are not immediately obvious; for example, the law of induction
given by (B. 1.42) was recognized by Faraday as true when applied to a con-
ducting circuit. The fact that (B.1.42) has significance even in regions of
space unoccupied by matter is a generalization that is crucial to the theory of
electricity and magnetism. We can summarize the differential laws introduced
in Section B.1 as

V .Eo• = pe,

V - J + p__- 0,at
aEoEVx B = PoJ + Io
at

aBVxE=--
at'

V. B =0.

(B.2.1)

(B.2.2)

(B.2.3)

(B.2.4)

(B.2.5)
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Taken together, these laws are called Maxwell's equationsin honor of the
man who was instrumental in recognizing that they have a more general
significance than any one of the experiments from which they originate. For
example, we can think of a time-varying magnetic flux that induces an electric
field according to (B.2.4) even in the absence of a material circuit. Similarly,
(B.2.3) is taken to mean that even in regions of space in which there is no
circuit, hence J = 0, a time-varying electric field leads to an induced magnetic
flux density B.

The coupling between time-varying electric and magnetic fields, as pre-
dicted by (B.2.1 to B.2.5), accounts for the existence of electromagnetic
waves, whether they be radio or light waves or even gamma rays. As we might
guess from the electromechanical origins of electromagnetic theory, the
propagation of electromagnetic waves is of secondary importance in the
study of most electromechanical phenomena. This does not mean that
electromechanical interactions are confined to frequencies that are low
compared with radio frequencies. Indeed, electromechanical interactions of
practical significance extend into the gigahertz range of frequencies.

To take a mature approach to the study of electromechanics it is necessary
that we discriminate at the outset between essential and nonessential aspects
of interactions between fields and media. This makes it possible to embark
immediately on a study of nontrivial interactions. An essential purpose of
this section is the motivation of approximations used in this book.

Although electromagnetic waves usually represent an unimportant con-
sideration in electromechanics and are not discussed here in depth, they are
important to an understanding of the quasi-static approximations that are
introduced in Section B.2.2. Hence we begin with a brief simplified discussion
of electromagnetic waves.

B.2.1 Electromagnetic Waves

Consider fields predicted by (B.2.3) and (B.2.4) in a region of free space in
which J = 0. In particular, we confine our interest to situations in which the
fields depend only on (x, t) (the fields are one-dimensional) and write the
y-component of (B.2.3) and the z-component of (B.2.4)

aB aE,
ax Poco at , (B.2.6)

aE___ = _ B. (B.2.7)
ax at

This pair of equations, which make evident the coupling between the dynamic
electric and magnetic fields, is sufficient to determine the field components
B. and E,. In fact, if we take the time derivative of (B.2.6) and use the resulting
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expression to eliminate B, from the derivative with respect to x of (B.2.7),
we obtain

a2E, 1 a2E, - (B.2.8)
ax 2 C2 at 2 '

where

1
c 3 x 108 (m/sec).

This equation for E, is called the wave equation because it has solutions in the
form of

E,(x, t) = E,(x - ct) + E_(x + ct). (B.2.9)

That this is true may be verified by substituting (B.2.9) into (B.2.8). Hence
solutions for E, can be analyzed into components E1 and E_ that represent
waves traveling, respectively, in the +x- and -x-directions with the velocity
of light c, given by (B.2.8). The prediction of electromagnetic wave propaga-
tion is a salient feature of Maxwell's equations. It results, as is evident from
the derivation, because time-varying magnetic fields can induce electric
fields [Faraday's law, (B.2.7)] while at the same time dynamic electric fields
induce magnetic fields [Ampire's law with the displacement current included
(B.2.6)]. It is also evident from the derivation that if we break this two-way
coupling by leaving out the displacement current or omitting the magnetic
induction term electromagnetic waves are not predicted.

Electromechanical interactions are usually not appreciably affected by the
propagational character of electromagnetic fields because the velocity of
propagation c is very large. Suppose that we are concerned with a system
whose largest dimension is I. The time l/c required for the propagation of a
wave between extremes of the system is usually short compared with charac-
teristic dynamical times of interest; for example, in a device in which I = 0.3 m
the time l/c equals 10- 1 sec. If we were concerned with electromechanical
motions with a time constant of a microsecond (which is extremely short
for a device characterized by 30 cm), it would be reasonable to ignore the
wave propagation. In the absence of other dynamic effects this could be done
by assuming that the fields were established everywhere within the device
instantaneously.

Even though it is clear that the propagation of electromagnetic waves has
nothing to do with the dynamics of interest, it is not obvious how to go about
simplifying Maxwell's equations to remove this feature of the dynamics. A
pair of particular examples will help to clarify approximations made in the
next section. These examples, which are considered simultaneously so that
they can be placed in contrast, are shown in Fig. B.2.1.
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Fig. B.2.1 Perfectly conducting plane-parallel electrodes driven at x = -- : (a) i(t) =
io cos wt; (b) v(t) = v, cos wt.

A pair of perfectly conducting parallel plates has the spacing s which is
much smaller than the x-z dimensions I and d. The plates are excited at
x = -1 by

a current source a voltage source

i(t) = io cos wt (amperes). (B.2.10a) v(t) = vo cos wot (volts). (B.2. 10b)

At x = 0, the plates are terminated in

a perfectly conducting short circuit an open circuit.
plate.

If we assume that the spacing s is small enough to warrant ignoring the
effects of fringing and that the driving sources at x = -1 are distributed
along the z-axis, the one-dimensional fields B, and E, predicted by (B.2.6)
and (B.2.7) represent the fields between the plates. Hence we can think of
the current and voltage sources as exciting electromagnetic waves that propa-
gate along the x-axis between the plates. The driving sources impose con-
ditions on the fields at x = -1. They are obtained by

integrating (B.1.33) around the
contour C (Fig. B.2.2a) which en-
closes the upper plate adjacent to the
current source. (The surface S en-
closed by C is very thin so that neg-
ligible displacement current links the
loop).

B,(-1, t) = -ouK = -

integrating the electric field between
(a) and (b) in Fig. B.2.2b to relate
the potential difference of the volt-
age source to the electric field
intensity E,(-l, t).

oi(t) 0 /E, dy = -sE,(- 1, t) = v(t).

(B.2.11a) (B.2.1 1b)

_~_111·___ 
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Surface current
K= ild A/m

S y v(t) C

x=-1 =
(a) x = -

(b)

Fig. B.2.2 Boundary conditions for the systems in Fig. B.2.1

Similar conditions used at x = 0 give the boundary conditions

E,(O, t) = 0 (B.2.12a) I B,(0, t) = 0 (B.2.12b)

It is not our purpose in this chapter to become involved with the formalism
of solving the wave equation [or (B.2.6) and (B.2.7)] subject to the boundary
conditions given by (B.2.11) and (B.2.12). There is ample opportunity to
solve boundary value problems for electromechanical systems in the text,
and the particular problem at hand forms a topic within the context of trans-
mission lines and waveguides. For our present purposes, it suffices to guess
solutions to these equations that will satisfy the appropriate boundary con-
ditions. Then direct substitution into the differential equations will show that
we have made the right choice.

E sin ot sin (cox/c)Ey = -- o
deoc cos (ol/c)

(B.2.13a)

B = --Poiocos cot cos(ow/c)C

d cos (o/llc)

(B.2.14a)

vo cos ot cos (oxZ/c)
s cos (ool/c)

(B.2.13b)

B =-- vo sin wt sin (o.z/c)

cs cos (c,l/c)

(B.2.14b)

Note that at x = -1 the boundary conditions B.2.11 are satisfied, whereas at
x = 0 the conditions of (B.2.12) are met. One way to show that Maxwell's
equations are satisfied also (aside from direct substitution) is to use tri-
gometric identities* to rewrite these standing wave solutions as the super-
position of two traveling waves in the form of (B.2.9). Our solutions are
sinusoidal, steady-state solutions, so that with the understanding that the
amplitude of the field at any point along the x-axis is varying sinusoidally with
time we can obtain an impression of the dynamics by plotting the instantaneous
amplitudes, as shown in Fig. B.2.3. In general, the fields have the sinusoidal
distribution along the x-axis of a standing wave. From (B.2.13 to B.2.14) it

* For example in (B.2.13a) sin wt sin (cox/c) E- {{cos [w(t - x/c)] - cos [w(t + x/c)]}.
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n
uit

X=--

Fig. B.2.3 Amplitude of the electric field intensity and magnetic flux density along the
x-axis of the parallel-plate structures shown in Fig. B.2.1 For these plots ol/c = 31r/4.

is clear that as a function of time the electric field reaches its maximum am-
plitude when B, = 0 and vice versa. Hence the amplitudes of E, and B,
shown in Fig. B.2.3 are for different instants of time. The fields near x = 0
do not in general have the same phase as those excited at x = -1. If, however,
we can make the approximation that times of interest (which in this case are
l/o) are much longer than the propagation time I/c,

1l/c wl
=- <1.

1/w C
(B.2.15)

The sine functions can then be approximated by their arguments (which are
small compared with unity) and the cosine functions are essentially equal to
unity. Hence, when (B.2.15) is satisfied, the field distributions (B.2.13) and
(B.2.14) become

i, sin cot IN
deoc

Bz,-• _oio cos wt
d

(B.2.16a) E, -- - cos ct, (B.2.16b)

(B.2.17a) B - V sin ct 1•)s (B.2.17b)

The distribution of field amplitudes in this limit is shown in Fig. B.2.4. The
most significant feature of the limiting solutions is that

the magnetic field between the
short-circuited plates has the same
distribution as if the excitation
current were static.

the electric field between the open-
circuited plates has the same dis-
tribution as if the excitation voltage
were constant.

I 1__1_
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x= -L x= -1

Fig. B.2.4 The distribution of field amplitudes between the parallel plates of Fig. B.2.1 in
the limit in which (wl/c) << 1.

Note that the fields as they are excited at x = -I retain the same phase every-
where between the plates. This simply reflects the fact that according to the
approximate equations there is no time lag between an excitation at x = --
and the field response elsewhere along the x-axis. It is in this limit that the
ideas of circuit theory are applicable, for if we now compute

the voltage v(t) at x = -- I

v(t) = -sE,(--, t) (B.2.18a)

we obtain the terminal equation for
an inductance

d
v = L- (i, cos rt),

dt
(B.2.19a)

where the inductance L is

L= slot.
d

the current i(t) at x = -I
d

110

(B.2.18b)

we obtain the terminal equation for
a capacitance

d
i(t) = C - (vo cos wt), (B.2.19b)

dt
where the capacitance C is

C = dl
S

A comparison of the examples will be useful for motivating many of the
somewhat subtle ideas introduced in the main body of the book. One of the
most important points that we can make here is that even though we have
solved the same pair of Maxwell's equations (B.2.6) and (B.2.7) for both
examples, subject to the same approximation that collc << 1 (B.2.15), we
have been led to very different physical results. The difference between these
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two examples arises from the boundary condition at x = 0. In the case of

a short circuit a static excitation
leads to a uniform magnetic field
but no electric field. The electric
field is generated by Faraday's law
because the magnetic field is in fact
only quasi-static and varies slowly
with time.

an open circuit a static excitation
results in a uniform electric field
but no magnetic field. The magnetic
field is induced by the displacement
current in Ampere's law because
the electric field is, in fact, only
quasi-static and varies slowly with
time.

B.2.2 Quasi-Static Electromagnetic Field Equations

As long as we are not interested in phenomena related to the propagation
of electromagnetic waves, it is helpful to recognize that most electromechanical
situations are in one of two classes, exemplified by the two cases shown in
Fig. B.2.1. In the situation in which the plates are short-circuited together
(Fig. B.2.1a) the limit wl/c <K 1 means that the displacement current is of
negligible importance. A characteristic of this system is that with a static
excitation a large current results; hence there is a large static magnetic field.
For this reason it exemplifies a magnetic field system. By contrast, in the case
in which the plates are open-circuited, as shown in Fig. B.2.1b, a static
excitation gives rise to a static electric field but no magnetic field. This
example exemplifies an electric field system, in which the magnetic induction
of Faraday's law is of negligible importance. To emphasize these points
consider how we can use these approximations at the outset to obtain the
approximate solutions of (B.2.19). Suppose that the excitations in Fig. B.2.1
were static. The fields between the plates are then independent of x and given

E, = 0,

Bz = Po
d

V
(B.2.20a) E, = - -

(B.2.21a) B, = 0.

(B.2.20b)

(B.2.21b)

Now suppose that the fields vary slowly with time [the systems are quasi-
static in the sense of a condition like (B.2.15)]. Then i and v in these equations
are time-varying, hence

B. is a function of time.
From Faraday's law of induction as
expressed by (B.2.7)

E= d, di (B.2.22a)
ax d dt

E, is a function of time.
From Amp&re's law, as expressed
by (B.2.6)

S _ o dv (B.2.22b)
ax s dt

-CI~-~·-----l~.
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Now the right-hand side of each of these equations is independent of z;
hence they can be integrated on x. At the same time, we recognize that

E,(O, t) = 0, (B.2.23a) B,(0, t) = 0, (B.2.23b)

so that integration gives

E~ = L ox di (B.2.24a) Bý = j°osx do (B.2.24b)
d dt s dt

Recall how the terminal voltage and current are related to these field quantities
(B.2.18) and these equations become

di dv
v(t) = L d i (B.2.25a) i(t) = C - , (B.2.25b)

dt ' dt'

where again the inductance L and capacitance C are defined as following
(B.2.19). Hence making these approximations at the outset has led to the
same approximate results as those found in the preceding section by computing
the exact solution and taking the limits appropriate to wl/c << 1.

The simple example in Fig. B.2.1 makes it plausible that Maxwell's
equations can be written in two quasi-static limits appropriate to the analysis
of two major classes of electromechanical interaction:

Magnetic Field Systems

V x B = •soJ, (B.2.26a)

aB
Vx E = - (B.2.27a)

at'
V - B = 0, (B.2.28a)

V - J = 0, (B.2.29a)

Electric Field Systems

aE
V x B = /uoJ + •o0 oE L-, (B.2.26b)

V x E = 0, (B.2.27b)

V - EE = Pe, (B.2.28b)

V.J + P.,= 0. (B.2.29b)
at

Here the displacement current has been omitted from Ampere's law in the
magnetic field system, whereas the magnetic induction has been dropped from
Faraday's law in the electric field system. Note that if the displacement
current is dropped from (B.2.26a) the charge density must be omitted from
the conservation of charge equation (B.2.29a) because the latter expression
is the divergence of (B.2.26a).

We have not included Guass's law for the charge density in the magnetic
field system or the divergence equation for B in the electric field system
because in the respective situations these expressions are of no interest. In
fact, only the divergence of (B.2.26b) is of interest in determining the dynamics
of most electric field systems and that is (B.2.29b).
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It must be emphasized that the examples of Fig. B.2.1 serve only to motivate
the approximations introduced by (B.2.26 to B.2.29). The two systems of
equations have a wide range of application. The recognition that a given
physical situation can be described as a magnetic field system, as opposed to
an electric field system, requires judgment based on experience. A major
intent of this book is to establish that kind of experience.

In the cases of Fig. B.2.1 we could establish the accuracy of the approxi-
mate equations by calculating effects induced by the omitted terms; for
example, in the magnetic field system of Fig. B.2.1a we ignored the dis-
placement current to obtain the quasi-static solution of (B.2.21a) and
(B.2.24a). We could now compute the correction Bc6 to the quasi-static
magnetic field induced by the displacement current by using (B.2.6), with E
given by (B.2.24a). This produces

aBC 1 o2%ox daiB__. u,2Ex d2i (B.2.30)
ax d dt2"

Because the right-hand side of this expression is a known function of z,
it can be integrated. The constant of integration is evaluated by recognizing
that the quasi-static solution satisfies the driving condition at x = -1;
hence the correction field B.C must be zero there and

B,= 2 - 12) d2 i (B.2.31)
2d dt2

Now, to determine the error incurred in ignoring this field we take the ratio
of its largest value (at x = 0) to the quasi-static field of (B.2.21a):

IBc•I = 1j2 Id2i/dt 2i (B.2.32)
IB.I 2c2  jil

If this ratio is small compared with 1, the quasi-static solution is adequate.
It is evident that in this case the ratio depends on the time rate of change of
the excitation. In Section B.2.1, in which i = i, cos cot, (B.2.32) becomes

IBSI 1 2
=- - <- 1, (B.2.33)

which is essentially the same condition given by (B.2.15).
Once the fields have been determined by using either the magnetic field or

the electric field representation it is possible to calculate the effects of the
omitted terms. This procedure results in a condition characterized by (B.2.33).
For this example, if the device were 30 cm long and driven at 1 MHz (this

___· ~
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is an extremely high frequency for anything 30 cm long to respond to electro-
mechanically) (B.2.33) becomes

(B.2.34)
1 1\c x21- =27r2x 10-68( 1
2 2 3 x 108

and the quasi-static approximation is extremely good.
It is significant that the magnetic and electric field systems can be thought

of in terms of their respective modes of electromagnetic energy storage. In
the quasi-static systems the energy that can be attributed to the electro-
magnetic fields is stored either in the magnetic or electric field. This can be
seen by using (B.2.26 to B.2.27) to derive Poynting's theorem for the con-
servation of electromagnetic energy. If the equations in (B.2.27) are multi-
plied by B/do and subtracted from the equations in (B.2.26) multiplied by
E/lo, it follows that

E B
-VxB ---. VxE=E.J
go go

B aB
+-.-. (B.2.35a)

Po at

E B-. VxB--.VxE=E.J
go Mo

+ EoE . . (B.2.35b)
at

Then, because of a vector identity,* these equations take the form

+ - -!.B (B.2.36a) + coE. E). (B.2.36b)
at 2 go at 2

Now, if we integrate these equations over a volume V enclosed by a surface
S, the divergence theorem (B.1.14) gives

ExB-. nda = E.JdV+ a wdV,
s Po v at v

1B-Bw -
2 Wo
2 gzo

1
(B.2.38a) w = - oE E.

2

(B.2.37)

(B.2.38b)

The term on the left in (B.2.37) (including the minus sign) can be interpreted
as the flux of energy into the volume V through the surface S. This energy
is either dissipated within the volume V, as expressed by the first term on
the right, or stored in the volume V, as expressed by the second term. Hence

* V. (A x C) = C V x A - A -V x C.

where
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(w) can be interpreted as an electromagnetic energy density. The electro-
magnetic energy of the magnetic field system is stored in the magnetic field
alone. Similarly, an electric field system is one in which the electromagnetic
energy is stored in the electric field.

The familiar elements of electrical circuit theory illustrate the division of
interactions into those defined as magnetic field systems and those defined
as electric field systems. From the discussion in this and the preceding section
it is evident that the short-circuited plates in Fig. B.2.1 constitute an inductor,
whereas the open-circuited plates can be represented as a capacitor. This
fact is the basis for the development of electromechanical interactions
undertaken in Chapter 2. From this specific example it is evident that the
magnetic field system includes interactions in which we can define lumped-
parameter variables like the inductance, but it is not so evident that this model
also describes the magnetohydrodynamic interactions of a fluid and some
plasmas with a magnetic field and the magnetoelastic interactions of solids
in a magnetic field, even including electromechanical aspects of microwave
magnetics.

Similarly, the electric field system includes not only the electromechanics
of systems that can be modeled in terms of circuit concepts like the capaci-
tance but ferroelectric interactions between solids and electric fields, the
electrohydrodynamics of a variety of liquids and slightly ionized gases in an
electric field, and even the most important oscillations of an electron beam.
Of course, if we are interested in the propagation of an electromagnetic
wave through an ionospheric plasma or through the slightly ionized wake
of a space vehicle, the full set of Maxwell's equations must be used.

There are situations in which the propagational aspects of the electro-
magnetic fields are not of interest, yet neither of the quasi-static systems is
appropriate. This is illustrated by short-circuiting the parallel plates of Fig.
B.2.1 at x = 0 by a resistive sheet. A static current or voltage applied to the
plates at x = -1 then leads to both electric and magnetic fields between
the plates. If the resistance of the sheet is small, the electric field between the
plates is also small, and use of the exact field equations would show that
we are still justified in ignoring the displacement current. In this case the
inductance of Fig. B.2.1a is in series with a resistance. In the opposite ex-
treme, if the resistance of the resistive sheet were very high, we would still be
justified in ignoring the magnetic induction of Faraday's law. The situation
shown in Fig. B.2. Ib would then be modeled by a capacitance shunted by a
resistance. The obvious questions are, when do we make a transition from the
first case to the second and why is not this intermediate case of more interest
in electromechanics?

The purpose of practical electromechanical systems is either the conversion
of an electromagnetic excitation into a force that can perform work on a

____·____··_ II
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mechanical system or the reciprocal generation of electromagnetic energy
from a force of mechanical origin. From (B.1.10) and (B.1.40) there are two
fundamental types of electromagnetic force. Suppose that we are interested
in producing a force of electrical origin on the upper of the two plates in
Fig. B.2.1. We have the option of imposing a large current to interact with
its induced magnetic field or of using a large potential to create an electric
field that would interact with induced charges on the upper plate. Clearly,
we are not going to impose a large potential on the plates if they are termin-
ated in a small resistance or attempt to drive a large current through the
plates with an essentially open circuit at x = 0. The electrical dissipation in
both cases would be prohibitively large. More likely, if we intended to use the
force J x B, we would make the resistance as small as possible to minimize
the dissipation of electric power and approach the case of Fig. B.2.1a. The
essentially open circuit shown in Fig. B.2.1b would make it possible to use a
large potential to create a significant force of the type peE without undue
power dissipation. In the intermediate case the terminating resistance could
be adjusted to make the electric and magnetic forces about equal. As a
practical matter, however, the resulting device would probably melt before
it served any useful electromechanical function. The power dissipated in
the termination resistance would be a significant fraction of any electric
power converted to mechanical form.*

The energy densities of (B.2.38) provide one means of determining when
the problem shown in Fig. B.2.1 (but with a resistive sheet terminating the
plates at x = 0) is intermediate between a magnetic and an electric field
system. In the intermediate case the energy densities are equal

1 lB.B
SEE E = B B (B.2.39)
2 2 Po

Now, if the resistive sheet has a total resistance of R, then from (B.2.18a)
applied at x = 0

Es = -iR. (B.2.40)
The current can be evaluated in terms of the magnetic field at x = 0 by using
(B.2.18b): Eys = B, dR (B.2.41)

Po

Substitution of the electric field, as found from this expression into (B.2.39),
gives

_ (RdJ = 1 B,o0B (R)= - - (B.2.42)
2 sIo 2 Po

* It is interesting that for this particular intermediate case the electric force tends to pull
the plates together, whereas the magnetic force tends to push them apart. Hence,
because the two forces are equal in magnitude, they just cancel.
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Hence, if the energy densities are equal, we obtain the following relation
among the physical parameters of the system:

dR
(o .(B.2.43)

It would be a digression to pursue this point here, but (B.2.43) is the con-
dition that must be satisfied if an electromagnetic wave launched between the
plates at x = -- l is to be absorbed, without reflection, by the resistive sheet*;
that is, the intermediate case is one in which all the power fed into the system,
regardless of the frequency or time constant, is dissipated by the resistive
sheet.

B.3 MACROSCOPIC MODELS AND CONSTITUENT RELATIONS

When solids, liquids, and gases are placed in electromagnetic fields, they
influence the field distribution. This is another way of saying that the force
of interaction between charges or between currents is influenced by the
presence of media. The effect is not surprising because the materials are
comprised of charged particles.

Problems of physical significance can usually be decomposed into parts
with widely differing scales. At the molecular or submolecular level we may
be concerned with the dynamics of individual charges or of the atoms or
molecules to which they are attached. These systems tend to have extremely
small dimensions when compared with the size of a physical device. On
the macroscopic scale we are not interested in the detailed behavior of the
microscopic constituents of a material but rather only a knowledge of the
average behavior of variables, since only these averages are observable on a
macroscopic scale. The charge and current densities introduced in Section B. I
are examples of such variables, hence it is a macroscopic picture of fields and
media that we require here.

There are three major ways in which media influence macroscopic electro-
magnetic fields. Hence the following sections undertake a review of mag-
netization, polarization, and conduction in common materials.

B.3.1 Magnetization

The macroscopic motions of electrons, even though associated with
individual atoms or molecules, account for aggregates of charge and current

* The propagation of an electromagnetic wave on structures of this type is discussed in
texts concerned with transmission lines or TEM wave guide modes. For a discussion of
this matching problem see R. B. Adler, L. J. Chu, and R. M. Fano, Electromagnetic
Energy Transmission and Radiation, Wiley, New York, 1960, p. 111, or S. Ramo, J. R.
Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, Wiley, New
York, p. 27.
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(when viewed at the macroscopic level) that induce electric and magnetic
fields. These field sources are not directly accessible; for example, the equiv-
alent currents within the material cannot be circulated through an external
circuit. The most obvious sources of magnetic field that are inaccessible in
this sense are those responsible for the field of a permanent magnet. The
earliest observations on magnetic fields involved the lodestone, a primitive
form of the permanent magnet. Early investigators such as Oersted found
that magnetic fields produced by a permanent magnet are equivalent to
those induced by a circulating current. In the formulation of electromagnetic
theory we must distinguish between fields due to sources within the material
and those from applied currents simply because it is only the latter sources
that can be controlled directly. Hence we divide the source currents into

free currents (with the density J,) and magnetization currents (with the
density Jm). Amphre's law then takes the form

V x ( = Jm + JP. (B.3.1)

By convention it is also helpful to attribute a fraction of the field induced by
these currents to the magnetization currents in the material. Hence (B.3.1) is
written as

V x - M = Jf, (B.3.2)

where the magnetization density M is defined by

V x M = J,. (B.3.3)

Up to this point in this chapter it has been necessary to introduce only two
field quantities to account for interactions between charges and between
currents. To account for the macroscopic properties of media we have now
introduced a new field quantity, the magnetization density M, and in the
next section similar considerations concerning electric polarization of media
lead to the introduction of the polarization density P. It is therefore apparent
that macroscopic field theory is formulated in terms of four field variables.
In our discussion these variables have been E, B, M, and P. An alternative
representation of the fields introduces the magneticfield intensity H, in our
development defined as

H = B _M. (B.3.4)

From our definition it is clear that we could just as well deal with B and H
as the macroscopic magnetic field vectors rather than with B and M. This is
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particularly appealing, for then (B.3.2) takes the simple form

V x H = J,. (B.3.5)

When the source quantities J, and M are specified independently, the
magnetic field intensity H (or magnetic flux density B) can be found from the
quasi-static magnetic field equations. A given constant magnetization density
corresponds to the case of the permanent magnet. In most cases, however,
the source quantities are functions of the field vectors, and these funtional
relations, called constituent relations, must be known before the problems
can be solved. The constituent relations represent the constraints placed on
the fields by the internal physics of the media being considered. Hence it is
these relations that make it possible to separate the microscopic problem
from the macroscopic one of interest here.

The simplest form of constituent relation for a magnetic material arises
when it can be considered electrically linear and isotropic. Then the per-
meability I is constant in the relation

B = pH. (B.3.6)

The material is isotropic because B is collinear with H and a particular
constant (a) times H, regardless of the direction of H. A material that
is homogeneous and isotropic will in addition have a permeability p that does
not vary with position in the material. Another way of expressing (B.3.6)
is to define a magnetic susceptibility X. (dimensionless) such that

M = XZ,H, (B.3.7)
where

P = Po(l + Xm). (B.3.8)
Magnetic materials are commonly found with B not a linear function of H
and the constitutive law takes the general form

B = B(H). (B.3.9)

We deal with some problems involving materials of this type, but with few
exceptions confine our examples to situations in which B is a single-valued
function of H. In certain magnetic materials in some applications the B-H
curve must include hysteresis and (B.3.9) is not single-valued.*

The differential equations for a magnetic field system in the presence of
moving magnetized media are summarized in Table 1.2.

B.3.2 Polarization

The force between a charge distribution and a test charge is observed to
change if a dielectric material is brought near the region occupied by the test

* G. R. Slemon, MagnetoelectricDevices, Wiley, New York, 1966, p. 115.
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charge. Like the test charge, the charged particles which compose the di-
electric material experience forces due to the applied field. Although these
charges remain identified with the molecules of the material, their positions
can be distorted incrementally by the electric force and thus lead to a polariza-
tion of the molecules.

The basic sources of the electric field are charges. Hence it is natural to
define a polarizationcharge density p, as a source of a fraction of the electric
field which can be attributed to the inaccessible sources within the media.
Thus Gauss's law (B.1.16) is written

V - EoE = Pf + P,, (B.3.10)

where the free charge density p, resides on conducting electrodes and other
parts of the system capable of supporting conduction currents. The free
charges do not remain attached to individual molecules but rather can be
conducted from one point to another in the system.

In view of the form taken by Gauss's law, it is convenient to identify a
field induced by the polarization charges by writing (B.3.10) as

V. (EOE + P) = pf, (B.3.11)

where the polarizationdensity P is related to the polarization charge density
by

pV = -V - P. (B.3.12)

As in Section B.3.1, it is convenient to define a new vector field that serves
as an alternative to P in formulating the electrodynamics of polarized media.
This is the electric displacement D, defined as

D = E0E + P (B.3.13)

In terms of this field, Gauss's law for electric fields (B.3.11) becomes

V. D = pf. (B.3.14)

The simple form of this expression makes it desirable to use D rather than P
in the formulation of problems.

If a polarization charge model is to be used to account for the effects of
polarizable media on electric fields, we must recognize that the motion of
these charges can lead to a current. In fact, now that two classes of charge
density have been identified we must distinguish between two classes of current
density. The free current density J, accounts for the conservation of free
charge so that (B.1.18) can be written as

V - J, + p_ = 0. (B.3.15)at
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In view of (B.3.11), this expression becomes

V J,+ tV (eoE + P) = 0. (B.3.16)at
Now, if we write Ampire's law (B.2.26b) as

VX + J + oE, (B.3.17)

where J, is a current density due to the motion of polarization charges, the
divergence of (B.3.17) must give (B.3.16). Therefore

V .J,+ (-V- P) = 0. (B.3.18)
at

which from (B.3.12) is an expression for the conservation of polarization
charge. This expression does not fully determine the polarization current
density J,, because in general we could write

BP
J, = + Vx A, (B.3.19)at

where A is an arbitrary vector, and still satisfy (B.3.18). At this point we
could derive the quantity A (which would turn out to be P x v, where v is the
velocity of the polarized medium). It is important, however, to recognize that
this represents an unnecessary digression. In the electric field system the mag-
netic field appears in only one of the equations of motion-Ampire's law. It
does not appear in (B.2.27b) to (B.2.29b), nor will it appear in any constitutive
law used in this book. For this reason the magnetic field serves simply as a
quantity to be calculated once the electromechanical problem has been solved.
We might just as well lump the quantity A with the magnetic field in writing
Amptre's law. In fact, if we are consistent, the magnetic field intensity H
can be defined as given by

aD
V x H = J, + - (B.3.20)

at
with no loss of physical significance. In an electric field system the magnetic
field is an alternative representation of the current density J,. A review of the
quasi-static solutions for the system in Fig. B.2.1b illustrates this point.

In some materials (ferroelectrics) the polarization density P is constant.
In most common dielectrics, however, the polarization density is a function of
E. The simplest constituent relation for a dielectric is that of linear and
isotropic material,

P = o-XE, (B.3.21)
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where X, is the dielectric susceptibility (dimensionless) that may be a function
of space but not of E. For such a material we define the permittivity e as

S= o(1 + Xe). (B.3.22)

and then write the relation between D and E as [see (B.3.13)]

D = EE. (B.3.23)

This mathematical model of polarizable material is used extensively in this
book.

The differential equations for the electric field system, in the presence of
moving polarized media, are summarized in Table 1.2.

B.3.3 Electrical Conduction

In both magnetic and electric field systems the conduction process accounts
for the free current density J, in a fixed conductor. The most common model
for this process is appropriate in the case of an isotropic, linear, conducting
medium which, when stationary, has the constituent relation (often called
Ohm's law)

J, = aE. (B.3.24)

Although (B.3.24) is the most widely used mathematical model of the con-
duction process, there are important electromechanical systems for which it
is not adequate. This becomes apparent if we attempt to derive (B.3.24),
an exercise that will contribute to our physical understanding of Ohm's law.

In many materials the conduction process involves two types of charge
carrier (say, ions and electrons). As discussed in Section B.1.2, a macro-
scopic model for this case would recognize the existence of free charge den-
sities p+ and p_ with charge average velocities v, and v_, respectively. Then

J, = pv, + p_v_. (B.3.25)

The problem of relating the free current density to the electric field intensity
is thus a problem in electromechanics in which the velocities of the particles
carrying the free charge must be related to the electric fields that apply forces
to the charges.

The charge carriers have finite mass and thus accelerate when subjected to a
force. In this case there are forces on the positive and negative carriers,
respectively, given by (B.1.10) (here we assume that effects from a magnetic
field are ignorable):

F+ = p+E, (B.3.26)

(B.3.27)F_ = p_E.
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As the charge carriers move, their motion is retarded by collisions with other
particles. On a macroscopic basis the retarding force of collisions can be
thought of as a viscous damping force that is proportional to velocity. Hence
we can picture the conduction process in two extremes. With no collisions
between particles the electric force densities of (B.3.26 and B.3.27) continually
accelerate the charges, for the only retarding forces are due to acceleration
expressed by Newton's law. In the opposite extreme a charge carrier suffers
collisions with other particles so frequently that its average velocity quickly
reaches a limiting value, which in view of (B.3.26 and B.3.27) is proportional
to the applied electric field. It is in this second limiting case that Ohm's law
assumes physical significance. By convention mobilities y, and It_ which
relate these limiting velocities to the field E are defined

v = ýP+E, (B.3.28)

v = /_E. (B.3.29)

In terms of these quantities, (B.3.25) becomes

Jf = (p+,a+ + p __)E. (B.3.30)

It is important to recognize that it is only when the collisions between carriers
and other particles dominate the accelerating effect of the electric field that
the conduction current takes on a form in which it is dependent on the in-
stantaneous value of E. Fortunately, (B.3.30) is valid in a wide range of
physical situations. In fact, in a metallic conductor the number of charge
carriers is extremely high and very nearly independent of the applied electric
field. The current carriers in most metals are the electrons, which are detached
from atoms held in the lattice structure of the solid. Therefore the negatively
charged electrons move in a background field of positive charge and, to a good
approximation, p, = -p_. Then (B.3.30) becomes

J = aE, (B.3.31)

where the conductivity is defined as

p+(P+ - _). (B.3.32)

The usefulness of the conductivity as a parameter stems from the fact that
both the number of charges available for conduction and the net mobility
(essentially that of the electrons) are constant. This makes the conductivity
essentially independent of the electric field, as assumed in (B.3.24).*

* We assume here that the temperature remains constant. A worthwhile qualitative descrip-
tion of conduction processes in solids is given in J. M. Ham and G. R. Slemon, Scientific
Basis of Electrical Engineering, Wiley, New York, 1961, p. 453.
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In some types of material (notably slightly ionized gases) which behave
like insulators, the conduction process cannot be described simply by Ohm's
law. In such materials the densities of charge carriers and even the mobilities
may vary strongly with electric field intensity.

B.4 INTEGRAL LAWS

The extensive use of circuit theory bears testimony to the usefulness of the
laws of electricity and magnetism in integral form. Physical situations that
would be far too involved to describe profitably in terms of field theory have
a lucid and convenient representation in terms of circuits. Conventional
circuit elements are deduced from the integral forms of the field equations.
The description of lumped-parameter electromechanical systems, as under-
taken in Chapter 2, requires that we generalize the integral laws to
include time-varying surfaces and contours of integration. Hence it is natural
that we conclude this appendix with a discussion of the integral laws.

B.4.1 Magnetic Field Systems

Faraday's law of induction, as given by (B.1.42), has the differential form

0B
Vx E = (B.4.1)

at
This expression can be integrated over a surface S enclosed by the contour
C. Then, according to Stokes's theorem,

Edl = -- n da. (B.4.2)t is 8at
Now, if S and C are fixed in space, the time derivative on the right can be
taken either before or after the surface integral of B • n is evaluated. Note

that RB . n da is only a function of time. For this reason (B.1.41) could be

written with the total derivative outside the surface integral. It is implied in
the integral equation (B.1.41) that S is fixed in space.

Figure B.4.1 shows an example in which it is desirable to be able to use
(B.4.2), with S and C varying in position as a function of time. The contour
C is a rectangular loop that encloses a surface S which makes an angle 0(t)
with the horizontal. Although the induction law is not limited to this case, the
loop could comprise a one-turn coil, in which case it is desirable to be able
to use (B.4.2) with C fixed to the coil. The integral law of induction would be
much more useful if it could be written in the form

E' . dl = - A B -n da. (B.4.3)
c dt fs
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B(t)

-e- x

Fig. B.4.1 Contour C enclosing a surface S which varies as a function of time. The
rectangular loop links no magnetic flux when 0 = 0, r, . . . .

In this form the quantity on the right is the negative time rate of change of
the flux linked by the contour C, whereas E' is interpreted as the electric field
measured in the moving frame of the loop. An integral law of induction in
the form of (B.4.3) is essential to the lumped-parameter description of
magnetic field systems. At this point we have two choices. We can accept
(B.4.3) as an empirical r~sult of Faraday's original investigations or we can
show mathematically that (B.4.2) takes the form of (B.4.3) if

E'= E + vx B, (B.4.4)

where v is the velocity of dl at the point of integration. In any case this topic
is pursued in Chapter 6 to clarify the significance of electric and magnetic
fields measured in different frames of reference.

The mathematical connection between (B.4.2) and (B.4.3) is made by
using the integral theorem

d t A n da = M + (V -A )v n da + (Axv). dl, (B.4.5)
dt JSJf , L[at j] JOc

where v is the velocity of S and C and in the case of (B.4.3), A -- B. Before
we embark on a proof of this theorem, an example will clarify its significance.

Example B.4.1. The coil shown in Fig. B.4.1 rotates with the angular deflection O(t) in
a uniform magnetic flux density B(t), directed as shown. We wish to compute the rate of

change of the flux linked by the coil in two ways: first by computing B -n da and takingchangetakin
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its derivative [the left-hand side of (B.4.5)], then by using the surface and contour integra-
tions indicated on the right-hand side of (B.4.5). This illustrates how the identity allows us
to carry out the surface integration before rather than after the time derivative is taken.
From Fig. B.4.1 we observe that

LB n da = -B 0(t)2adsin 0, (a)

so that the first calculation gives

JfB •nda = -- 2adsin0 d -- Bo2adcos0 (b)Wat-d" (b)

To evaluate the right-hand side of (B.4.5) observe that V •B = 0 and [from (a)]

-f. nda = -2adsin 0dB . (c)
S at dt

The quantity B x v is collinear with the axis of rotation in Fig. B.4.1; hence there is no
contribution to the line integral along the pivoted ends of the loop. Because both the
velocity v = i4a (dO/dt) and line elements dl are reversed in going from the upper to the
lower horizontal contours, the line integral reduces to twice the value from the upper
contour.

dO

BBx v.dl= -2Boadcos 0 (d)

From (c) and (d) it follows that the right-hand side of (B.4.5) also gives (b). Thus, at least
for this example, (B.4.5) provides alternative ways of evaluating the time rate of change
of the flux linked by the contour C.

The integral theorem of (B.4.5) can be derived by considering the de-
forming surface S shown at two instants of time in Fig. B.4.2. In the incre-
mental time interval At the surface S moves from S, to S 2, and therefore by

-v At x dl

Fig. B.4.2 When t = t, the surface S enclosed by the contour C is as indicated by S, and
C1. By the time t = t + At this surface has moved to S2, where it is enclosed by the contour
C2.
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definition

-d A.n da = lim -t A t n da - 1 A n da . (B.4.6)
dt s -o At s2 _Ats l It

Here we have been careful to show that when the integral on S, is evaluated
t = t + At, in contrast to the integration on S, which is carried out when
t = t.

The expression on the right in (B.4.6) can be evaluated at a given instant
in time by using the divergence theorem (B.1.14) to write

fv.'AdV f A 'nda -- A nda -At A x dl (B.4.7)

for the volume V traced out by the surface S in the time At. Here we have
used the fact that -v At x dl is equivalent to a surface element n da on the
surface traced out by the contour C in going from C, to C2 in Fig. B.4.2.
To use (B.4.7) we make three observations. First, as At -- 0,

fA +A .nda_ A -nda + A At.nda +-. (B.4.8)
2t+t s2 f at t

Second, it is a vector identity that

A. vx dl = Ax v. dl. (B.4.9)

Third, an incremental volume dV swept out by the surface da is essentially
the base times the perpendicular height or

dV = Atv * n da. (B.4.10)

From these observations (B.4.7) becomes

At (V - A)v n da - A n da At • - n da

- sA n da -At eA x v. dl. (B.4.11)

This expression can be solved for the quantity on the right in (B.4.6) to give

d A.n da = lim[ (V A)v + a- ] da + A x xdl.
dt f- ft

(B.4.12)

The limit of this expression produces the required relation (B.4.5).
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Use of (B.4.5) to express the right-hand side of (B.4.2) results in

f-. nda=- Bdtnda- V.B)v n da - B v)dl.
sg t dt (aV. n fcB

(B.4.13)

Because V . B = 0, (B.4.2) then reduces to (B.4.3), with E' given by (B.4.4).
The integral laws for the magnetic field system are summarized in Table 1.2

at the end of Chapter 1. In these equations surfaces and contours of
integration can, in general, be time-varying.

B.4.2 Electric Field System

Although the integral form of Faraday's law can be taken as an empirical
fact, we require (B.4.5) to write Ampere's law in integral form for an electric
field system. If we integrate (B.3.20) over a surface S enclosed by a contour C,
by Stokes's theorem it becomes

aDH - dl = fJ .n da . n da. (B.4.14)

As with the induction law for the magnetic field system, this expression can
be generalized to include the possibility of a deforming surface S by using
(B.4.13) with B -- D to rewrite the last term. If, in addition, we use (B.3.14)
to replace V - D with p,, (B.4.14) becomes

H' dl = J'- n da + f D. n da, (B.4.15)

where

H'= H - vx D, (B.4.16)

Jf = Jf - pv. (B.4.17)

The fields H' and Ji can be interpreted as the magnetic field intensity and free
current density measured in the moving frame of the deforming contour.
The significance of these field transformations is discussed in Chapter 6.
Certainly the relationship between Jf (the current density in a frame moving
with a velocity v) and the current density J, (measured in a fixed frame),
as given by (B.4.17), is physically reasonable. The free charge density appears
as a current in the negative v-direction when viewed from a frame moving at
the velocity v. If was reasoning of this kind that led to (B. 1.25).

As we have emphasized, it is the divergence of Amphre's differential law
that assumes the greatest importance in electric field systems, for it accounts
for conservation of charge. The integral form of the conservation of charge



Appendix B

Fig. B.4.3 The sum of two surfaces S1 and S2 "spliced" together at the contour to enclose
the volume V.

equation, including the possibility of a deforming surface of integration, is
obtained by using (B.4.15). For this purpose integrations are considered over
two deforming surfaces, S, and S2, as shown in Fig. B.4.3. These surfaces
are chosen so that they are enclosed by the same contour C. Hence, taken
together, S, and S2 enclose a volume V.

Integration of (B.4.15) over each surface gives

H' . dl== J. n da + D *n da. (B.4.18)

H' . dl = JfJ'•n da +d D n da. (B.4.19)

Now, if n is defined so that it is directed out of the volume V on each surface,
the line integral enclosing S, will be the negative of that enclosing S2. Then
the sum of (B.4.18 and B.4.19) gives the desired integral form of the conser-
vation of charge equation':

J . n da + d1 dfV= 0. (B.4.20)

In writing this expression we have used Gauss's theorem and (B.3.14) to
show the explicit dependence of the current density through the deforming
surface on the enclosed charge density.

The integral laws for electric field systems are summarized in Table 1.2 at
the end of Chapter 1.

B.5 RECOMMENDED READING

The following texts treat the subject of electrodynamics and provide a
comprehensive development of the fundamental laws of electricity and mag-
netism.
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R. M. Fano, L. J. Chu, and R. B. Adler, ElectromagneticFields, Energy, and
Forces, Wiley, New York, 1960; J. D. Jackson, Classical Electrodynamics,
Wiley, New York, 1962: S. Ramo, J. R. Whinnery, and T. Van Duzer,
Fields and Waves in Communication Electronics, Wiley, New York, 1965;
W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism,
Addison-Wesley, Reading, Mass., 1956; J. A. Stratton, Electromagnetic
Theory, McGraw-Hill, New York, 1941.

Many questions arise in the study of the effects of moving media on electric
and magnetic fields concerning the macroscopic representation of polarized
and magnetized media; for example, in this appendix we introduced the
fields E and B as the quantities defined by the force law. Then P and M (or
D and H) were introduced to account fof the effects of polarization and
magnetization. Hence the effect of the medium was accounted for by equiv-
alent polarization charges p, and magnetization currents J,. Other represen-
tations can be used in which a different pair of fundamental vectors is taken,
as defined by the force law (say, E and H), and in which the effects of media
are accounted for by an equivalent magnetic charge instead of an equivalent
current. If we are consistent in using the alternative formulations of the field
equations, they predict the same physical results, including the force on
magnetized and polarized media. For a complete discussion of these matters
see P. Penfield, and H. Haus, Electrodynamics of Moving Media, M.I.T.
Press, Cambridge, Mass., 1967.
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Appendix C

SUMMARY OF PARTS I AND II

AND USEFUL THEOREMS

IDENTITIES

AxB.C= AB x C,

Ax (B x C)= B(A-C)- C(A.B)

V( + V) = vO + vP,

V. (A + B) = V .A + V .B,

Vx (A + B)=Vx A-+ V x B,

V(o,) = 0 Vv, + v' V•,

V. p(A)= A. Vy + pV. -A,

V.(A x B)= B.V x A - A V x B,

V . V = V0,

V *V x A=0,

VxV = 0,

V x (V x A)= V(V -A) - V 2A,

(V x A)' x A = (A V)A - JV(A - A),

V(A B) = (A - V)B + (B . V)A + Ax (V x B) + B x (V x A)

V x (#A)= V# x A + OV x A,

V x (A x B) = A(V -B) - B(V - A) + (B. V)A - (A. V)B.

Cl

· _I ___·_________



THEOREMS

V. - dl = 5 - 4,.

Divergence theorem A • n da = fV A dV

Stokes's theorem AA dl = (V x A) . n da nd

b
CA



Appendix D

GLOSSARY OF

COMMONLY USED SYMBOLS

Section references indicate where symbols of a given significance are
introduced; grouped symbols are accompanied by their respective references.
The absence of a section reference indicates that a symbol has been applied
for a variety of purposes. Nomenclature used in examples is not included.

Symbol Meaning Section

A
Ai

(A+, A-)

A,
a
a, (ae, as)
ab

(a, b, c)
a,

B, Br, B,

B, Bi, Bo
Bi
(Br, Bra, Brb, Brm)

[Bf, (Bf)av]
b
b
C

C, (C., Cb), Co
C
C
(C",C-)

cross-sectional area
coefficient in differential equation
complex amplitudes of components of nth

mode
cross-sectional area of armature conductor
spacing of pole faces in magnetic circuit
phase velocity of acoustic related waves
Alfv6n velocity
Lagrangian coordinates
constant coefficient in differential equation
instantaneous acceleration of point p fixed

in material
damping constant for linear, angular and

square law dampers
magnetic flux density
induced flux density
radial components of air-gap flux

densities
radial flux density due to field current
width of pole faces in magnetic circuit
half thickness of thin beam
contour of integration
capacitance
coefficient in boundary condition
the curl of the displacement
designation of characteristic lines

5.1.1

9.2.1
6.4.1
8.5.1
13.2.1, 11.4.1
12.2.3
11.1
5.1.1

2.2.1c

2.2.1b, 4.1.1, 5.2.2
1.1.1a, 8.1, 6.4.2
7.0

4.1.4
6.4.1
8.5
11.4.2b
1.1.2a
2.1.2, 7.2.1a, 5.2.1
9.1.1
11.4
9.1.1



Glossary of Commonly Used Symbols

Meaning

Cv,
Cv
D
d
da
df,

dl
dT,
dV
E
E

E, Eo
E,E

Ei

e11 , eij

eij
F
F

F

Fo
f
f

f
f'

ff
G
G
G
G

g
g, g
(H, H,, H,, Hz)
h

I, I, (I, 1,s), it

(i, i1 , i,2 .... ik),
(iar, ias, ibr, ibs),
ia, (ia, ib, ic),
(if, it), (ir, i)

specific heat capacity at constant pressure
specific heat capacity at constant volume
electric displacement
length
elemental area
total elemental force on material in rigid

body
elemental line segment
torque on elemental volume of material
elemental volume
constant of motion
Young's modulus or the modulus of

elasticity
electric field intensity
magnitude of armature voltage generated

by field current in a synchronous
machine

induced electric field intensity
strain tensor
strain-rate tensor
magnetomotive force (mmf)
force density
complex amplitude off(t)
amplitude of sinusoidal driving force
equilibrium tension of string
driving function
force

arbitrary scalar function
scalar function in moving coordinate

system
three-dimensional surface
integration constant
a constant
shear modulus of elasticity
speed coefficient
conductance
air-gap length
acceleration of gravity
magnetic field intensity
specific enthalpy
electrical current

electrical current

13.1.2
13.1.2
1.1.1a

1.1.2a

2.2.1c
1.1.2a
2.2.1c
1.1.2b
5.2.1

9.1
l.1.la, 5.1.2d

4.1.6a
7.0
9.1, 11.2
14.1.1a
13.2.2
1.1.1a

5.1.1
9.1.3
9.2
5.1.1
2.2.1, 2.2.1c, 3.1,

5.1.2a, 3.1.2b, 8.1,
9.1

6.1

6.1
6.2
11.4.2a
5.1.2c
11.2.2
6.4.1
3.1
5.2.1
5.1.2c, 12.1.3
1.1.1a
13.1.2
10.4.3, 12.2.1a, 4.1.2,

6.4.1
2.1, 4.1.3, 6.4.1, 4.1.7,

6.4.1, 4.1

Symbol Section

~
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Symbol

is

(i", ,,Pi,), (i1,i,1id
J,Jf

iJ, hrn

K
K,K1
K
K
k, ke, (k,,kI)
k
k,
k.
(L, L1, L2), (La, L),

L,, (Lo, L2),
(L7,L,,La), L,5

L
1

1,1,1,,
M
M
M
M
M
M,M,
M
m
N
N

n
n

n

P
P
P
P
P

Pa, P,,PMPr

Q
q, q,, q,

Meaning

unit vector perpendicular to area of
integration

unit vector normal to surface of
integration

unit vectors in coordinate directions
current density
moment of inertia
products of inertia
V-1
loading factor
surface current density
linear or torsional spring constant
induced surface current density
wavenumber
summation index
maximum coefficient of coupling
nth eigenvalue
inductance

length of incremental line segment
value of relative displacement for which

spring force is zero
length
Hartmann number
mass of one mole of gas in kilograms
Mach number
mass
number of mechanical terminal pairs
mutual inductance
magnetization density
mass/unit length of string
number of electrical terminal pairs
number of turns
number density of ions
integer
unit normal vector
polarization density
power
number of pole pairs in a machine
power per unit area
pressure
power

electric charge
electric charge

radius

Section

6.2.1

6.2.1
2.2.1c
7.0, 1.1.1a
5.1.2b, 4.1.1, 2.2.1c
2.2.1ec
4.1.6a
13.2.2
7.0, 1.1.1a
2.2.1a
7.0
7.1.3, 10.1.3, 10.0
2.1.1
4.1.6b
9.2
2.1.1, 6.4.1, 2.1.1,

4.2.1, 4.1.1, 4.2.4

6.2.1
2.2.1a

14.2.2
13.1.2
13.2.1
2.2.1c
2.1.1
4.1.1, 4.2.4
1.l.la
9.2
2.1.1
5.2.2
12.3.1
7.1.1
1.1.2
1.1.1a
12.2.1a
4.1.8
14.2.1
5.1.2d and 12.1.4
4.1.6a, 4.1.6b, 4.1.2,

4.1.6b
7.2.1a
1.1.3 and 2.1.2, 8.1,

2.1.2



Glossary of Commonly Used Symbols

Meaning

R, Ra, Rb, R1, Rr, R,
(R, R,)
R,
Rm
r
r

r
rm
S
S
S
S
S,

(s, SmTr)
sT

T
T
T, T, TP, Tem, Tm,

To,T,

T

T•n

To,T
T

T,

t

tI

U
U

u
U

Uo(x - Zo)

u_1 (t)

V
v, v 7,v,, V8

resistance
gas constant
electric Reynolds number
magnetic Reynolds number
radial coordinate
position vector of material
position vector in moving reference frame
center of mass of rigid body
reciprocal modulus of elasticity
surface of integration
normalized frequency
membrane tension
transverse force/unit length acting on string
complex frequency
slip
ith root of characteristic equation, a

natural frequency
period of oscillation
temperature
torque

surface force
mechanical stress tensor
the component of the stress-tensor in the

mth-direction on a cartesian surface with
a normal vector in the nth-direction

constant of coulomb damping
initial stress distribution on thin rod
longitudinal stress on a thin rod
transverse force per unit area on

membrane
transverse force per unit area acting on

thin beam
time
time measured in moving reference frame
gravitational potential
longitudinal steady velocity of string or

membrane
internal energy per unit mass
surface coordinate
unit impulse at x = xo
transverse deflection of wire in x-direction
unit step occurring at t = 0
velocity
volume
voltage
potential energy

13.1.2
7.0
7.0

2.2.1c
6.1
2.2.1c
11.5.2c
1.1.2a
7.2.4
9.2
9.2
5.1.1
4.1.6b
5.1.1

5.2.1
13.1.2
2.2.1c, 5.1.2b, 3.1.1,

4.1.6b, 4.1.1, 6.4.1,
6.4.1

8.4
13.1.2

8.1
4.1.1
9.1.1
9.1.1

9.2

11.4.2b
1.1.1
6.1
12.1.3

10.2
13.1.1
11.3
9.2.1
10.4.3
5.1.2b
7.0, 13.2.3
1.1.2

5.2.1

Symbol Section
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Symbol

v, v
(v, v, ... , v)
VI', (Va, Vb, Ve),

Vy, Voc, V

vn

Vo

Vr

v,

V

V

(WI, WM)

(W,, WM, W')

W"

w

w

w'

X

(x, 1 , X 2 , .. )

x,

(XI, X2 , x3), (x, Y, z)
(z', y', z')
(W, Y)

(c, j)
(2, #)
At
a
cc

V, o, y'

Ao
Ar

As

6( )
, 61, 60

6
&

Meaning Section

velocity
voltage
voltage

velocity of surface in normal direction 6.2.1
initial velocity distribution on thin rod 9.1.1
phase velocity 9.1.1 an
relative velocity of inertial reference frames 6.1
V•'fm for a string under tensionf and 10.1.1

having mass/unit length m
longitudinal material velocity on thin rod 9.1.1
transverse deflection of wire in y-direction 10.4.3
energy stored in electromechanical

coupling 3.1.1
coenergy stored in electromechanical 3.1.2b

coupling
hybrid energy function 5.2.1
width 5.2.2
energy density 11.5.2c
coenergy density 8.5
equilibrium position 5.1.2a
displacement of mechanical node 2.1.1
dependent variable 5.1.1
particular solution of differential equation 5.1.1
cartesian coordinates 8.1, 6.1
cartesian coordinates of moving frame 6.1
constants along C- and C- characteristics,

respectively 9.1.1
see (10.2.20) or (10.2.27)
transverse wavenumber 11.4.3
angles used to define shear strain 11.2
constant angles 4.1.6b
space decay parameter 7.1.4
damping constant 5.1.2b
equilibrium angle of torsional spring 2.2.1a
ratio of specific heats 13.1.2
piezoelectric constant 11.5.2c
angular position
slope excitation of string 10.2.1b
amplitude of sinusoidal slope excitation 10.2.1b
distance between unstressed material

points 11.2.1a
distance between stressed positions of

material points 11.2.1a
incremental change in ( ) 8.5
displacement of elastic material 11.1, 9.
thickness of incremental volume element 6.2.1
torque angle 4.1.6a

d 10.2

1, 11.4.2a

_II__·_



Glossary of Commonly Used Symbols

Meaning

(6k, 6-)

Eo

0, Oi, Om
0

0
0
Om
(A,Al,A2 ...., Ak)

AI,

A

A

p1
PL,(I+, P-)

Ps

ýd

((+, •-)go"

P•
PS

a,
ao
as
a,

7, 
T
d

Kronecker delta
wave components traveling in the

-x-directions
linear permittivity
permittivity of free space
efficiency of an induction motor
second coefficient of viscosity
angular displacement
power factor angle; phase angle between

current and voltage
equilibrium angle

angular velocity of armature
maximum angular deflection
magnetic flux linkage

Lam6 constant for elastic material
wavelength
linear permeability
mobility
coefficient of viscosity
coefficient of dynamic friction
permeability of free space
coefficient of static friction
Poisson's ratio for elastic material
damping frequency
continuum displacement
initial deflection of string
amplitude of sinusoidal driving deflection
nth eigenfunctions
amplitudes of forward and backward

traveling waves
initial velocity of string
mass density
free charge density
surface mass density
surface of discontinuity
conductivity
free surface charge density
surface mass density of membrane
surface charge density
surface conductivity
surface charge density
surface traction
diffusion time constant
relaxation time

8.1

9.1.1
1.1.1b
1.1.la
4.1.6b
14.1.1c
2.1.1, 3.1.1, 5.2.1

4.1.6a
5.2.1
6.4.1
5.2.1
2.1.1, 6.4.1, 4.1.7,

4.1.3, 4.1

11.2.3
7.1.4
1.1.la
12.3.1, 1.1.1b
14.1.1
2.2.1b
1.1.1a
2.2.1b
11.2.2
10.1.4
8.5
9.2
9.2
9.2.1b

9.2
9.2
2.2.1c
1.1.1a
11.3
6.2
1.1.1a
1.1.1a
9.2
7.2.3
1.1.1a
7.2.3
8.2.1
7.1.1, 7.1.2a
7.2.1a

Symbol Section
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Symbol Meaning Section

To electrical time constant 5.2.2
'rn time for air gap to close 5.2.2

-o time constant 5.1.3
T- traversal time 7.1.2a

electric potential 7.2
magnetic flux 2.1.1
cylindrical coordinate 2.1.1
potential for H when Jf = 0 8.5.2
flow potential 12.2

Xe electric susceptibility 1.1.1b
Xm magnetic susceptibility 1.1.1a
yV the divergence of the material

displacement 11.4
V angle defined in Fig. 6.4.2 6.4.1
, angular position in the air gap measured

from stator winding (a) magnetic axis 4.1.4
Y electromagnetic force potential 12.2
VY angular deflection of wire 10.4.3
C equilibrium rotational speed 5.1.2b
2 rotation vector in elastic material 11.2.1a

real part of eigenfrequency (10.1.47) 10.1.4
0, (Wr, O,) radian frequency of electrical excitation 4.1.6a, 4.1.2
m natural angular frequency (Im s) 5.1.2b
to, Wm  angular velocity 2.2.1c, 4.1.2
Ce cutoff frequency for evanescent waves 10.1.2
emn driving frequency 9.2

,n  nth eigenfrequency 9.2
eo  natural angular frequency 5.1.3

(Cr,, s) real and imaginary parts of ow 10.0
V nabla 6.1
Vs surface divergence 6.2.1

__X___I__I__·_·_ll·__1_111-·---



Appendix E

SUMMARY OF PARTS I AND II
AND USEFUL THEOREMS

IDENTITIES

Ax B.C= AB x C,

A x (B x C) = B(A. C) - C(A . B)

V(o + y) = V + Vy,

V. (A + B) = V A + V B,

V x (A + B)= V x A + V x B,

V(ov) = V P + v vo,

V-(VA)= A -VyB + V . A,

V.(A x B)= B.V x A - A V x B,

v. v- = Vý,

V-V x A= 0,

V x V =0,

V x (V x A) = V(V . A) - V2 A,

(V x A) x A = (A . V)A - lV(A . A),

V(A . B)= (A . V)B + (B - V)A + A x (V x B) + B x (V x A)

V x (OA)= Vo x A + OV x A,

V x (A x B) = A(V . B) - B(V . A) + (B . V)A - (A . V)B.

El



THEOREMS

bi
b

Výk - Al = r

Divergence theorem
sA .nda=JV.AdV

Stokes's theorem AA dl =(V x A) . n da
ý,C S(Vx ~daI



Table 1.2 Summary of Quasi-Static Electromagnetic Equations

Differential Equations Integral Equations

Magnetic field system

Electric field system

V x H = J,

V. J= 0

aB
VXE= -

Tt

VX E =0

V.D= Pf

V.J= at

aD
VXH=J 1 +

(1.1.1)

(1.1.11)

(1.1.12)

(1.1.14)

(1.1.15)

H - dl = J" - n da

BB.nda = 0

SJ, -n da = 0

E'.dl =- f B . n da

where E' = E + v X B

EgE.dl= 0

DD'nda=fvpp dV

Jf'-nda d vpdV

H'.dlT = J .n da + D -n da

where J' = J= - pfv

H'=H- v XD

(1.1.20)

(1.1.21)

(1.1.22)

(1.1.23)

(1.1.24)

(1.1.25)

(1.1.26)

(1.1.27)



Table 2.1 Summary of Terminal Variables and Terminal Relations

Magnetic field system Electric field system

- V

C

Definition of Terminal Variables

Flux Charge

A = B.nda qk= f pdV

Current Voltage

ik ý f -n'da Vk = fE di

Terminal Conditions

dAk dqk
Sdt dt

iA, = 4.(i ... iN; geometry) qk = qk(v 1• • • vv; geometry)

i, = ik(. 1 AN; geometry) vk = vk(ql1 " "qN; geometry)



Table 3.1 Energy Relations for an Electromechanical Coupling Network with N Electrical
and M Mechanical Terminal Pairs*

Magnetic Field Systems Electric Field Systems

Conservation of Energy

N 31 N 31
dWm = J ij dAj - f e dxj (a) dWe -= v dq, - ' f e d-j (b)

j=1 j=1 j=1 j=1

N M NV M

dW2 = I A di, + I fe dx- (c) dWi = I qj dv + I y L dx3  (d)
3=1 i=1 j=1 t=1

Forces of Electric Origin,j = 1, ... M

e= -a ANl. Ax ... ) (e-) hf = aWe(ql.... q; x 1 . . x) (f)
axj x(e je

f M 1 t) ((a ..... _ VN ; l ...X1, x,1 )

at(i .x. (g) he =. (h)

Relation of Energy to Coenergy

N N

Wm + w" = ij (i) W e + We' = =vq (j)
3=1 3=1

Energy and Coenergy from Electrical Terminal Relations

Wm=. d (k) We = v(ql.  . , q 0 ; x1 .  x) dq ()
j= ( , 2'0 0;4) ( W f- ,q,0,...1 0;xj,...m)dq (1)

N i N P't
Wm i,... ij-1, 1, 0i,...,0; xI,.... x) di (mi ) W = q(vl,... I, vj1', 0 ... 0; x...x) dv (n)

j=1 0 o=1

* The mechanical variables f and x, can be regarded as thejth force and displacement or thejth torque T, and angular displacement Q0.



Table 6.1 Differential Equations, Transformations, and Boundary Conditions for Quasi-static Electromagnetic Systems with
Moving Media

Differential Equations Transformations Boundary Conditions

V x H = J (1.1.1) H' = H (6.1.35) n X(Ha -Hb) = K (6.2.14)

V. B =O0 (1.1.2) B' = B (6.1.37) n.(Ba --Bb) = 0 (6.2.7)
Magnetic V. = 0 (1.1.3) J = (6.1.36) n. (J, -_Jfb) + V, . K7 = 0 (6.2.9)

systems aB
Vx E = - (1.1.5) E' = E + vr x B (6.1.38) n X (Ea - Eb) = v, (Ba - Bb) (6.2.22)

B = p0 (H + M) (1.1.4) M' = M (6.1.39)

V x E = 0 (1.1.11) E' = E (6.1.54) n X (Ea - Eb) = 0 (6.2.31)

V.D = p, (1.1.12) D' = D (6.1.55) n.(D a - Db)=rr (6.2.33)

P = Pf (6.1.56)

Electric . J = -a (1.1.14) J = Jf - pfvr (6.1.58) n* (Jf a -_ Jb) + V.,- Kf = V((pfa fb) _ " (6.2.36)
field at
systems aD

V X H = Jf+ - (1.1.15) H'= H - v x D (6.1.57) n X (Ha - Hb) = K, + van X [n x (Da - Db)] (6.2.38)

D = eoE + P (1.1.13) P' = P (6.1.59)



Appendix F

GLOSSARY OF
COMMONLY USED SYMBOLS

Section references indicate where symbols of a given significance are
introduced; grouped symbols are accompanied by their respective references.
The absence of a section reference indicates that a symbol has been applied
for a variety of purposes. Nomenclature used in examples is not included.

Symbol Meaning Section

A
Ai
(At, A;;)

A,
a
a, (a.,a,)
ab

(a, b, c)
a1
a,

B, Br, B,

B, Bo,B0

(Br, Bra, Brb, Br,)

(Br., (Bri)av]
b
b
C
C, (Ca, Cb), Co
C
C
(C+,C-)

cross-sectional area
coefficient in differential equation
complex amplitudes of components of nth

mode
cross-sectional area of armature conductor
spacing of pole faces in magnetic circuit
phase velocity of acoustic related waves
Alfv6n velocity
Lagrangian coordinates
constant coefficient in differential equation
instantaneous acceleration of point p fixed

in material
damping constant for linear, angular and

square law dampers
magnetic flux density
induced flux density
radial components of air-gap flux

densities
radial flux density due to field current
width of pole faces in magnetic circuit
half thickness of thin beam
contour of integration
capacitance
coefficient in boundary condition
the curl of the displacement
designation of characteristic lines

5.1.1

9.2.1
6.4.1
8.5.1
13.2.1, 11.4.1
12.2.3
11.1
5.1.1

2.2.1c

2.2.1b, 4.1.1, 5.2.2
1.1.1a, 8.1, 6.4.2
7.0

4.1.4
6.4.1
8.5
11.4.2b
1.1.2a
2.1.2, 7.2.1a, 5.2.1
9.1.1
11.4
9.1.1



Glossary of Commonly Used Symbols

Meaning

C,

c,

D
d
da
df,

dl
dT,,
dV
E
E

E, Eo
E,

Et
ell, eil

Fij
F
F

f
fPFofff,ifff ,f,.fi

f
ff
G
G
G
G
g
g,g
(H, ,., H,, H,)
h
I, 1,(it, I),lf

(i, il , i4 .... , ik),
(ia,, ia,br, i0,
ia,(iYa,ib,id,(if, id),Or,, id)

specific heat capacity at constant pressure
specific heat capacity at constant volume
electric displacement
length
elemental area
total elemental force on material in rigid

body
elemental line segment
torque on elemental volume of material
elemental volume
constant of motion
Young's modulus or the modulus of

elasticity
electric field intensity
magnitude of armature voltage generated

by field current in a synchronous
machine

induced electric field intensity
strain tensor
strain-rate tensor
magnetomotive force (mmf)
force density
complex amplitude off(t)
amplitude of sinusoidal driving force
equilibrium tension of string
driving function
force

arbitrary scalar function
scalar function in moving coordinate

system
three-dimensional surface
integration constant
a constant
shear modulus of elasticity
speed coefficient
conductance
air-gap length
acceleration of gravity
magnetic field intensity
specific enthalpy
electrical current

electrical current

13.1.2
13.1.2
1.1.1a

1.1.2a

2.2.1e
1.1.2a
2.2.1c
1.1.2b
5.2.1

9.1
1.1.1a, 5.1.2d

4.1.6a
7.0
9.1, 11.2
14.1.1a
13.2.2
1.1.1a
5.1.1
9.1.3
9.2
5.1.1
2.2.1, 2.2.1c, 3.1,

5.1.2a, 3.1.2b, 8.1,
9.1

6.1

6.1
6.2
11.4.2a
5.1.2c
11.2.2
6.4.1
3.1
5.2.1
5.1.2c, 12.1.3
1.1.1a
13.1.2
10.4.3, 12.2.1a, 4.1.2,

6.4.1
2.1, 4.1.3, 6.4.1, 4.1.7,

6.4.1, 4.1

Symbol Section



Symbol

is

i,

(i 't, ), (J, , i2 is,3)
J, Ji

j
K
K, Kf
K
Ki
k, k5, (kr, kj)
k
k
k.
(L, LI, L2), (La, Lf),
Lm, (Lo, L2),
(4, L., L.0), L..

L
1I

1,1,,
M
M
M
M
M
M, M,
M
m

N
N
Pn

nt

n

P
P
P
P
P
PsOPoa'PMPr

Q
q, q, q,

R, RA, Ro

Appendix F

Meaning

unit vector perpendicular to area of
integration

unit vector normal to surface of
integration

unit vectors in coordinate directions
current density
moment of inertia
products of inertia

loading factor
surface current density
linear or torsional spring constant
induced surface current density
wavenumber
summation index
maximum coefficient of coupling
nth eigenvalue
inductance

length of incremental line segment
value of relative displacement for which

spring force is zero
length
Hartmann number
mass of one mole of gas in kilograms
Mach number
mass
number of mechanical terminal pairs
mutual inductance
magnetization density
mass/unit length of string
number of electrical terminal pairs
number of turns
number density of ions
integer
unit normal vector
polarization density
power
number of pole pairs in a machine
power per unit area
pressure
power

electric charge
electric charge

radius

Section

6.2.1

6.2.1
2.2.1c
7.0, 1.1.la
5.1.2b, 4.1.1, 2.2.1c
2.2.1c
4.1.6a
13.2.2
7.0, 1.1.1a
2.2.1a
7.0
7.1.3, 10.1.3, 10.0
2.1.1
4.1.6b
9.2
2.1.1, 6.4.1, 2.1.1,

4.2.1,4.1.1, 4.2.4

6.2.1
2.2.1a

14.2.2
13.1.2
13.2.1
2.2.1c
2.1.1
4.1.1, 4.2.4
1.1.1a
9.2
2.1.1
5.2.2
12.3.1
7.1.1
1.1.2
1.1.la
12.2.1a
4.1.8
14.2.1
5.1.2d and 12.1.4
4.1.6a, 4.1.6b, 4.1.2,

4.1.6b
7.2.1a
1.1.3 and 2.1.2, 8.1,

2.1.2

I __



Glossary of Commonly Used Symbols

Meaning

R, Ra, Rb, Rf, Rr, R,
(R, R,)
R,
Rm
r
r
r

rm
S
S
S
S

Sz

(s, smT)
Si

T
T
T, T, TP, Tem, Tm,

To,T,

t
t'
U
U

It

U

a - X0 )

u- 1(t)
V, Vm
V
V, VP V., V,
V

resistance
gas constant
electric Reynolds number
magnetic Reynolds number
radial coordinate
position vector of material
position vector in moving reference frame
center of mass of rigid body
reciprocal modulus of elasticity
surface of integration
normalized frequency
membrane tension
transverse force/unit length acting on string
complex frequency
slip
ith root of characteristic equation, a

natural frequency
period of oscillation
temperature
torque

surface force
mechanical stress tensor
the component of the stress-tensor in the

mth-direction on a cartesian surface with
a normal vector in the nth-direction

constant of coulomb damping
initial stress distribution on thin rod
longitudinal stress on a thin rod
transverse force per unit area on

membrane
transverse force per unit area acting on

thin beam
time
time measured in moving reference frame
gravitational potential
longitudinal steady velocity of string or

membrane
internal energy per unit mass
surface coordinate
unit impulse at x = xo
transverse deflection of wire in x-direction
unit step occurring at t = 0
velocity
volume
voltage
potential energy

13.1.2
7.0
7.0

2.2.1c
6.1
2.2.1c
11.5.2c
1.1.2a
7.2.4
9.2
9.2
5.1.1
4.1.6b
5.1.1

5.2.1
13.1.2
2.2.1c, 5.1.2b, 3.1.1,

4.1.6b, 4.1.1, 6.4.1,
6.4.1

8.4
13.1.2

8.1
4.1.1
9.1.1
9.1.1

9.2

11.4.2b
1.1.1
6.1
12.1.3

10.2
13.1.1
11.3
9.2.1
10.4.3
5.1.2b
7.0, 13.2.3
1.1.2

5.2.1

Symbol Section



Symbol

V, V

(v, v1, ... vk)
v'
, 
(va, Vb, Vc),

Vy, VoC,Vt
Vn

Vo
v,

2

Vs

v,

V

(WI, WM)

(W', wM, W')

WI,

W

w

w'

X
(xI 1,X, 2 ,....,xk)

X
xP

(x, )(a1 , X2, X3), (X,Y, Z)
(a, y, z')

(m,fl)

(V, ),

cc6(2
2, 2o, '0AoArAs

6( )

6
6

Appendix F

Meaning

velocity
voltage
voltage

velocity of surface in normal direction
initial velocity distribution on thin rod
phase velocity
relative velocity of inertial reference frames
'fV for a string under tensionf and

having mass/unit length m
longitudinal material velocity on thin rod
transverse deflection of wire in y-direction
energy stored in electromechanical

coupling
coenergy stored in electromechanical

coupling
hybrid energy function
width
energy density
coenergy density
equilibrium position
displacement of mechanical node
dependent variable
particular solution of differential equation
cartesian coordinates
cartesian coordinates of moving frame
constants along C+ and C- characteristics,

respectively
see (10.2.20) or (10.2.27)
transverse wavenumber
angles used to define shear strain
constant angles
space decay parameter
damping constant
equilibrium angle of torsional spring
ratio of specific heats
piezoelectric constant
angular position
slope excitation of string
amplitude of sinusoidal slope excitation
distance between unstressed material

points
distance between stressed positions of

material points
incremental change in (
displacement of elastic material
thickness of incremental volume element
torque angle

Section

2.1.1

6.2.1
9.1.1
9.1.1 and 10.2
6.1

10.1.1

9.1.1
10.4.3

3.1.1
3.1.2b

5.2.1
5.2.2
11.5.2c
8.5
5.1.2a
2.1.1
5.1.1
5.1.1
8.1, 6.1
6.1

9.1.1

11.4.3
11.2
4.1.6b
7.1.4
5.1.2b
2.2.1a
13.1.2
11.5.2c

10.2.1b
10.2.1b

11.2.1a

11.2.1a
8.5
11.1,9.1, 11.4.2a
6.2.1
4.1.6a



Glossary of Commonly Used Symbols

Meaning

6d.
(6+, &_)

E

'O

0, 6i, Om
0

0
0

(A,A1,A2, . . . I A,)

(Al, Ab, Ad)
(4T,, Aas, Ab., Ab,)(Al, A")

A
A

/., (14+, IA_)
It

Pd,

O
PD

Pg

arm
P,

as

a,,

T, T d

T

Kronecker delta
wave components traveling in the

-x-directions
linear permittivity
permittivity of free space
efficiency of an induction motor
second coefficient of viscosity
angular displacement
power factor angle; phase angle between

current and voltage
equilibrium angle
angular velocity of armature
maximum angular deflection
magnetic flux linkage

Lam6 constant for elastic material
wavelength
linear permeability
mobility
coefficient of viscosity
coefficient of dynamic friction
permeability of free space
coefficient of static friction
Poisson's ratio for elastic material
damping frequency
continuum displacement
initial deflection of string
amplitude of sinusoidal driving deflection
nth eigenfunctions
amplitudes of forward and backward

traveling waves
initial velocity of string
mass density
free charge density
surface mass density
surface of discontinuity
conductivity
free surface charge density
surface mass density of membrane
surface charge density
surface conductivity
surface charge density
surface traction
diffusion time constant
relaxation time

8.1

9.1.1
l.1.lb
1.1.1a
4.1.6b
14.1.1c
2.1.1, 3.1.1, 5.2.1

4.1.6a
5.2.1
6.4.1
5.2.1
2.1.1,6.4.1,4.1.7,

4.1.3, 4.1

11.2.3
7.1.4
I .1.la
12.3.1, 1.1.1b
14.1.1
2.2.1b
1.1.la
2.2.1b
11.2.2
10.1.4
8.5
9.2
9.2
9.2.1b

9.2
9.2
2.2.1c
1.1.la
11.3
6.2
1.1.1a
1.1.1a
9.2
7.2.3
1.1.1a
7.2.3
8.2.1
7.1.1, 7.1.2a
7.2.1a

Symbol Section



Appendix F

Symbol Meaning Section

To electrical time constant 5.2.2

rM time for air gap to close 5.2.2
To time constant 5.1.3
*t traversal time 7.1.2a

electric potential 7.2
magnetic flux 2.1.1
cylindrical coordinate 2.1.1
potential for H when Jf = 0 8.5.2
flow potential 12.2

Xe electric susceptibility 1.1.1b
Xm magnetic susceptibility 1.1.1a
V the divergence of the material

displacement 11.4
Vy angle defined in Fig. 6.4.2 6.4.1
VY angular position in the air gap measured

from stator winding (a) magnetic axis 4.1.4
V electromagnetic force potential 12.2
p angular deflection of wire 10.4.3
O equilibrium rotational speed 5.1.2b

rotation vector in elastic material 11.2.1a
,n real part of eigenfrequency (10.1.47) 10.1.4
, (w, wo) radian frequency of electrical excitation 4.1.6a, 4.1.2

o natural angular frequency (Im s) 5.1.2b
to, w~ angular velocity 2.2.1c, 4.1.2
o) cutoff frequency for evanescent waves 10.1.2

coa  driving frequency 9.2

on) nth eigenfrequency 9.2
O,  natural angular frequency 5.1.3
(ar, CO) real and imaginary parts of co 10.0
V nabla 6.1
V• surface divergence 6.2.1

Ct
C ~
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Appendix G

SUMMARY OF PARTS I AND II

AND USEFUL THEOREMS

IDENTITIES

AxB.C=A.Bx C,

A x (B x C) = B(A. C)-- C(A- B)

V( + V) = VO + vv,

V. (A + B)= V .A + V- B,

Vx (A + B) =V x A + V x B,

V(#~Y) = # Vy + Y V#,

V. (vA)= A. VV + -VV A,

V.(AxB)= B.VxA--A.VxB,

V V V- V2= ,

V.V xA = 0,

V xV= 0,

V x (Vx A)= V(V - A) - V2 A,

(V x A) x A = (A. V)A - IV(A A),

V(A B) = (A- V)B + (B . V)A + A x (V x B) + B x (V x A)

V x (#A)= Vo x A + V Vx A,

V x (A x B) = A(V B) - B(V. A) + (B V)A - (A. V)B.

-I·-----·l~·l~---·U~ZI---
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THEOREMS

ý d = - ka.d

Divergence theorem Is A-n = nd .A dV

Stokes's theorem A dl =f(V x A).nda

bC~

cii

G

Sc
nda



Table 1.2 Summary of Quasi-Static Electromagnetic Equations

Differential Equations Integral Equations

Magnetic field system

Electric field system

VX H = J

V.B = 0

V.J =0

aB
V x E =

Tt

Vx E=O

V D = p

v J,- - a

aD
V x H=J,f+

(1.1.1)

(1.1.11)

(1.1.12)

(1.1.14)

(1.1.15)

H -dl = fS J n da

BB.nda = 0

J - n da = 0

E' dl =-- B.nda

where E' = E + v X B

E . dl = 0

SD -nda = fvp, dV

f J3 ' n d a = - p d Vd

H'.dl = J, -n da + D . n da

where J' = Jf - pfv

H'=H- v x D

(1.1.20)

(1.1.21)

(1.1.22)

(1.1.23)

(1.1.24)

(1.1.25)

(1.1.26)

(1.1.27)



__

Table 2.1 Summary of Terminal Variables and Terminal Relations

Magnetic field system Electric field system

Definition of Terminal Variables

Charee

A, = BB.nda

Current

i- f= Jy n'da
ýk"I

qk = f pidV

Voltage

vk E •dl

Terminal Conditions

dt

Ak = Ak(i1 ""i- ; geometry)

ik = ik '"... AN; geometry)

ik= dqk
dt

qk = qk( '...'VN; geometry)
v k = CV(ql '.qN; geometry)

Definitionof Terminal Variables



Table 3.1 Energy Relations for an Electromechanical Coupling Network with N Electrical
and M Mechanical Terminal Pairs*

Magnetic Field Systems Electric Field Systems

Conservation of Energy

N M
dWm = I ij dA, - f dxj

5j1 j1
N M

dW -= di + e dfe
j=1 -1

f5• = -- •-
Wax .

a (i. i; x1 .... X )f e= ax,

N

w,+ w.'=
J=1

N Jf
(a) dWe = v dq - fij dx

N I

(c) dWe >= q1 du 1+ :ý fe dxj
j=l j=1

Forces of Electric Origin, j = 1 ... , M

(eW,(ql, qN; Xl... . x ,)(e) fe = - wei qx .Sax.

Sa W(v,, . . . . .V; xl .... ,X3 1)(g) =i

Relation of Energy to Coenergy

(i) W + We = jqj
j=1

Energy and Coenergy from Electrical Terminal Relations

NlN (OWm i(A, ... j-,', 0 ... , 0; x ..... XM ) di' (k) W e .( . q 1,•, 0 ...,...

1 0The mechanical variables and can be regarded as theth force and displacement or theth torque T and angular displacement 0(n)

T7hemechanicalva riables fi and xi can be regarded as thejth force and displaement or trejth torque Tj and angular displacement Oj.



Table 6.1 Differential Equations, Transformations, and Boundary Conditions for Quasi-static Electromagnetic Systems with
Moving Media

Differential Equations Transformations Boundary Conditions

V x H = J, (1.1.1) H' = H (6.1.35) n x (H a - Hb) = Kf (6.2.14)

V. B = 0 (1.1.2) B' = B (6.1.37) n. (Ba - Bb) = 0 (6.2.7)
field V. J! = 0 (1.1.3) J,= J, (6.1.36) n . (Jfa - Jb) + Vy• K, = 0 (6.2.9)

systems aB
V x E = - (1.1.5) E' = E + vr x B (6.1.38) n X (E a - Eb) = vn(Ba - Bb) (6.2.22)

B = Io(H + M) (1.1.4) M' = M (6.1.39)

V X E = 0 (1.1.11) E' =E (6.1.54) n (E - Eb) =-0 (6.2.31)

V.D = pf (1.1.12) D' = D (6.1.55) n (Da -- Db) = a (6.2.33)

; = Pf (6.1.56)
Electric , ao

8 1. bElectric J= - (1.1.14) J, = J= - pvr (6.1.58) n * (Ja _- Jb)+ V~. K, = -V(pl
a ) - (6.2.36)field at at

systems D
V x H = Jf + (1.1.15) H' = H - v' X D (6.1.57) n X (Ha - Hb) = K + vn X [n x (Da - Db) ] (6.2.38)

D = CoE + P (1.1.13) P' = P (6.1.59)



Appendix G

From Chapter 8; The Stress Tensor and Related Tensor Concepts

In what follows we assume a right-hand cartesian coordinate system
xL, x 2, x. The component of a vector in the direction of an axis carries the
subscript of that axis. When we write F, we mean the mth component of the
vector F, where m can be 1, 2, or 3. When the index is repeated in a single
term, it implies summation over the three values of the index

aH, 8aH 8H, aH,

andand a a a a
H, = H1 + H1 2 + Hs H V.

8X, 8ax 8x ax
This illustrates the summation convention. On the other hand, 8H,/ax,
represents any one of the nine possible derivatives of components of H with
respect to coordinates. We define the Kronecker delta 68,,, which has the values

1, when m = n,
6,, = (8.1.7)

0, when m 0 n.
The component Tn,, of the stress tensor can be physically interpreted as the

mth component of the traction (force per unit area) applied to a surface with
a normal vector in the n-direction.

ix1

x3

X2

Fig. 8.2.2 Rectangular volume with center at (z@, x, Xs) showing the surfaces and direc-
tions of the stresses T,,.
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Summary of Parts I and II

The xl-component of the total force applied to the material within the
volume of Fig. 8.2.2 is

= T + , x3 Ax2 Ax3 - rT1 x -l I , x Ax2 Ax.

+12 1 2 + 3 T12\1. 2 2 1

+T (xiX2,z, x + 2 AxAX - T xx1,-4,- 2Ax3) Ax3\

(8.2.3)
Here we have evaluated the components of the stress tensor at the centers
of the surfaces on which they act; for example, the stress component T11
acting on the top surface is evaluated at a point having the same x2- and x3-
coordinates as the center of the volume but an x1 coordinate Ax1/2 above the
center.

The dimensions of the volume have already been specified as quite small.
In fact, we are interested in the limit as the dimensions go to zero. Con-
sequently, each component of the stress tensor is expanded in a Taylor series
about the value at the volume center with only linear terms in each series
retained to write (8.2.3) as

( Ax1 ITn1 Ax aT1
=T + T T11 + -1 a ,,AAx 3

2 8x 1 2 ax1

A,,x 2 T12 T 1 2+ Ax i-T Ax 1AxA+ L_ Ax,Ax,
+_x (T3 _.aT..__T13 +A 3 aTh) ATx1 Ax

2 ax, 2 ax3

or

f = + a +T-xAxAx 3. (8.2.4)

All terms in this expression are to be evaluated at the center of the volume
(x1 , x,, xa). We have thus verified our physical intuition that space-varying
stress tensor components are necessary to obtain a net force.

From (8.2.4) we can obtain the x,-component of the force density F at the
point (x 1 , X2, x3) by writing

F1 = lim T11 + + aT 13 (8.2.5)
Ax 1 Ayx,,Ax-OAxAxAxz, ax, ax2 ax,

The limiting process makes the expansion of (8.2.4) exact. The summation
convention is used to write (8.2.5) as



Appendix G

F1 = T-  (8.2.6)
ax"

A similar process for the other two components of the force and force density
yields the general result that the mth component of the force density at a
point is

F, = (8.2.7)
ax"

Now suppose we wish to find the mth component of the total force f on
material contained within the volume V. We can find it by performing the
volume integration:

=jV d v iax
When we define the components of a vector A as

A1 = T, 1 , A2 = T. 2, A3 T=3, (8.1.14)

we can write (8.1.13) as

f, = aA dV f=V9 A) dV. (8.1.15)

We now use the divergence theorem to change the volume integral to a surface

integral,
integral, f= A.nda= Anda, (8.1.16)

where n, is the nth component of the outward-directed unit vector n normal
to the surface S and the surface S encloses the volume V. Substitution from
(8.1.14) back into this expression yields

f, = sTmn, da. (8.1.17)

where T,.n, is the mth component of the surface traction T.

The traction r is a vector. The components of this vector depend on the
coordinate system in which T is expressed; for example, the vector might be
directed in one of the coordinate directions (xj, a, x3), in which case there
would be only one nonzero component of r. In a second coordinate system
(x, x', x'), this same vector might have components in all of the coordinate
directions. Analyzing a vector into orthogonal components along the co-
ordinate axes is a familiar process. The components in a cartesian coordinate
system (x', x,' xD) are related to those in the cartesian coordinate system
(x,, x, x,) by the three equations

-r = a,17 ,, (8.2.10)

where apr is the cosine of the angle between the x' -axis and the xz,-axis.
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Summnunary of Parts I and II

Similarly, the components of the stress tensor transform according to the
equation

T~, = a,,ra,,Ts. (8.2.17)

This relation provides the rule for finding the components of the stress in the
primed coordinates, given the components in the unprimed coordinates. It
serves the same purpose in dealing with tensors that (8.2.10) serves in dealing
with vectors.

Equation 8.2.10 is the transformation of a vector r from an unprimed to a
primed coordinate system. There is, in general, nothing to distinguish the two
coordinate systems. We could just as well define a transformation from the
primed to the unprimed coordinates by

7r, = b,,g, (8.2.18)

where b,, is the cosine of the angle between the x,-axis and the x,-axis. But
b,, from the definition following (8.2.10), is then also

b,, - a,,; (8.2.19)

that is, the transformation which reverses the transformation (8.2.10) is

7-,= a,7,. (8.2.20)

Now we can establish an important property of the direction cosines a.,
by transforming the vector r to an arbitrary primed coordinate system and
then transforming the components r'- back to the unprimed system in which
they must be the same as those we started with. Equation 8.2.10 provides the
first transformation, whereas (8.2.20) provides the second; that is, we sub-
stitute (8.2.10) into (8.2.20) to obtain

7, = a,,arT. (8.2.21)

Remember that we are required to sum on both p and r; for example, consider
the case in which s = 1:

T1 = (alla11 + a21a21 + a31a31)r1
+ (a1la 1U + a2 ta2 2 + aaiae)r2 (8.2.22)

+ (a1 1 ai3 + asla2 3 + aa•a33)r 3 .

This relation must hold in general. We have not specified either a,, or 7,-.
Hence the second two bracketed quantities must vanish and the first must be
unity. We can express this fact much more concisely by stating that in general

a,,a, = 6,sr (8.2.23)



Table 8.1 Electromagnetic Force Densities, Stress Tensors, and Surface Force Densities for Quasi-static
Magnetic and Electric Field Systems*

Stress Tensor T,,
Force Density Fm= 8T,nn Surface Force Density*

Description F m x=- (8.1.10) Tm = [Tmn]nn (8.4.2)

Force on media carrying Jf x B T., = pHAHn - 6emndpHkHk T = Kf x lp(H>
free current density Jy, Kf = n X [H]
p constant (8.1.3) (8.1.11) (8.4.3)

Force on media supporting pfE Tmn = eE?,En - BPnIeEiEk T = af(E)
free charge density pf, •, = n -[E]
e constant (8.3.3) (8.3.10) (8.4.8)

Force on free current plus Jf x B - ½H* H Vp T,, = pHHn
magnetization force in
which B = pH both before + V H.Hpy -- 6mn - HaHk
and after media are aP ap
deformed (8.5.38) (8.5.41)

Force on free charge plus pfE - JE *E VE T.n. = E,EEn
polarization force in which
D = E both before and + 1 V Ep - n - P E\E
after media are deformed +p a 1p

(8.5.45) (8.5.46)

Aa + Ab
* (A) -- 22

(A] Aa - A



Table 9.1 Modulus of Elasticity E and Density p for Representative Materials*

E-units of p-units of v,-unitst of
Material 10u N/m2 103 kg/m 3 m/sec

Aluminum (pure and alloy) 0.68-0.79 2.66-2.89 5100
Brass (60-70 % Cu, 40-30 % Zn) 1.0-1.1 8.36-8.51 3500
Copper 1.17-1.24 8.95-8.98 3700
Iron, cast (2.7-3.6% C) 0.89-1.45 6.96-7.35 4000
Steel (carbon and low alloy) 1.93-2.20 7.73-7.87 5100
Stainless steel (18•%Cr, 8%Ni) 1.93-2.06 7.65-7.93 5100
Titanium (pure and alloy) 1.06-1.14 4.52 4900
Glass 0.49-0.79 2.38-3.88 4500
Methyl methacrylate 0.024-0.034 1.16 1600
Polyethylene 1.38-3.8 x 10- 3 0.915 530
Rubber 0.79-4.1 x 10-i 0.99-1.245 46

* See S. H. Crandall, and N. C. Dahl, An Introductionto the MechanicsofSolids, McGraw-
Hill, New York, 1959, for a list of references for these constants and a list of these constants
in English units.
t Computed from average values of E and p.



Table 9.2 Summary of One-Dimensional Mechanical Continua

Introduced in Chapter 9

Thin Elastic Rod

a26 as26

P -2 = E-Es + F,

d8
T=E-

6-longitudinal (x) displacement
T-normal stress
p-mass density
E-modulus of elasticity

F,--longitudinal body force density

Wire or "String"

m-j- =f- 2 + S

-- transverse displacement
m--mass/unit length
f-tension (constant force)

S,-transverse force/unit length

Membrane

a / a,2e a,2 )

-- transverse displacement
am-surface mass density
S-tension in y- and z-directions

(constant force per unit length)
T,-z-directed force per unit area

G13

""
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INDEX

Numbers preceded by letters are Appendix references. Appendices A, B, and C are in
Part One; Appendices D and E, Part Two; and Appendices F and G, Part Three.

Acceleration, centrifugal fluid, 729
centripetal, 59
Coriolis, 59
Eulerian variable, 727
fluid, 727
instantaneous, 45

Accelerator, electric field, 776
MHD, 825
particle, 608

Acoustic delay lines, 480
Acoustic waves, compressional in solid, 673

dilatational in solid, 673
elastic media, 671
fluid, 544
gases, 845
guided, 679, 683, 693
magnetic fields and, 846
membrane, 509
shear elastic, 675
string, 509
thin beam, 683
thin rod, 487, 681

Acyclic machine, 286
Air-gap magnetic fields, 114
Alfv6n velocity, 763
Alfv6n waves, 759

compressible fluids and, 841
cylindrical geometry, 767
effect of conductivity on, 772
mechanical analogue to, 766
nature of, 764
numerical example of, 771
resonances and, 771
standing, 771
torsional, 765

Amortisseur winding, 164
Ampere, 1
Ampere's law, B6, C3, E3, G3

dynamic, B9
electromechanical, 304
example of, B7
integral form of, B36, C3, E3, G3
magnetization and, B26

Amplifying wave, coupled system and, 608
electric field induced, 605
evanescent wave and, 607
space-time behavior of, 604, 606

Angular frequency, 513
Angular momentum, 248
Angular velocity, 47
Applications of electromechanics, 2
Approximations, electromechanical, 206
Armature, ac machine, 120

de machine, 141, 293
Armuture reaction, 297

Astrophysics and MHD, 552
Attenuation, microwave, 561
Average power converted, salient pole ma-

chine, 155
smooth-air-gap machine, 124

Beats in space, 595
Bernoulli's equation, 738

example of, 752
Bessel functions, 408

roots of, 409
Bias, linear transducer operation and, 201

piezoelectricity and, 711
Bode plot, 206
Boundary, analytic description of, 269, 668

examples of moving, 269, 276, 279, 280,
364, 392, 397, 451, 460, 563, 574, 605,
627, 704, 783

moving, 267
well defined, 267

Boundary condition, Alfv6n waves, 769
causality and, 491, 592, 607
conservation of charge, 279, 374, 376, 394,

399
convection and, 267, 587, 598
dispersion and, 618
elastic media, 671, 676
electric displacement, 278
electric field intensity, 275, 278
electric field systems, 277, E6, G6
electromagnetic field, 267
electromechanical, 668
field transformations and, 275
geometric effect of, 280
initial condition and, 513
inviscid fluid, 752
inviscid fluid slip, 740
longitudinal and transverse, 680
magnetic field intensity, 273, 280
magnetic field systems, 270, E6, G6
magnetic field system current, 272
magnetic fluid, 774
magnetic flux density, 271
MHD, 769
motion and, 267, 491, 587, 592, 598, 607
string and membrane, 522
summary of electromagnetic, 268, E6, G6
thin rod, 493
viscous fluid, 873

Boundary layer dynamics, 602
Brake, induction, 134

MHD, 744
Breakdown, electrical, 576, 782
Breakdown strength of air, 576
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2 Ind,

Brush, dc machine, 292
liquid-metal, 316, 878
metal-graphite, 883

Bullard's equation, 336

Cables, charge relaxation in high voltage, 380
nonuniform conductivity in, 380

Capability curve of synchronous generator,
170

Capacitance, electrical linearity and, 30
example for calculation of, 32, 33
generalized, 28
quasi-static limit and, B18

Causality, boundary conditions and, 592,
607

condition of, 491, 592, 607
Center of mass, 46
Channel, variable-area MHD, 751
Characteristic dynamical times, excitation

and, 332
material motion and, 332

Characteristic equation, 181
Characteristics, wave fronts and, 618

wave propagation and, 488, 490
waves with convection and, 586

Charge, B 1
conservation of, B5
net flow and flow of net, B6
test, 12
total, 29

Charge-average velocity, B5
Charge carriers, effect of motion on, 290
Charge conservation, differential form of,

B5
integral form of, B5

Charge density, B1
effect of motion on, 290, 334, 382, 387,

388, 392, 397, 401
free, 7, B28
magnetic field system and, 288

Charge distribution, effect of motion on,
334, 382, 387, 388, 392, 397, 401

Charge relaxation, 330, 370
electrical transient, 372
examples of, 372, 375
excitation frequency and, 378, 400
frequency in frame of material and, 399
general equation for, 371
lumped-parameter models for, 331, 375
magnetic diffusion and, 401
motion sinusoidal excitation with, 392
moving frame and, 381
nonuniform properties and, 378
sources of charge and, 372
spatially and temporally periodic fields

and, 397
steady motion and, 380
thunder storms, and, 388
traveling wave in a moving material and,

397
uniform properties and, 372

Choking, constant area flow, 824

ex

Circuit breaker, transducer for a, 22
Circuit theory, 16
Coefficient, of sliding friction, 42

of static friction, 42
Coefficients of viscosity, independence of,

870
Coenergy, 73, E5, G5

electrical linearity and, 76
potential well motions and, 217

Coenergy density, electric field system, 464,
714

magnetic field system, 456
Collector rings, 120
Commutation in dc machines, 296
Commutator, 140

of dc machines, 292
Commutator bars, 142
Commutator machines, 140

ac generator, 329
brake operation of, 306
compound wound, 310
electrical power input of, 303
equation for armature of, 300
equation for field of, 297
equation of motion for, 297
generator operation of, 306
linear amplifier, 304
mechanical power output of, 303
motor operation of, 306
operation with alternating currents and,

312
properties of, 303
separately excited, 306
series excitation of, 309
shunt excitation of, 309
speed curves of, shunt excited, 310
speed regulation of, 307
summary of equations for, 303
torque-current curves of series excited, 311
torque-speed curves of shunt excited, 310
transient performance of, 306

Compensating networks, 198
Compensation in feedback loops, 198
Compressibility constant, 845
Compressibility of fluid, 725
Compressible fluids, 813

electromechanical coupling to, 820
Conduction, electrical, 7, B30

in electric field system, effect of motion
on, 371

heat, 815
motion and electrical, 284, 289

Conduction current, B6
absence of net free charge and, 374

Conduction machine, MHD, 740
variable area, MHD, 753
see also Commutator machine; DC machines

Conductivity, air and water, 388
electrical, 7
electrical surface, 7
mechanical strength and, 698
nonuniform, 380
numerical values of, 345, 377
Conductor, electric field perfect, 29, 213,



Index

390, 400, 401
magnetic field perfect, 18, 211, 223,

354, 401, 563
Confinement, electromechanical, 4, 407
Conservation, of charge, B5

displacement current and, B9
integral form of, B37

of energy, 63, 66
continuum, 456, 464
continuum coupling and, 455
equation, steady state, 820
fluid, 814
incompressible fluid, 757
integral form of, 819

of flux, lumped-parameter, 211, 220
perfectly conducting fluid and, 761

of mass, differential law of, 731
example of, 730
fluid, 729, 814
integral form of, 730

of momentum, fluid, 731, 814
integral form of, 733, 734
interfacial, 671
stress and, 733

Conservative systems, 213
Constant charge dynamics, 205, 213
Constant-current constant-flux dynamics,

220
Constant-current constraint, continuum, 628
Constant-current dynamics, 220
Constant flux, lumped and continuum, 212
Constant flux dynamics, fluid, 761

lumped-parameter, 211, 220
Constant of the motion, fluid, 738
Constant voltage dynamics, 204, 212, 226
Constituent relations, electromagnetic, 283,

B25
fluid, 815
fluid mechanical, 735
materials in motion and, 283
moving media in electric field systems

and, 289
moving media in magnetic field systems

and, 284
Constitutive law, mobile ion, 778

piezoelectric slab, 712
Contact resistance, MHD, 750
Contacts, sliding, 42
Continuity of space, 35
Continuum and discrete dynamics, 553
Continuum descriptions, 727
Continuum electromechanical systems, 251
Contour, deforming, 11, B32
Control, dc machines and, 291
Controlled thermonuclear reactions, 354
Convection, dynamical effect of, 584

and instability, 593
Convection current, B6
Convective derivative, 259, 584

charge relaxation and, 381
example of, 729
magnetic diffusion and, 357
see also Substantial derivative

Convective second derivative, 585
Coordinate system, inertial, 254
Corona discharge, 776, 782
Corona wind, demonstration of, 782
Couette flow, plane, 876
Coulomb's law, B1

point charge, B2
Coupling, electromechanical, 15, 60
Coupling to continuous media at terminal

pairs, 498
Coupling network, lossless and conserva-

tive, 63
Creep, failure in solids by, 704
Critical condition for instability, 568
Crystals, electromechanics of, 651

piezoelectric materials as, 711
Current, balanced two-phase, 113

conduction, B6
convection, B6
displacement, B9
electric field system, 29
free, B25
magnetization, B25
polarization, B29

Current density, B5
diffusion of, 343
distribution of, 332
free, 7

Current law, Kirchhoff's, 16
Currents as functions of flux linkages, 26
Current transformation, examples of, 226
Cutoff condition, 559
Cutoff frequency, 559

elastic shear waves, 695
membrane, 623

Cutoff waves, 556
electromagnetic plasma, 638
membrane, 623
power flow and, 637
thin beam, 684
see also Evanescent wave

Cyclic energy conversion processes, 79
Cylindrical coordinates, stress components

in, 437
'Cylindrical modes, 648

Damped waves, driven response of, 577
Damper, linear ideal, 40

lumped element, 36, 40
square-law, 43, 229

Damper winding in rotating machine, 164
Damping, magnetic fluid, 750

negative, 198
spatial decay and, 560
wave dynamics with, 576

Damping constant, 41
Damping frequency, 577
DC generator, magnetic saturation in, 310

self-excited, 310
DC machines, 140; see also Commutator

machines
DC motor, self-excited, 308

series excited, 311



Index

starting torque of, 310
torque-speed curves for, 306

Definitions, electromagnetic, 7, B1
Deforming contours of integration, 10, 18,

262, B32, 761
Degree of freedom, 49
Delay line, acoustic, 480

acoustic magnetostrictive, 708
fidelity in, 501
mechanical, 499
shear waves and, 696

Delta function, B2
Kronecker, 421

Derivative, convective, 259, 584, 726
individual, 728
particle, 728
Stokes, 728
substantial, 259, 584, 728
total, 728

Dielectrophoresis, 783
Difference equation, 620
Differential equation, order of, 180

linear, 180
Differential operators, moving coordinates

and, 257
Diffusion, magnetic, 576

magnetic analogous to mechanical, 580
of magnetic field and current, 335

Diffusion equation, 337
Diffusion time constant, 341

numerical values of, 344
Diffusion wave, magnetic, 358

picture of, 581
space-time behavior of, 359

Dilatational motion of fluid, 866
Direction cosines, definition of, 435

relation among, 439
Discrete systems, electromechanics of, 60
Discrete variables, mechanical, 36

summary of electrical, 35
Dispersion equation, absolutely unstable

wire, 567
Alfvyn wave, 769
amplifying wave, 602
convective instability, 602
damped waves, 577
elastic guided shear waves, 695
electron oscillations, 601
evanescent wave, 557
kink instability, 629
magnetic diffusion with motion, 357
membrane, 623
moving wire destabilized by magnetic

field, 602
moving wire stabilized by magnetic

field, 596
ordinary waves, 513

with convection, 594
on wire, 555
on wires and membranes, 513

resistive wall interactions, 609
sinusoidal steady-state, and 514
wire with convection and damping, 609

Displacement, elastic materials, 486
elastic media, 652
lumped parameter systems, 36
one-dimensional, 483
relative, 657
and rotation, 657
and strain, 658
transformation of, 659
translational, 657

Displacement current, B9
Displacement current negligible, B19
Distributed circuits, electromechanical, 651
Divergence, surface, 272

tensor, 422, G9
theorem, B4, C2, E2, G2, G9

Driven and transient response, unstable
system, 569

Driven response, one-dimensional con-
tinuum, 511

unstable wire, 568
Driving function, differential equation, 180

sinusoidal, 181
Dynamics, constant charge, 205, 213

constant current, 220
constant flux, 211, 220
constant voltage, 204, 212, 226
lumped-parameter, 179
reactance dominated, 138, 211, 220, 242,

336, 354, 368, 563
resistance dominated, 138, 209, 233, 242,

336, 354, 368, 503, 583, 611
two-dimensional, 621

Dynamics of continua, x-t plane, 488, 586
omega-k plane, 511, 554

Dynamo, electrohydrodynamic, 388

Eddy currents, 342, 628
Efficiency of induction machine, 134
EHD, 3, 552, 776
EHD pump, demonstration of, 783
Eigenfrequencies, 518

electromechanical filter, 707
magnetic field, shift of, 562
not harmonic, 563, 684
wire stiffened by magnetic field, 562

Eigenfunction, 518
Eigenmode, 517

complex boundary conditions and, 533
orthogonality of, 341, 519, 520

Eigenvalues, 518
dispersion and, 562
graphic solution for, 526
kink instability, 630

Elastic beam, resonant circuit element, 688
Elastic constants, independence of, 664

numerical values of, 486
Elastic continua, 479
Elastic failure, example of electromechani-

cal, 701
Elastic force density, 667
Elastic guiding structures, 693
Elasticity, summary of equations of, 666, 668
Elasticity equations, steps in derivation of,

651

I
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Elastic material, ideal, 485
linear, 485

Elastic media, 651
electromechanical design and, 697
electromechanics of, 696
equations of motion for, 653
quasi-statics of, 503

Elastic model, membrane, 509
thin rod, 480
wire, 509

Elastic waves, lumped mechanical elements
and, 507

shear, 543
thin rod, 543
see also Acoustic waves

Electrical circuits, 16
Electric displacement, 7, B28
Electric field, effect of motion on, 334,

382, 387, 388, 392, 397, 401
Electric field coupling to fluids, 776
Electric field equations, periodic solution

to, 281
Electric field intensity, 7, B1
Electric field system, B19

differential equations for, 8, E3, G3
integral equations for, 11, E3, G3

Electric field transformation, example of,
262

Faraday's law and, 262
Electric force, field description of, 440

fluids and, 776
stress tensor for, 441

Electric force density, 418, 463
Electric Reynolds number, 335, 370, 381,

383, 395, 399, 401, 575, 780
mobility model and, 780

-Electric shear, induced surface charge and,
400

Electric surface force, 447
Electrification, frictional, 552
Electroelasticity, 553
Electrogasdynamic generator, 782
Electrohydrodynamic orientation, 785
Electrohydrodynamic power generation, 782
Electrohydrodynamics, 3, 552, 776
Electrohydrodynamic stabilization, 786
Electromagnetic equations, differential, 6,

B12, B19, E3, G3
integral, 9, B32, E3, G3
quasi-static, 5, B19, B32, E3, G3
summary of quasi-static, 13, E3, G3

Electromagnetic field equations, summary
of, 268, E6, G6

Electromagnetic fields, moving observer
and, 254

Electromagnetic theory, 5, B1
summary of, 5, E6, G6

Electromagnetic waves, B13
absorption of, B25

Electromechanical coupling, field descrip-
tion of, 251

Electromechanics, continuum, 330
of elastic media, 651
incompressible fluids and, 737

lumped-paramete;, 60
Electron beam, 4, 552, 600, 608

magnetic field confinement of, 601
oscillations of, 600

Electrostatic ac generator, 415
Electrostatic self-excited generator, 388
Electrostatic voltmeter, 94
Electrostriction, incompressibility and, 784
Electrostriction force density, 465
Elements, lumped-parameter electrical, 16

lumped-parameter mechanical, 36
Energy, conservation of fluid, 814

electrical linearity and, 76
electric field system conservation of, 66
internal or thermal gas, 813
internal per unit mass, 815
kinetic per unit mass, 815
magnetic field system conservation of, 63
magnetic stored, 64
potential and kinetic, 214

Energy conversion, cyclic, 79, 110
electromechanical, 79
lumped-parameter systems, 79

Energy density, B23
equal electric and magnetic, B24

Energy dissipated, electromagnetic, B22
Energy flux, B22
Energy function, hybrid, 220
Energy method, 60, 450, E5, G5
Energy relations, summary of, 68, E5, G5
Enthalpy, specific, 820
Equation of motion, elastic media, 668

electromechanical, 84
examples of lumped-parameter, 84, 86
incompressible, irrotational inviscid flow,

738
linearized, 183
lumped mechanical, 49

Equilibrium, of continuum, stability of, 574
dynamic or steady-state, 188
hydromagnetic, 561
kink instability of, 633
potential well stability of, 216
static, 182

Equipotentials, fluid, 752
Eulerian description, 727
Evanescence with convection, 596
Evanescent wave, 556

appearance of, 559
constant flux and, 563
dissipation and, 560
elastic shear, 695
equation for, 557
example of, 556
membrane, 560, 623
physical nature of, 560
signal transmission and, 639
sinusoidal steady-state, 558
thin beam, 684

Evil, 697

Failure in solids, fatigue and creep, 704
Faraday, 1
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Faraday disk, 286
Faraday's law, B9

deforming contour of integration and, 262,
300, 315, 565, B32, E3, G3

differential form, 6, B10, E3, G3
example of integral, 262, 276, 286, 297,

315
integral form of, 810, B32
perfectly conducting fluid and, 761

Fatigue, failure in solids by, 704
Feedback, continuous media and, 548

stabilization by use of, 193
Ferroelectrics, B29

piezoelectric materials and, 711
Ferrohydrodynamics, 552, 772
Field circuit of dc machine, 141
Field equations, moving media, generalization

of, 252
Fields and moving media, 251
Field transformations, 268, E6, G6;

see also Transformations
Field winding, ac machine, 120

dc machine, 293
Film, Complex Waves I, xi, 516, 559, 571,

634
Film, Complex Waves II, xi, 573, 606
Filter, electromechanical, 2, 200, 480, 704
First law of thermodynamics, 63
Flow, Hartmann, 884

irrotational fluid, 737
laminar, 725
turbulent, 725

Flowmeter, liquid metal, 363
Fluid, boundary condition for, 725

boundary condition on, inviscid, 752
compressibility of, 725
effect of temperature and pressure on, 724
electric field coupled, 776
electromechanics of, 724
ferromagnetic, 552, 772
highly conducting, 760
incompressible, 724, 735
inhomogeneous, 735
internal friction of, 724
inviscid, 724, 725
laminar and turbulent flow of, 725
magnetic field coupling to incompressible,

737
magnetizable, 772
Newtonian, 861
perfectly conducting, 563
solids and, 724
static, 735
viscous, 861

Fluid dynamics, equations of inviscid com-
pressible, 813

equations of inviscid, incompressible, 726
equations of viscous, 871

Fluid flow, accelerating but steady, 753
around a corner, 751
potential, 751
unsteady, 746
variable-area channel, 751

Fluid-mechanical examples with viscosity,
875

Fluid orientation systems, 785
Fluid pendulum, electric-field coupled, 784

magnetic damping of, 750
Fluid pump or accelerator, 776
Fluid stagnation point, 752
Fluid streamlines, 752
Fluid transformer, variable-area channel

as, 756
Flux amplification, plasmas and, 354
Flux conservation, lumped-parameter, 211,

220
magnetic fields and, 352
perfectly conducting gas and, 849

Flux density, mechanical amplification of,
354

Flux linkage, 19, E4, G4
example of, 22, 23

Force, charge, B1
derivative of inductance and, 453
electric origin, 67, E5, G5
electromagnetic, 12
field description of, 418
fluid electric, 776
Lorentz, 12, 255, 419
magnetic, B6
magnetization with one degree of free-

dom, 451
physical significance of electromagnetic,

420
polarized fluids, 463, 572, 784
single ion, 778
surface integral of stress and, 422

Force-coenergy relations, 72, E5, G5
Force density, 7

averaging of electric, 440
averaging of magnetic, 419
divergence of stress tensor and, 422,

427, G9
effect of permeability on, 455, 456
elastic medium, 667
electric, 12, B3, 440, Gil
magnetic field systems, 419, 462, Gl
electromagnetic fluid, 732
electrostriction, 465, G11
fluid mechanical, 732
fluid pressure, 736
free current, 419, Gl
inviscid fluid mechanical, 737
lumped parameter model for, 455
magnetic, 12, 419, B9
magnetization, 448, 450, 462, Gil
magnetostriction, 461, 462, Gil
polarization, 450, 463, Gil
summary of, 448, Gl

Forced related to variable capacitance, 75
Force-energy relations, 67, E5, G5

examples of, 70
Force equations, elastic media, 653
Force of electric origin, 60, E5, G5
Fourier series, 340
Fourier transform, two-dimensional, 617
Fourier transforms and series, diffusion
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equation and, 340
eigenmodes as, 517
linear continuum systems and, 511, 554,

617
linear lumped systems and, 200
mutual inductance expansions and, 108,

153
Frame of reference, laboratory, 254
Free-body diagram, 49
Free charge density, B28
Free charge forces, avoidance of, 787
Frequency, complex, 181, 554

complex angular, 554
natural, 181, 515
voltage tuning of, 704

Frequency conditions for power conversion,
111, 155

Frequency response of transducer, 204
Friction, coulomb, 42
Frozen fields, perfectly conducting gas and,

849
Fusion machines, instability of, 571

Galilean transformation, 584
Gamma rays, B13
Gas, perfect, 816
Gas constant, 816

universal, 816
Gases, definition of, 724

ionized, 813
Gauss's law, differential form of, B5

example of, B4
integral form of, B3
magnetic field, B12
polarization and, B28

Gauss's theorem, tensor form of, 423, G9
Generators, electric field, 778

electrohydrodynamic applications of, 3
hydroelectric, 152
induction, 134
magnetohydrodynamic applications of, 3
MHD, 744
Van de Graaff, 3, 383, 385

Geometrical compatibility, 53
Geophysics and MHD, 552
Gravitational potential, 733
Gravity, artificial electric, 785

force density due to, 732
waves, 794

Group velocity, 614
power flow and, 638
unstable media and, 617

Guiding structures, evanescence in, 560

Hartmann flow, 884
Hartmann number, 887
Heat transfer, EHD and, 552
Homogeneity, B27
Homogeneous differential equation, solu-

tion of, 180
Homopolar machine, 286, 312

armature voltage for, 314
speed coefficient for, 314

summary of equations for, 316
torque for, 316

Hunting transient of synchronous machine, 192
Hydraulic turbine, 151
Hydroelectric generator, 152
Hydromagnetic equilibria, 561, 571
Hysteresis, magnetic, B27

Identities, Cl, El, G1
Impedance, characteristic, 497
Incompressibility, fluid, 735
Incompressible fluids, MHD, 737
Incompressible media, 380
Incremental motions, see Linearization
Independence of variables, 69, 97 (see

Problem 3.16)
Independent variables, change of, 72
Index notation, 421, G7
Inductance, calculation of, 22

electrical linearity and, 20
generalized, 17
quasi-static limit and, B18

Induction, demonstration of motional, 253
law of, B9; see also Faraday's law

Induction brake, 134
Induction generator, 134

electric, 400
Induction interaction, 367
Induction law, integral, B32; see also

Faraday's law
Induction machine, 127

coefficient of coupling for, 135
distributed linear, 368
efficiency of, 134
equivalent circuit for, 131
loading of, 137
lumped-parameter, 368
MHD, 745
power flow in, 133
reactance and resistance dominated, 137
single phase, 138
squirrel-cage, 129
starting of, 137, 139
torque in, 132
torque-slip curve of, 135
variable resistance in, 136
wound rotor, 106

Induction motor, 134
Inductor, 17
Inelastic behavior of solids, 699
Influence coefficients, MHD, 822

variable-area MHD machine, 832
Initial and boundary conditions, 513
Initial conditions, convection and, 587

one-dimensional continuum, 488, 512
Initial value problem, continuum, 488
Instability, absolute, 566

and convective, 604
aeroelastic absolute, 793
convective, 601
dynamic, 192
electrohydrodynamic, 571
engineering limitations from convective, 604

_____·__ ____~
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and equilibrium, example of, 185
failure of a static argument to predict, 192
fluid pendulum, 785
fluid turbulence and, 725
graphical determination of, 184
heavy on light fluid, 571
and initial conditions, 184
kink, 627
linear and nonlinear description of, 216
nonconvective, 566
nonlinearity and, 570
omega-k plot for, 569
plasma, 553
in presence of motion, 583
Rayleigh-Taylor, 571
resistive wall, 576, 608
space-time dependence of absolute, 570
static, 182
in stationary media, 554

Integral laws, electromagnetic, 9, B32, E3,
G3

Integrated electronics, electromechanics
and, 688

Integration contour, deforming, 11, B32
Internal energy, perfect gas, 816
Invariance of equations, 256
Inviscid fluid, boundary condition for, 752
Ion beams, 552
Ion conduction, moving fluid and, 778
Ion drag, efficiency of, 782
Ion-drag phenomena, 776
Ionized gases, acceleration of, 746
Ion source, 776
Isotropic elastic media, 660
Isotropy, B27

Kinetic energy, 214
Kirchhoff's current law, 16
Kirchhoff's laws, 15

electromeclianical coupling and, 84
Kirchhoffs voltage law, 16
Klystron, 601
Kronecker delta function, 421, G7

Lagrangian coordinates, 652
surface in, 669

Lagrangian description, 727
Lagrangian to Eulerian descriptions, 483
Lam6 constant, 667

numerical values of, 677
Laplace's equation, fluid dynamics and, 737

two-dimensional flow and, 751
Leakage resistance of capacitors, 377
Legendre transformation, 73
Length expander bar, equivalent circuit

for, 716
piezoelectric, 712

Levitating force, induction, 369
Levitation, electromechanical, 4, 195, 365,

370
demonstration of magnetic, 370
and instability, 574
of liquids, EHD, 552
MHD, 552

solid and liquid magnetic, 365
Light, velocity of, B14
Linearity, electrical, 20, 30, B27
Linearization, continuum, 483, 510, 556,

652, 842
error from, 224
lumped-parameter, 182

Linear systems, 180
Line integration in variable space, 64, 67
Liquid drops, charge-carrying, 388
Liquid level gauge, 416
Liquid metal brush, 878

numerical example of, 883
Liquid metal MHD, numerical example of

750
Liquid metals, pumping of, 746
Liquid orientation in fields, 785
Liquids, definition of, 724
Liquids and gases, comparison of, 724
Loading factor, MHD machine, 833
Lodestone, B25
Long-wave limit, 283, 574

thin elastic rod and, 683
Lord Kelvin, 389
Lorentz force, 419
Loss-dominated dynamics, continuum, 576
Loss-dominated electromechanics, 229, 249
Loss-dominated systems, 227
Losses, fluid joule, 815
Loudspeaker, model for, 527
Lumped-parameter electromechanics, 60
Lumped-parameter variables, summary of,

35, E4, G4

Mach lines, 624
Mach number, 624, 823
Macroscopic models, electromagnetic, B25
Magnet, permanent, 27
Magnetic axes of rotating machines, 105
Magnetic circuit, example of, 22, 23
Magnetic diffusion, 330, 335

charge relaxation compared to, 401
competition between motion and, 351
cylindrical geometry and, 408
effect of motion on, 354
electrical transient, 338
induction machines and, 746
initial conditions for, 339
limit, of infinite conductivity in, 343

of small conductivity in, 343
liquid metals and, 354
lumped-parameter models for, 331, 334,

336
sinusoidal steady-state, 358
sinusoidal steady-state with motion, 355
steady-state, 337, 347

steady-state in the moving frame, 351
traveling-wave moving media, 364

Magnetic diffusion time, 341, 772
Magnetic field, air-gap, 114

induced and imposed, 212, 286, 332
origin of earths, 336, 552

Magnetic field compression, 354
Magnetic field equations, insulating me-

I
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dium, 773
Magnetic field intensity, 7, B25
Magnetic field system, 6, B19

differential equations for, 6, B20, E6, G6
integral equations for, 10, B32, E3, G3

Magnetic field transformation, example of,
266; see also Transformations

Magnetic fluid, demonstration of, 777
Magnetic flux density, 7, B6
Magnetic flux lines, frozen, 763
Magnetic force, field description of, 418,

Gll
stress tensor for, 422, G11

Magnetic forces and mechanical design, 697
Magnetic induction negligible, B19
Magnetic piston, 354
Magnetic pressure, 369
Magnetic Reynolds numbers, 333, 349, 351,

353, 357, 401, 628, 741, 821
MHD flow, 754
numerical value of, 354

Magnetic saturation in commutator ma-
chines, 297

Magnetic surface force, 447
Magnetic tension, 767
Magnetization, B25

effect of free current forces on, 455
Magnetization currents, B25
Magnetization density, 7, B25
Magnetization force, fluids and, 772

one degree of freedom and, 451
Magnetization force density, changes in

density and, 461
example of, 460
inhomogeneity and, 460
in moving media, 285
summary of, 448, G11

Magnetoacoustic velocity, 850
Magnetoacoustic wave, 846

electrical losses and, 860
flux and density in, 851
numerical example, in gas, 852

in liquid, 853
Magnetoelasticity, 553
Magnetofluid dynamics, 551
Magnetogasdynamics, 551
Magnetohydrodynamic conduction ma-

chine, 740
Magnetohydrodynamic generator, constant-

area, 821
variable-area, 828

Magnetohydrodynamics, 551
constant-area channel, 740
viscosity and, 725

Magnetohydrodynamics of viscous fluids,
878

Magnetostriction, 697
one degree of freedom and, 452

Magnetostriction force, incompressible
fluid and, 776

Magnetostrictive coupling, 707
Magnetostrictive transducer, terminal repre-

sentation of, 711
Mass, conservation of fluid, 729

elastic continua, quasi-static limit of, 507
lumped-parameter, 36, 43
total, 46

Mass conservation, 731
Mass density, 45

elastic materials, numerical values of, 486
of solid, 486

numerical values of, 486, G12
Mass per unit area of membrane, 509
Mass per unit length of wire, 511
Matched termination, 497
Material motion, waves and instabilities

with, 583
Matter, states of, 724
Maxwell, 1
Maxwell's equations, B12

limiting forms of, B14
Maxwell stress tensor, 420, 441, G7, G11
Mechanical circuits, 36
Mechanical continuum, 479
Mechanical equations, lumped-parameter,

49
Mechanical input power, fluid, 756

variable-area channel, 756
Mechanical lumped-parameter equations,

examples of, 49, 51, 53
Mechanics, lumped-parameter, 35

rigid body, 35
transformations and Newtonian, 254

Membrane, elastic continua and, 509, 535,
electric field and, 574
equations of motion for, 511, 535, G13
two-dimensional modes of, 622

Membrane dynamics with convection, 584
Mercury, density and conductivity of, 750

properties of, 883
Meteorology, EHD and, 552
MFD, 551; see also MHD
MGD, 551; see also MHD
MHD, 551

compressible fluids and, 813
liquid metal numerical example of, 750
magnetic damping in, 750
transient effects in, 746, 759
transient example of, 750
variable-area channel in, 751
of viscous fluids, 878

MHD conduction machine, 821, 828
equivalent circuit for, 742
pressure drop in, 742
terminal characteristics of, 742

MHD constant-area channel, 740, 820
MHD flows, dynamic effects in, 746
MHD generator, comparison of, 839

compressibility and, 820
constant voltage constrained, 743
distribution of properties in, 827
end effects in, 797
examples of, 840, 841
Mach number in, 823
numerical example of, 826
temperature in, 823
variable-area channel, 828
viscosity and, 725, 884
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MHD machine, compressible and incom-
pressible, 825

constant velocity, loading factor and
aspect ratio, 834

dynamic operation of, 746
equivalent circuit for variable area, 756
loading factor of, 833
operation of brake, pump, generator, 744
quasi-one-dimensional, 828
steady-state operation of, 740
velocity profile of, 891

MHD plane Couette flow, 884
MHD plane Poiseuille flow, 878
MHD pressure driven flow, 884
MHD pump or accelerator, 824
MHD transient phenomena, 759
MHD variable-area channel equations,

conservation of energy and, 831, 833
conservation of mass and, 831, 833
conservation of momentum and, 831, 833
local Mach number and, 823, 833
local sound velocity and, 822, 833
mechanical equation of state and, 816, 833
Ohm's law and, 830, 833
thermal equations of state and, 820, 833

MHD variable-area machine, equations
for, 833

MHD variable-area pumps, generators and
brakes, 751

Microphone, capacitor, 201
fidelity of, 204

Microphones, 200
Microwave magnetics, 553
Microwave power generation, 552
Mobility, 289, B31

ion, 778
Model, engineering, 206
Modulus of elasticity, 485

numerical values of, 486, G12
Molecular weight of gas, 816
Moment of inertia, 36, 48
Momentum, conservation of, see Conserva-

tion of momentum
Momentum density, fluid, 734
Motor, commutator, 140, 291

induction, 134
reluctance, 156
synchronous, 119

Moving media, electromagnetic fields and,
251

Mutual inductance, calculation of, 22

Natural frequencies, 515
dispersion equation and, 517

Natural modes, dispersion and, 561
kink instability, 635
of membrane, 624, 625
overdamped and underdamped, 583
of unstable wire, 569

Navier-Stokes equation, 872
Negative sequence currents, 144
Networks, compensating, 198
Newtonian fluids, 861

[ex

Newton's laws, 15, 35
elastic media and, 653

Newton's second law, 44, 50
electromechanical coupling and, 84
fluid and, 729, 731

Node, mechanical, 36, 49
Nonlinear systems, 206, 213
Nonuniform magnetic field, motion of

conductor through, 367
Normal modes, 511

boundary conditions and, 524
Normal strain and shear stress, 662
Normal stress and normal strain, 661
Normal vector, analytic description of, 269

Oerstad, 1, B25
Ohm's law, 7, B30

for moving media, 284, 298
Omega-k plot, absolutely unstable wire, 567

amplifying wave, 603
convective instability, 603
damped waves, complex k for real omega,

579
elastic guided shear waves, 695
electron oscillations, 601
evanescent wave, 557, 559, 597, 615, 695
moving wire, with destabilizing magnetic

force, 603
with resistive wall, complex k for real

omega, 611
with resistive wall, complex omega for

real k, 610
ordinary wave, with convection, 594

on wires and membranes, 514
ordinary waves, 514, 555
unstable eigenfrequencies and, 569
waves with damping showing eigenfre-

quencies, 582
wire stabilized by magnetic field, 557

Orientation, electrohydrodynamic, 571
electromechanical, 4
of liquids, dielectrophoretic, 785

EHD, 552
Orthogonality, eigenfunctions and, 341, 519,

520
Oscillations, nonlinear, 226

with convection, 596
Oscillators in motion, 599
Overstability, 192

Particles, charge carriers and, 782
Particular solution of differential equation,

180
Pendulum, hydrodynamic, 746

simple mechanical, 214
Perfect conductor, no slip condition on, 769
Perfect gas law, 816
Perfectly conducting gas, dynamics of, 846
Perfectly conducting media, see Conductor
Permanent magnet, in electromechanics, 27

example of, 28
as rotor for machine, 127

Permanent set, solids and, 700
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Permeability, 7, B27
deformation and, 459
density dependence of, 454
free space, 7, B7

Permittivity, 9, B30
free space, 7, 9, B2

Perturbations, 183
Phase sequence, 144
Phase velocity, 613

diffusion wave, 358
dispersive wave, 598
membrane wave, 512
numerical elastic compressional wave, 677
numerical elastic shear wave, 677
numerical thin rod, 486, G12
ordinary wave, 487
thin rod, 487
wire wave, 512

Physical acoustics, 553, 651
Piezoelectric coupling, 711

reciprocity in, 712
Piezoelectric devices, example of, 717
Piezoelectricity, 553, 711
Piezoelectric length expander bar, 712
Piezoelectric resonator, equivalent circuit

for, 716
Piezoelectric transducer, admittance of,

714
Piezomagnetics, 553
Plane motion, 44
Plasma, confinement of, 552

electromechanics and, 4
evanescent waves in, 561, 638
heating of, 552
lumped-parameter model for, 223
magnetic bottle for, 563
magnetic diffusion and, 408
MHD and, 553
solid state, 553

Plasma dynamics, 553
Plasma frequency, 600
Poiseuille flow, plane, 878
Poisson's ratio, 662

numerical values of, 666
Polarization, effect of motion on, 290

current, B29
density, 7, B28
electric, B27
force, 463, 571, G11

Polarization force, one degree of freedom,
464

Polarization interactions, liquids and, 783
Polarization stress tensor, 463, G11
Pole pairs, 148
Poles in a machine, 146
Polyphase machines, 142
Position vector, 45
Positive sequence currents, 144
Potential, electric, B9

electromagnetic force, 738
gravitational, 733
mechanical, 214
velocity, 737

Potential difference, B10
Potential energy, 214
Potential flow, irrotational electrical

forces and, 738
Potential fluid flow, two-dimensional, 751
Potential plot, 214
Potential well, electrical constraints and, 217

electromechanical system and, 217
temporal behavior from, 224

Power, conservation of, 64
Power density input to fluid, 818
Power factor, 126
Power flow, group velocity and, 638

ordinary and evanescent waves and, 638
rotating machines and, 110

Power generation, ionized gases and, 552
microwave, 552, 553

Power input, electrical, 64
fluid electrical, 818
mechanical, 64
mechanical MHD, 743

Power input to fluid, electric forces and,
819

electrical losses and, 818, 819
magnetic forces and, 818
pressure forces and, 818

Power output, electric MHD, 743
Power theorem, wire in magnetic field, 637,

644
Poynting's theorem, B22
Pressure, density and temperature depen-

dence of, 816
hydrostatic, 735
hydrostatic example of, 736
incompressible fluids and significance of,

753
isotropic, 735
magnetic, 369
normal compressive stress and, 735
significance of negative, 753
velocity and, 753

Principal axes, 49
Principal modes, 681

elastic structure, 679
shear wave, 695

Principle of virtual work, see Conservation,
of energy

Products of inertia, 48
Propagation, 613
Propulsion, electromagnetic, 552

electromechanical, 4
MHD space, 746

Pulling out of step for synchronous ma-
chine, 125

Pump, electric field, 776
electrostatic, 778
liquid metal induction, 365
MHD, 744, 746
variation of parameters in MHD, 825

Pumping, EHD, 552
MHD, 552

Quasi-one-dimensional model, charge relaxa-
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tion, 392, 394
electron beam, 600
gravity wave, 794
magnetic diffusion, 347
membrane, 509, 648

and fluid, 793
MHD generator, 828
thin bar, 712
thin beam, 683
thin rod, 480, 681
wire or string, 509

in field, 556, 563, 574, 605, 627
Quasi-static approximations, 6, B17
Quasi-static limit, sinusoidal steady-state

and, 515, 534
wavelength and, B17
wire and, 534

Quasi-statics, conditions for, B21
correction fields for, B21
elastic media and, 503
electromagnetic, B19

Quasi-static systems, electric, 8
magnetic, 6

Radiation, heat, 815
Rate of strain, 864
Reactance-dominated dynamics, 138, 211,

220, 242, 336, 354, 368, 563, 759
Reciprocity, electromechanical coupling

and, 77
piezoelectric coupling and, 713

Reference system, inertial, 44
Regulation, transformer design and, 699
Relative displacement, rotation, strain and,

658
Relativity, Einstein, 254

Galilean, 255
postulate of special, 261
theory of, 44

Relaxation time, free charge, 372
numerical values of, 377

Relay, damped time-delay, 229
Reluctance motor, 156
Resistance-dominated dynamics, 138, 209,

233, 242, 336, 354, 368, 503, 583, 611
MHD, 750

Resistive wall damping, continuum, 583
Resistive wall instability, nature of, 612
Resistive wall wave amplification, 608
Resonance, electromechanically driven

continuum and, 533
response of continua and, 515

Resonance frequencies, magnetic field
shift of, 563

membrane, 624
natural frequencies and, 515

Resonant gate transistor, 688
Response, sinusoidal steady-state, 181, 200,

514
Rigid body, 44
Rigid-body mechanics, 35
Rotating machines, 103

air-gap magnetic fields in, 114

applications of, 3
balanced two-phase, 113
classification of, 119
commutator type, 140, 255, 292
computation of mutual inductance in, 22
de, 140, 291
differential equations for, 106
effect of poles on speed of, 149
electric field type, 177
energy conversion conditions for, 110
energy conversion in salient pole, 154
equations for salient pole, 151
hunting transient of synchronous, 192
induction, 127
losses in, 109
magnetic saturation in, 106
mutual inductance in, 108
number of poles in, 146
polyphase, 142
power flow in, 110
salient pole, 103, 150
single-phase, 106
single-phase salient-pole, 79
smooth-air-gap, 103, 104
stresses in rotor of, 697
superconducting rotor in, 92
synchronous, 119
two-phase, smooth-air-gap, 111
winding distribution of, 108

Rotating machines, physical structure,
acyclic generator, 287

commutator type, 292
dc motor, 293
development of dc, 295
distribution of currents and, 166, 169
four-pole, salient pole, 164
four-pole, single phase, 147
homopolar, 313
hydroelectric generator, 152
multiple-pole rotor, 146
rotor of induction motor, 107
rotor of salient-pole synchronous, 151
synchronous, salient-pole, 152
salient-pole, two phase, 158
salient-pole, single phase, 150
smooth-air-gap, single phase, 104
stator for induction motor, 106
three-phase stator, 145
turboalternator, 120
two-pole commutator, 294

Rotation, fluid, 865
Rotation vector, 658
Rotor of rotating machines, 104, 107, 112,

120, 146, 147, 150, 151, 152, 158,
164, 166, 169

Rotor teeth, shield effect of, 301

Saliency in different machines, 156
Salient-pole rotating machines, 103, 150
Salient poles and dc machines, 293
Servomotor, 140
Shading coils in machines, 139
Shear flow, 862, 864, 875



___

Index

magnetic coupling, 878
Shear modulus, 664

numerical values of, 666
Shear rate, 866
Shear strain, 543, 655

normal strain and, 663
shear stress and, 664

Shear stress, 543
Shear waves, elastic slab and, 693
Shearing modes, beam principal, 683
Shock tube, example related to, 276
Shock waves, supersonic flow and, 592
Sinusoidal steady-state, 181, 200, 514

convection and establishing, 592
Sinusoidal steady-state response, elastic con-

tinua, 514
Skin depth, 357

numerical values of, 361
Skin effect, 358
effect of motion on, 361

Slip of induction machine, 131
Slip rings, 120

ac machines and, 120
Slots of dc machine, 296
Sodium liquid, density of, 771
Solids, definition of, 724
Sound speed, gases, 844

liquids, 845
Sound velocity, see Velocity
Sound waves, see Acoustic waves
Source, force, 37

position, 36
velocity, 37

Space charge, fluid and, 780
Space-charge oscillations, 601
Speakers, 200
Specific heat capacity, constant pressure, 817

constant volume, 816
ratio of, 817

Speed coefficient, of commutator machine,
300

torque on dc machine and, 302
Speed control of rotating machines, 149
Speedometer transducer, 170
Speed voltage in commutator machine, 299
Spring, linear ideal, 38

lumped element, 36, 38
quasi-static limit of elastic continua and, 505
torsional, 40

Spring constant, 39
Stability, 182, 566, 583
Stagnation point, fluid, 752
Standing waves, electromagnetic, B16

electromechanical, 516, 559, 596, 771
State, coupling network, 61, 65

thermal, 816
Stator, of rotating machines, 104, 106, 120,

145, 147, 150, 152, 158, 164, 166, 169
smooth-air-gap, 103

Stinger, magnetic, 193
Strain, formal derivation of, 656

geometric significance of, 654
normal, 654
permanent, 700
shear, 543, 654

as a tensor, 659
thin rod, normal, 484

Strain components, 656
Strain-displacement relation, 653

thin-rod, 485
Strain rate, 724, 864

dilatational, 869
Strain-rate tensor, 864
Streaming electron oscillations, 600
Streamline, fluid, 752
Stress, fluid isotropy and, 868

fluid mechanical, 872
hydrostatic, 724
limiting, 700
normal, 432
shear, 432, 543
and traction, 424, G9

Stress components, 425
Stress-strain, nonlinear, 700
Stress-strain rate relations, 868
Stress-strain relation, 660, 668

thin-rod, 485
Stress-tensor, elastic media and, 667

example of magnetic, 428
magnetization, 462, G11
Maxwell, 420
physical interpretation of, 425, G7
polarization, 463, G11
pressure as, 735
properties of, 423, G7
surface force density and, 446, G9
symmetry of, 422
total force and, 444, G9

Stress tensors, summary of, 448, G11
String, convection and, 584

equation of motion for, 511, 535
and membrane, electromechanical

coupling to, 522
see also Wire

Subsonic steady MHD flow, 823
Subsonic velocity, 587
Substantial derivative, 259, 584, 726; see

also Convective derivative
Summation convention, 421, G7
Superconductors, flux amplification in, 354
Supersonic steady MHD flow, 823
Supersonic steady-state dynamics, 524
Supersonic velocity, 587
Surface charge density, free, 7
Surface conduction in moving media, 285
Surface current density, free, 7
Surface force, example of, 449

magnetization, 775
Surface force densities, summary of, 448,

G11
Surface force density, 445, G11

free surface charge and, 447, G11
free surface currents and, 447, Gll

Surface tension, 605
Susceptance, electromechanical driving, 531
Susceptibility, dielectric, 9, B30

electric, 9, B30
magnetic, 7, B27

Suspension, magnetic, 193
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Symbols, Al, D1, F1
Symbols for electromagnetic quantities, 7
Synchronous condenser, 127
Synchronous machine, 119

equivalent circuit of, 123
hunting transient of, 192
phasor diagram for, 124, 162
polyphase, salient-pole, 157
torque in, 122, 123, 125
torque of salient-pole, two-phase, 160, 162

Synchronous motor, performance of, 126
Synchronous reactance, 123
Synchronous traveling-wave energy conver-

sion, 117

Tachometer, drag-cup, 363
Taylor series, evaluation of displacement

with, 483
multivariable, 187
single variable, 183

Teeth of dc machine, 296
Temperature, electrical conductivity and, 380
Tension, of membrane, 509

of wire, 511
Tensor, first and second order, 437

one-dimensional divergence of, 482
surface integration of, 428, 441, 444, G9
transformation law, 437, G10
transformation of, 434, G9

Tensor strain, 659
Tensor transformation, example of, 437
Terminal pairs, mechanical, 36
Terminal variables, summary of, 35, E4, G4
Terminal voltage, definition of, 18
Theorems, C2, E2, G2
Thermonuclear devices, electromechanics

and, 4
Thermonuclear fusion, 552
Theta-pinch machine, 408
Thin beam, 683

boundary conditions for, 687
cantilevered, 688
deflections of, 691, 692
eigenvalues of, 692
electromechanical elements and, 688, 691,

701, 704
equation for, 687
resonance frequencies of, 692
static loading of, 701

Thin rod, 681
boundary conditions for, 494
conditions for, 683
equations of motion for, 485, G13
force equation for, 484
longitudinal motion of, 480
transverse motions of, 682

Three-phase currents, 143
Time constant, charge relaxation, 372

magnetic diffusion, 341
Time delay, acoustic and electromagnetic, 499
Time-delay relay, electrically damped, 249
Time derivative, moving coordinates and, 258
Time rate of change, moving grain and, 727
Torque, dc machine, 302

electrical, 66

Lorentz force density and, 301
pull-out, 124

Torque-angle, 123
Torque-angle characteristic of synchronous

machine, 125
Torque-angle curve, salient-pole synchronous

machine, 163
Torque-slip curve for induction machine, 135
Torque-speed curve, single phase induction

machine, 139
Torsional vibrations of thin rod, 543
Traction, 424, 432

pressure and, 735
stress and, 432, G9

Traction drives, 310
Transducer, applications of, 2

continuum, 704
example of equations for, 84, 86
fidelity of, 203
incremental motion, 180, 193, 200
Magnetostrictive, 708

Transfer function capacitor microphone, 204
electromechanical filter, 706

Transformations, electric field system, 264
Galilean coordinate, 254, 256
integral laws and, 11, 276, 300, 315, B32
Lorentz, 254
Lorentz force and, 262
magnetic field system, 260
primed to imprimed frame, 439
summary of field, 268, E6, G6
vector and tensor, 434, G9

Transformer, electromechanical effects in, 697
step-down, 698
tested to failure, 698

Transformer efficiency, mechanical design
and, 699

Transformer talk, 697
Transient response, convective instability, 621

elastic continua, 517
MHD system, 751
one-dimensional continua, 511
superposition of eigenmodes in, 518
supersonic media, 593

'Transient waves, convection and, 587
Transmission line, electromagnetic, B16

parallel plate, B15
thin rod and, 488

Transmission without distortion in elastic
structures, 696

Traveling wave, 487
convection and, 586
magnetic diffusion in terms of, 357
single-phase excitation of, 118
standing wave and, 116
two-dimensional, 622
two-dimensional elastic, 694
two-phase current excitation of, 116

Traveling-wave induction interaction, 368
Traveling-wave MHD interaction, 746
Traveling-wave solutions, 554
Traveling-wave tube, 602
Turboalternator, 120
Turbulence in fluids, 725
Turbulent flow, 43
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Ultrasonic amplification, 602
Ultrasonics in integrated electronics. 688
Units of electromagnetic quantities, 7

Van de Graaff generator, example of, 383,
385

gaseous, 778
Variable, dependent, 180

independent, differential equation, 180
thermodynamic independent, 64

Variable capacitance continuum coupling,704
V curve for synchronous machine, 125
Vector, transformation of, 434, 659
Vector transformation, example of, 435
Velocity, absolute, 44

acoustic elastic wave, 673, 677
acoustic fluid wave, 844, 846
Alfv6n wave, 763, 772
charge-average, B5
charge relaxation used to measure, 396
charge relaxation wave, 395
compressional elastic wave, 673, 677
dilatational elastic wave, 673, 677
elastic distortion wave, 675, 677
fast and slow wave, 586
light wave, B14
magnetic diffusion wave, 358
magnetic flux wave, 114
magnetoacoustic wave, 850, 852
measurement of material, 356, 362
membrane wave, 512
phase, 488
shear elastic wave, 675, 677
thin rod wave, 486, 487, 682
wavefront, 618

with dispersion, 598
wire or string wave, 512

Velocity potential, 737
Viscosity, 862

coefficient of, 863
examples of, 875
fluid, 724
mathematical description of, 862
second coefficient of, 871

Viscous flow, pressure driven, 877
Viscous fluids, 861
Viscour losses, turbulent flow, 725
Voltage, definition of, B10

speed, 20, 21
terminal, 18
transformer, 20, 21

Voltage equation, Kirchhoff, 16

Ward-Leonard system, 307
Water waves, 794
Wave amplification, 601
Wave equation, 487
Wavenumber, 357, 513

complex, 554, 607
Wave propagation, 487

characteristics and, 487, 586, 618
group velocity and, 616
phase velocity and, 613

Wave reflection at a boundary, 493
Waves, acoustic elastic, 673

acoustic in fluid, 544, 841, 842, 845
Alfv6n, 759
compressional elastic, 673
convection and, 586
cutoff, see Cutoff waves
damping and, 576
diffusion, 355, 576
dilatational, 672
dispersionless, 555
dispersion of, 488
of distortion, 675
elastic shear, 678
electromagnetic, B13, 488
electromechanical in fluids, 759
evanescent, see Evanescent waves
fast and slow, 586
fast and slow circularly polarized, 631
fluid convection and, 860
fluid shear, 760
fluid sound, 813
incident and reflected at a boundary, 494
light, B13
longitudinal elastic, 673
magnetoacoustic, 841, 846
motion and, 583
plasma, 553, 600, 638
radio, B13
rotational, 671
shear elastic, 675
stationary media and, 554
surface gravity, 794
thin rod and infinite media, 673

Wave transients, solution for, 490
Wind tunnel, magnetic stinger in, 193
Windings, balanced two-phase, 113

dc machine, 292
lap, 296
wave, 296

Wire, continuum elastic, 509, 535
convection and dynamics of, 584
dynamics of, 554
equations of motion for, 511, G13
magnetic field and, 556, 566, 627
two-dimensional motions of, 627

Yield strength, elastic, 700
Young's modulus, 485, G12

Zero-gravity experiments, KC-135 trajec-
tory and, 787




